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In an attempt to repeat the findings of Oscar and Hawkins (26), Preston et al. (28) found no 

increase in the uptake of 14C-mannitol in anaesthetised rats after 2450MHz CW exposure for 

30 min at power densities of 0.1 to 30mW/cm
2
. Preston et al. further concluded that the 

increased BBB permeability, which had been observed by Oscar and Hawkins (26) in 

cerebellum and medulla, possibly had been misinterpreted and was not due to the EMF 

exposure. Rather, changes in blood flow and water influx or egress were supposed to be 

responsible for the BBB permeability in these caudal parts of the brain. Also, further attempts, 

made by Merritt et al. (1978) (29), to replicate the findings of Oscar and Hawkins from 1977, 

resulted in the conclusion that no repetition of the initial findings could be made. Merritt et al. 

(29) tried to replicate also the findings of Frey et al. (25), but reported that no changes were 

seen. 

 

However, Frey commented upon this in an article in 1998, where he pointed out that, in fact, 

statistical analysis by the editor and reviewer of the data from the study by Merritt et al. 

provided a confirmation of the findings of Frey et al. (25) (30).  

 

No alteration of BBB permeation of 14C-sucrose and 3H-inulin was found by Ward et al.  

(31)after exposure of anaesthetised rats to CW at 2450MHz for 30 min at power densities of 0, 

10, 20, or 30 mW/cm
2
 after correction for thermal effects. Similarly, Ward and Ali (32) 

observed no permeation after 1.7GHz exposure at SAR of 0.1 W/kg, using the same exposure 

duration and injected tracers as Ward et al. (31). Absence of EMF induced BBB permeability 

was also reported by Gruenau et al. (33), after injection of 14C-sucrose in conscious rats and 

exposure 30 min pulsed energy (2.8GHz at 0, 1, 5, 10, or 15mW/cm
2
) or continuous wave 

(2.8 GHz, 0, 10, or 40 mW/cm
2
). 

 

Proof of EMF-induced BBB permeability was put forward by Albert and Kerns (34), who 

exposed un-anaesthetised Chinese hamsters to 2,450MHz CWs for 2 h at SARs of 2.5 W/kg. 

In one-third of the exposed animals there was an increased permeability of the BBB to 

horseradish peroxidase (HRP) and the endothelial cells of these irradiated animals had a 2–3-

fold higher number of pinocytotic vesicles with HRP than the sham animals. The mechanism 

of BBB permeability seemed to be reversible, since animals allowed to recover for 1 or 2 h 

after the EMF exposure had almost no HRP permeation. A total number of 80 animals were 

included in this study. 
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Temperature Dependence 

 

In further studies, more attention was directed towards the effects of hyperthermia, resulting 

from exposure at high SAR-levels, on BBB permeability.  

 

A study correlating changes of BBB permeability with the quantity of absorbed microwave 

energy by Lin and Lin (35), using Evans blue and sodium fluorescein as indicators of BBB 

permeation, showed that 20 min of 2,450MHz exposure of anaesthetised Wistar rats caused 

no alteration of BBB permeability even at SAR values of 80 W/kg. Notably, the same lack of 

alteration was observed also at lower SAR-values, down to 0.04 W/kg. In further studies by 

the same group (36), no permeation of Evans blue could be observed after exposure to 

2,450MHzB RFs for 5–20 min when the SAR-values ranged from 0.04–200 W/kg. Not until a 

SAR-value of 240 W/kg, with ensuing rise in brain temperature to 43ºC, was applied, the 

BBB permeability increased. These observations of demonstrable increases of BBB 

permeability associated with intense, microwave-induced hyperthermia were supported by 

another study by the same group (37). 

 

In a series of EMF exposures at 2,450MHz CW, Williams et al. (38-40) concluded that 

increase of BBB permeability might not be explained by microwave exposure, but rather 

temperature increases and technically derived artefacts such as increase of the cerebral blood 

volume and a reduction in renal excretion of the tracer. Significantly elevated levels of 

sodium fluorescein (38) were found only in the brains of conscious rats made considerably 

hyperthermic by exposure to ambient heat for 90 min or 2,450MHz CW microwave energy 

for 30 or 90 min, but this was at high SAR values, 13 W/kg—far beyond the ICNIRP limit of 

2 W/kg (41) —and not comparable to the experiments performed by, among others, our group, 

as described below. 

 

With more research into the area of EMF induced BBB permeability, it became evident that 

with high-intensity EMF exposure resulting in tissue heating, the BBB permeability is 

temperature dependent (42). Thus, the importance of differentiating between thermal and non- 

thermal effects on the integrity of the BBB was realized. This is the reason why studies with 

increases of BBB permeability due to exposure to SAR-values well above recommended 
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exposure levels (43-46) need to be considered from another point of view, as compared to 

those focusing on the non-thermal effects of EMFs. 

 

 

Continued Studies—MRI and BBB Permeability 

 

Following the increasing use of magnetic resonance imaging (MRI), the effects of MRI 

radiation upon BBB permeability were investigated more thoroughly. MRI entails the 

concurrent exposure of subjects to a high-intensity static field, a radiofrequency field, and 

time-varying magnetic field. Shivers et al. (47) observed that exposure to a short (23 min) 

standard (of those days) clinical MRI procedure at 0.15 Tesla (T) temporarily increased the 

permeability of the BBB to horseradish peroxidase (HRP) in anaesthetised rats. This was 

revealed by electron microscopy (EM), to be due to an amplified vesicle-mediated transport 

of HRP across the microvessel endothelium, to the ablumenal basal lamina and extracellular 

compartment of the brain parenchyma. This vesicle-mediated transport also included 

transendothelial channels. However, no passage of the tracer through disrupted 

interendothelial tight junctions was present. 

 

During the next few years, more groups studied the effects of MRI exposure on the BBB 

permeability by injection of radioactive tracers into rats. One supported (48)while others 

contradicted (49, 50) the initial findings made by Shivers et al. (47). Garber et al. exposed rats 

to MRI procedures at 1.5, 0.5, and 0.3 T with RFs of 13, 21, and 64 MHz, respectively (48). 

Brain mannitol concentration was significantly increased at 0.3 T and 0.5 T but not at 1.5 T. 

No decrease in plasma mannitol concentration of MRI exposed animals was found and thus 

the authors concluded that effects of MRI associated energies on mannitol transport do not 

occur measurably in the body, and might be more specific to brain vasculature. Preston et al. 

(50) found no significant permeation of blood-borne 14C-sucrose into brain parenchyma in 

anesthetized rats subjected to 23 min of MRI at 4.7 T and RFs at 12.5 kHz. However, the 

authors pointed out that if the MRI effect was focal and excess tracer counts were found only 

in restricted sites, there could have been MRI induced extravasation of sucrose that was not 

detected, due to the preponderance of normal tissue counts. When Preston et al. (50) 

compared the lack of BBB leakage in their study to the MRI induced leakage which had been 

observed by Shivers et al. (47), they also concluded that certain characteristics of electric and 
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magnetic fields, which were present in the study by Shivers et al. but not in their own work, 

could have been critical to the observed effects. 

 

In 1990, further studies by the Shivers-Prato group were presented (51) and the group could 

now quantitatively support its initial findings, in a series of 43 Sprague-Dawley rats. The 

BBB permeability to diethylenetriaminepentaacetic acid (DTPA) increased in rats after two 

sequential 23 min MRI exposures at 0.15 T. It was suggested that the increased BBB 

permeability could result from a time-varying magnetic field mediated stimulation of 

endocytosis. Also, the increased BBB permeability could be explained by exposure-induced 

increases of intracellular Ca
2+ 

in the vascular endothelial cells. Since the Ca
2+

 is an 

intracellular mediator, increases of BBB permeability could possibly be initiated in this way. 

A few years later, in a series of 50 rats, the Shivers - Prato group also found that the BBB 

permeability in rats is also altered by exposure to MRI at 1.5T for 23 min in 2 subsequent 

exposure sessions (52). 

 

 

Studies by the Lund Group 

 

Two of us found these observations highly interesting:  

- the neurosurgeon (LGS) in the hope to utilize possible applications of EMF to 

make the blood-brain barrier (BBB) more penetrable to chemotherapy, in order 

to treat brain cancers more effectively.  An intact BBB keeps out chemotherapy 

agents, allowing cancer cells to hide behind the BBB.  

 

- the radiophysicist (BRRP) interested in possible adverse effects of the MRI 

technique.  

 

After a visit to Shivers’ group in London Ontario in 1988, we started work in Lund in 1988, 

studying the effects of MRI on rat brain and we found, by the use of Evans Blue, the same 

increased permeability over BBB for albumin (53). 

 

This work was continued by separating the constituents of the MRI field: RF, undulant 

magnetic field, and static magnetic field. Since RF turned out to be the most efficient 

component of the MRI, the following studies focused mainly on the RF effects. Striving for 



20 
 

investigating the actual real-life situation, endogenous substances, which naturally circulate in 

the vessels of the animals, were used. In line with this, albumin and also fibrinogen leakage 

over the BBB were followed after identification of albumin with rabbit antibodies (see Figure 

2 and 3) and rabbit anti-human fibrinogen. 

 

 

Figure 2. Albumin extravasation in rat brain (material from Persson et al. 1997)(54).  

Left: control brain with albumin staining in hypothalamus, which serves as an inbuilt-control 

of the staining method, since the hypothalamus lacks BBB, and one occasional staining. 

Right: Brain of EMF exposed rat, with multiple albumin positive foci.  

 

 

Figure 3. Albumin extravasation around vessels in the brain of an EMF exposed rat.  

 

 

The work by Blackman et al. (55, 56) made the ground  laid the groundwork for studies on the 

frequency modulation 16 Hz and its harmonies harmonics  4 and 8 Hz. A carrier wave of 915 

MHz was used. At the suggestion of Östen Mäkitalo (Telia), a pioneer in mobile phone 
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development, who introduced 50 Hz (DUX) and 217 Hz (GSM) modulation in new digital 

wireless communication systems, we also included theses frequencies.  This paralleled the 

first BBB study results that were published in 1992-1994 (57-59). 

 

The result of our continued work, comprising more than 1000 animals, with exposure to both 

CWs and pulsed modulated waves, in the most cases lasting for 2 h, showed that there was a 

significant difference between the amount of albumin extravasation in the exposed animals as 

compared to the controls. In the exposed group 35–50% of the animals had a disrupted BBB 

as seen by the amount of albumin leakage, while the corresponding leakage in the sham 

exposed animals was only 17% (for results see Figure 4) (54).  
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Figure 4. Albumin extravasation score as a result of EMF exposure (results from the study by 

Persson et al. (54)). 
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The fact that sham-exposed control animals also show some amount of albumin extravasation 

(see Figure 4), is most likely due to our very sensitive methods for immune histological 

examination. However, it is hard to explain the fact that although all animals in the 1997 

series were inbred Fischer 344 rats, only every second animal, at the most, showed albumin 

leakage after EMF exposure. The question, what might protect the remaining 50% of the 

exposed animals from BBB disruption, is highly intriguing. It should be noted that in our 

large series, only in one single animal fibrinogen leakage has been observed (54). 

 

Another conclusion from the 1997 study is that the number of pathological leakages in 

exposed animals is more frequent, and also more severe, per animal compared to the controls. 

This is an interesting observation as the prevailing opinion is that pulse modulated 

electromagnetic fields are more potent in causing biological effects.  

 

In a statistical re-evaluation of our material published in 1997, where only exposed rats with a 

matched unexposed control rat are included, we found for the most interesting modulation 

frequency 217 Hz, i.e. that of GSM, that at SAR-values of 0.2 to 4 mW/kg 48 exposed rats 

had a significantly increased albumin leakage (p < 0.001) as compared their 48 matched 

controls. On the other hand, SAR-values of 25-50 mW/kg, gave no significant difference 

between 22 exposed rats vs their matched controls (Wilcoxon´s Rank Test, 2-sided p-value) 

(60).  

 

In all our earlier studies we showed albumin extravasation immediately after exposure as 

described above. In later years we have performed a series of experiments where the animals 

were allowed to survive for 7 days (61), 14 days, 28 days (62) or 50 days (63) after one single 

2-hour exposure to the radiation from a GSM mobile phone. All were exposed in TEM-cells 

to a 915 MHz carrier wave as described below. The peak power output from the GSM mobile 

phone fed into the TEM-cells was 1 mW, 10 mW, 100 mW and 1000 mW per cell 

respectively for the 7-14-28-days survival animals, resulting in average whole-body SAR of 

0.12 mW/kg, 1.2 mW/kg, 12 mW/kg and 120 mW/kg for four different exposure groups 

SAR-values of 2, 20 and 200 mW/kg mW/kg for 2 hours for the 50-days survival animals.  

 

Albumin extravasation over the BBB after GSM exposure seemed to be time-dependent, with 

significantly increased albumin in the brain parenchyma of the rats, which had survived for 7 

and 14 days, but not for those surviving 28 days. After 50 days, albumin extravasation was 
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significantly increased again, with albumin-positive foci around the finer blood vessels in 

white and gray matter of the exposed animals.  

 

In connection to the albumin passage over the BBB, albumin also spread in the surrounding 

brain tissue. A significantly increased uptake of albumin in the cytoplasm of neurons could be 

seen in the GSM exposed animals surviving 7 and 14 days after exposure, but not in those 

surviving 28 or 50 days.  

 

Neuronal uptake 

Extravasated albumin rapidly diffused down to, and beyond, concentrations possible to 

demonstrate accurately immunohistologically. However, the initial albumin leakage into the 

brain tissue (seen within hours in ~40% of exposed animals in our previous studies) most 

likely started a vicious circle of further BBB opening. 

 

It has been postulated that albumin is the most likely neurotoxin in serum (64). Hassel et al. 

(65) have demonstrated that injection of albumin into the brain parenchyma of rats gives rise 

to neuronal damage. When 25 μl of rat albumin is infused into rat neostriatum, 10 and 30, but 

not 3 mg/ml albumin causes neuronal cell death and axonal severe damage. It also causes 

leakage of endogenous albumin in and around the area of neuronal damage. Albumin in the 

dose 10 mg/ml is approximately equivalent to 25% of the serum concentration. 

It is less likely that the albumin leakage demonstrated in our experiments locally reaches such 

concentrations. However, we have seen that in the animals surviving 28 and 50 days after 2 

hours of GSM exposure, there was a significantly increased incidence of neuronal damage as 

compared to the sham controls. In the 7-days and 14-days survival animals, on the other hand, 

no such increase of neuronal damage was seen.  

 

In the 50-days post-exposure survival study, a 2 h exposure to GSM at SAR values 200, 20, 

and 2 mW/kg resulted in a significant (p = 0.002) neuronal damage in rat brains of the 

exposed animals as compared to the controls 50 days after the exposure occasion (Salford et 

al., 2003)(63). We have followed up this observation, as mentioned above, in a study where 

96 animals were sacrificed 14 and 28 days respectively after an exposure for 2 h to GSM 

mobile phone electromagnetic fields at SAR values 0 (controls), 0.12, 1.2, 12 and 120 

mW/kg. Significant neuronal damage is seen after 28 days and albumin leakage after 14. Our 
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findings may support the hypothesis that albumin leakage into the brain is the cause for the 

neuronal damage observed after 28 and 50 days (62). 

 

The damaged neurons in the above mentioned studies took the shape of so-called dark 

neurons. Three main characteristics of the damaged dark neurons have been proposed (66): (i) 

irregular cellular outlines, (ii) increased chromatin density in the nucleus and cytoplasm and 

(iii) intensely and homogenously stained nucleus. The damaged dark neurons found in the 50 

days-survival animals were investigated regarding signs of apoptotic markers, but we found 

no positive staining for Caspase-3, a marker for apoptosis (Bexell et al. unpublished results).  

However, the albumin leakage out in the neuropil in connection to EMF exposure might start 

other deleterious processes, leading to the formation of the dark neurons.  

 

 

A group in Turkey performed similar experiments. However, also the presumed protective 

effects of the antioxidant Ginko biloba (Gb) were examined by Ilhan et al. (67). About 22 

female Wistar rats were exposed to a 900 MHz electromagnetic GSM near-field signal for 1 h 

a day for 7 days. In the GSM only group, the pathological examination revealed scattered and 

grouped dark neurons in all locations, but especially in the cortex, hippocampus and basal 

ganglia, mixed in among normal neurons. A combined non-parametric test for the four groups 

revealed that the distributions of scores differed significantly between the control and the 

GSM only exposure group (p < 0.01). 

 

Long-term study, including studies of memory and behaviour 

In a recent long-term study from our laboratory, rats were exposed to GSM radiation 2 hours 

weekly during 55 weeks (two different exposure groups with 0.6 mW/kg and 60 mW/kg at the 

initiation of the exposure period). After this protracted exposure, behaviour and memory of 

the exposed animals were tested. Whereas the behaviour of the animals was not affected, the 

GSM exposed rats had significantly impaired episodic memory as compared to the sham 

controls (68). After the finalization of these tests, that is 5-7 weeks after the last exposure, the 

animals were sacrificed by perfusion fixation. Albumin extravasation, an indicator of BBB 

leakage, was increased in about 1 animal in each group of low GSM exposed, high GSM 

exposed, sham exposed and cage control rats. About 40 % of the animals had neuronal 

damage. GFAP staining, as an indicator of glial reaction, revealed positive results in 31-69 % 

of the animals for different groups and the aggregation product lipofuscin was increased in 
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44-71 % of the animals for different groups. With the Gallyas staining (aiming at cytoskeletal 

structures), no changes were seen. When comparing the results between the different groups, 

it turned out that there was no statistically significant difference for any of these parameters 

due to GSM exposure (69). When comparing these findings to those from animals which had 

been exposed only once for 2 hours, it seems likely that during the 55 weeks of repeated 

exposure, albumin leakage at an initial stage of the experimental period might have been 

absorbed after some time, and that at a certain, but unknown, time point during this 

protracted, more than 1 year long-exposure period, some adaptation process might have been 

activated. However, this could not compensate for cognitive alterations, demonstrated by the 

episodic memory tests. 

 

 

TEM-cells 

 

In the majority of our studies, EMF exposure of the animals has been performed in transverse 

electromagnetic transmission line chambers (TEM-cells, see Figure 5) (53, 54, 59, 61-63, 68-

71). These TEM-cells are known to generate uniform electromagnetic fields for standard 

measurements. Each TEM-cell has two compartments, one above and one below the center 

septum. Thus, two animals can be exposed at a time. The animals are un-anaesthetized during 

the whole exposure. Since they can move and turn in the TEM-cells as they like, the 

component of stress-induced immobilization (described by Stagg et al. (72)) is effectively 

minimized. Through our studies, we have concluded that the amount of albumin leakage is 

neither affected by the sex of the animals, nor their placement in the upper or lower 

compartments of the TEM-cells. 
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The TEM cell
 

Figure 5. TEM-cells for EMF exposure. 

 

 

 

GSM-1800 modulated and CW microwaves in an anechoic chamber 

 

In Lund we have also utilized an anechoic chamber for studies on microwaves from a real 

GSM-1800 mobile telephone, which were amplified and transferred to a dipole antenna in the 

anechoic chamber. The output power was varied to study the effect of various SAR values. 

In a series of 65 rats exposed for 2 h with 1800-GSM at SAR: 0.027 mW/kg, and 12 rats 

exposed for 2 h with continuous wave, we found significantly increased albumin leakage (see 

figure 6) as compared to 103 control rats (p<0,03 and p<0,02, respectively). (Unpublished 

results). 
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Figure 6. 

Pathological leakage around vessels demonstrated by immunostaining against albumin.  

Fischer 344 rat exposed for 2 h  with 1800-GSM  at SAR: 0.027 mW/kg 

 

 

Other Studies on BBB Permeability, Focusing on the Effects of RF EMFs of the 

Type Emitted by Mobile Phones 

 

With the increasing use of mobile phones, much attention has been directed towards the 

possible effects on BBB permeability, after exposure to the type of RF EMFs emitted by the 

different sorts of mobile phones. 

 

Repetitions of our initial findings of albumin leakage have been made by Fritze et al. (73), 

with 900 MHz exposure of rats for 4 h at brain power densities ranging from 0.3–7.5 W/kg. 

Albumin extravasation into the brain tissue was seen, with significant difference between 

controls and rats exposed reported for 7.5 W/kg, which is a thermal level. However, Fisher 

exact probability test (two-tailed) performed on the reported results, reveals significant ( p < 

0.01, Fisher exact probability test) difference for the subthermal level group (SAR  0.3 W/kg 

plus 1.3 W/kg, compared to sham exposed and cage control animals) where in total 10 out of 

20 animals showed one or more extravasations direct after exposure (Salford et al. (20)). 

 



28 
 

Another group, working in Bordeaux, and led by Prof Pierre Aubineau, has also demonstrated 

evidence of albumin leakage in rats exposed for 2 h to 900 MHz at non thermal SAR-values, 

using fluorescein-labeled proteins. The results were presented at two meetings by Töre et al. 

(74, 75). The findings are very similar to those of our group, described above.  

At the BEMS meeting in 2002 in Quebec City in Canada, the Aubineau-Töre group presented 

results from exposure GSM-900 EMFs at SAR values of 0.12, 0.5, and 2.0 W/kg. Seventy 

Sprague-Dawley rats were included in the study. In addition to normal sham and normal GSM 

exposed rats, also rats subjected to chronic dura mater neurogenic inflammation, induced by 

bilateral sympathetic superior cervical ganglionectomy, were included. Arterial blood 

pressure was measured during the exposure, and Töre et al. (74, 75) concluded that the 

pressure variations (100–130mm Hg) were well below those limits, which are considered to 

be compatible with an opening of the BBB of rats. In order to induce opening of the BBB in 

rats, arterial blood pressure needs to reach values of 170 mmHg, according to Töre et al. (74, 

75). At SAR of 2 W/kg a marked BBB permeabilization was observed, but also at the lower 

SAR-value of 0.5 W/kg, permeabilization, although somewhat more discrete, was present 

around intracranial blood vessels, both those of the meninges and of the brain parenchyma. 

Comparing the animals, which had been subjected to ganglionectomy, to the other animals, 

Töre et al. made an interesting observation: as expected, albumin extravasation was more 

prominent in the sympathectomised sham-exposed rats as compared to normal exposed rats. 

This was due to the fact that the sympathectomised rats were in a chronic inflammation-prone 

state with hyper-development of pro-inflammatory structures, such as the parasympathetic 

and sensory inputs as well as mast cells, and changes in the structure of the blood vessels. 

Such an inflammation-prone state has a well-known effect on the BBB leakage. However, 

when comparing sham-exposed sympathectomised rats to GSM-exposed sympathectomised 

rats, a remarkable increase in albumin leakage was present in the GSM exposed 

sympathectomised rats compared to the sham rats. In the GSM-exposed sympathectomised 

rats, both brain areas and the dura mater showed levels of albumin leakage resembling those 

observed in positive controls after osmotic shock. Indeed, more attention should be paid to 

this finding, since it implicates that the sensitivity to EMF-induced BBB permeability 

depends not only on power densities and exposure modulations, but also on the initial state of 

health of the exposed subject. 

 

In rats, uptake of a systemically administered rhodamine-ferritin complex through the BBB 

also has been observed, after exposure to pulsed 2.45GHz EMFs at average power densities of 
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2 W/kg by Neubauer et al. (76). The authors observed that the magnitude of BBB 

permeability depended on power density and duration of exposure. Exposure to a lower power 

density (1 W/kg) and shorter duration of the exposure (15 min) did not alter the BBB 

permeability, as compared to higher power densities (SAR 2 W/kg) and longer duration of 

exposure (30–120 min). The microtubules seemed to play a vital role in the observed BBB 

permeability, since treatment with colchicine, which inhibits microtubular function, resulted 

in near-complete blockade of rhodamine-ferritin uptake. The mechanism underlying the 

observed leakage was presumed to be correlated to pinocytotic-like transport. 

 

In other studies, no effect of EMF exposure has been observed on the BBB integrity. With 

exposure to 1,439MHz EMFs, 1 h daily during 2 or 4 weeks (average whole-body energy 

doses of 0.25 W/kg) no extravazation of serum albumin trough the BBB was observed in a 

series of 36 animals by Tsurita et al.(77). However, in this small material only 12 animals in 

total were EMF exposed (6 rats exposed for 2 weeks and 6 rats exposed for 4 weeks). Also, 

lack of interference with the BBB function of rats was found after 1,439MHz exposure for 90 

min/d for 1–2 weeks at average brain power densities of either 2 or 6W/kg by Kuribayashi et 

al.(78). A total number of 40 animals were included in the study. 

 

Finnie et al. (79) came to the conclusion that no increase in albumin leakage over the BBB 

resulted from EMF exposure in a series of 60 mice. With whole body exposure of mice to 

GSM-900 EMFs for 1 h at a SAR of 4 W/kg or sham exposure, no difference in albumin 

extravazation was observed between the different groups. Also, free-moving cage controls 

were included in the study, and interestingly, there was no significant difference between 

these non-restrained mice as compared to the sham and EMF-exposed animals. Thus, the 

authors concluded that there were no stress-related exposure module confinement effects on 

the BBB permeability. 

 

Finnie et al. (80) continued to investigate more long-lasting exposure effects. In a series of 

experiments, a total of 207 mice were exposed 60 min daily, 5 days per week for 104 weeks at 

average whole body SARs of 0.25, 1.0, 2.0, and 4.0W/kg. This led to a minor disruption of 

the BBB, as seen by the use of endogenous albumin as a vascular tracer. However, it should 

be added that the authors performed no statistical analyses to evaluate the albumin leakage 

through the small vessels in the brain. In an answer to correspondence in the same journal 

(81), the authors presented the original data from the long-term study in one table, from which 
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one can conclude that non-leptomeningeal albumin leaking vessels were seen in few sham-

exposed animals, and in one-third of the animals in the 0.25 W/kg group and to a lesser extent 

in the higher SAR groups.  

 

The fact that some research groups observe albumin leakage/transport over the BBB after 

EMF exposure and others do not, has led to a rather intense debate between the researchers 

but also in society, which is puzzled by the divergent findings. A major concentration of the 

involved research groups took place at Schloss Reisensburg in Germany in 2003, where the 

technical approaches in the studies of BBB effects were discussed. Two world-renowned 

researchers in the BBB field, Dr. David Begley of Kings College, London, and Prof. Olaf 

Poulsen of Copenhagen, Denmark, chaired the FGF/COST 281 Reisensburg, November 2–6 

meeting. They made the final statement as a summary of the meeting: ‘‘It seems clear that RF 

fields can have some effects on tissues’’. The statement was made to a large extent on the 

basis of the concordant findings of the Bordeaux group, represented by Prof. Aubineau, and 

the Lund group, represented by Prof. Salford and Prof. Persson. 

 

The histopathological examinations of the brains are not uncomplicated. Some laboratories 

that have tried to replicate our studies have not been able to demonstrate the albumin leakage. 

We have recently had problems with the albumin staining due to change of suppliers of 

avidin, biotin, serum and antibodies. The lateral hypothalamic nuclei in the immediate vicinity 

of the third ventricle are well known for their normally insufficient BBB. This has served as 

an inbuilt control of adequate albumin staining in all our experiments since 1990. In our study 

on combined effects of RF- and ELF-EMF, for the first time, we could not demonstrate 

albumin extravasation in basal hypothalamus. Not until our third attempt with new staining 

material, we got our positive control and could also demonstrate albumin leakage in the 

exposed brains (61).  

 

The biological effects of RF exposure depend on many parameters, such as mean power level 

and the time variations of the power (82) and whether in vivo or in vitro experiments are 

performed. In the in vivo situation, different kinds of animals, and also the same kind of 

animals but of different breeds, might react differently. It might not necessarily be the 

strongest RF fields that give rise to the most obvious biological effects (54, 63).  In many 

cases, the weak and precisely tuned EMFs have the most important biological function; two 

examples of this are cellular communication and protein folding. It seems quite likely that in 
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different experimental set-ups, and in different living organisms, the signal has to be tuned to 

different properties in order to cause any effect. This could perhaps in some part explain why, 

in some cases, there are quite obvious effects of RF exposure, whereas in others, no such 

effects can be seen. 

 

 

Other Studies on BBB permeability and neuronal damage 

 

As has been mentioned above (p. 26) Ilhan et al. (67), in 2004 reported neuronal damage in 

female Wistar rats, which had been exposed to a 900 MHz electromagnetic GSM near-field 

signal for 1 h. a day for 7 days. They found scattered and grouped dark neurons in the cortex, 

hippocampus and basal ganglia, mixed in among normal neurons. A combined non-parametric 

test for the four groups revealed that the distributions of scores differed significantly between 

the control and the GSM only exposure group (p < 0.01). 

 

Later, Masuda et al. (83) tried to replicate the findings by our group of albumin extravasation 

and dark neurons. F344 rats (n=64) were exposed to 915 MHz signals for 2 hours (SAR of 0, 

0.02, 0.2 and 2 W/kg), and albumin extravasation and dark neurons were investigated 14 and 

50 days after the exposure. No albumin extravasation was seen, neither in control or exposed 

rats, and no difference in the occurrence of dark neurons could be found due to EMF 

exposure. An interesting difference as compared to the studies by Salford et al. mentioned 

above, was that animals, after perfusion fixation, were left in a 4ºC storage for 18 hours 

before the brains were removed. The question is whether this might have led to dilution of the 

very sensitive albumin extravasation, which is often more pronounced in the circumventrical 

organs as compared to the brain extravasates (personal communications with our 

neuropathologist Arne Brun). This might explain the fact, that no albumin extravasation could 

be seen in neither the cage control animals, the shams or the GSM exposed animals.  

 

Another study by Mason and his group at Brooks Airforce Resarch Laboratory, San Antonio, 

also tried to confirm our findings of albumin extravastion by using the same type of TEM-

cells for EMF Exposure (84), although the exposure parameters where somewhat different 

with only 30-min exposure, including only male rats of the Fischer 344 CD-VAF strain and 

utilizing only the upper compartment of the TEM cells. Exposure was at whole-body SAR 

values of 0.002 to 20 W/kg. Regarding extracellular albumin accumulation, the results were 
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not formally analyzed, as motivated by too low scores of albumin.  Regarding intracellular 

albumin uptake, no significant difference between the different groups was reported. However, 

as presented in the paper by McQuade et al.(84), at the lowest SAR of 1.8 mW/kg at 16 Hz, of 

33 exposed rats, 11 had 2 or 3 positivities (33% of the animals) and 22 had none or 1 

positivity. In the sham animals, 18% were positive and among the cage controls only 12%.   

These results are reminiscent of prior work by the Lund group reporting that 17% of the sham 

animals had some albumin leakage, while only at the most 50% of the identical and equally 

handled, but RF exposed animals displayed albumin extravasation (60). 

 

In a third study aiming to replicate the Lund findings of dark neurons, a group in Bordeaux 

(85) exposed 14 weeks old Fischer 344 rats (which, however, were restrained in a rocket-type 

exposure setup), to the GSM-900 signal for 2 h at various brain-averaged SARs (0, 0.14 and 

2.0 W/kg). Eight rats were included in each of these groups. 

Albumin leakage and neuronal degeneration was evaluated 14 and 50 days after exposure. 

It was reported that no statistically significant albumin leakage was observed and that 

neuronal degeneration assessed using cresyl-violet or the more specific marker Fluoro-Jade B, 

was not significantly different among the tested groups. Here we want to point out that the 

Bordeaux group makes a major deviation from the way we have evaluated the occurrence of 

dark neurons in the tissue slices. While we counted the overall number of dark neurons, de 

Gannes et al. (85) chose to subdivide the slices into 12 different small regions, which were 

compared individually to each other (fig 3 in the publication). This gave the effect that a clear 

overall difference in number of observed dark neurons between animals 50 days after 

exposure to 2 W/kg for two hours versus sham exposed, disappeared in the statistics. On the 

contrary, if all the numerical values for the bars representing the scored dark neurons 

observed in each brain zone and region 50 days after exposure  to 2 W/kg are compared to all 

those of the sham animals, a highly significant difference (Kruskall-Wallis) between animals 

exposed to 2 W/kg and sham is demonstrated (Mann-Whitney) p = 0.003! This is in 

concordance with the Lund experience! 

 

 

Indirect studies and studies on the blood cerebrospinal fluid barrier 

 

The integrity of the BBB has also been investigated indirectly. Cosquer et al. (86) treated rats 

with the muscarinic antagonist scopolamine methylbromide, which is known to induce 
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memory impairments, followed by EMF exposure at 2.45GHz for 45 min at average whole 

body SARs of 2W/kg. Opening of the BBB after EMF exposure was hypothesised to affect 

the performance in a radial arm maze. However, no such alterations were observed and the 

authors concluded that no BBB opening seemed to have occurred. In agreement with this, no 

albumin extravasation was noticed. 

 

Ushiyama et al. (87) investigated the effects on the blood cerebrospinal fluid barrier after RF-

EMF exposure. With a microperfusion method, cerebrospinal fluid from rat brain was 

collected in vivo. Fluorescent intensity of FITC-albumin in perfusate was measured. Rats 

exposed to 1.5GHz RFs during 30 min at SAR-values of 0.5, 2.0, 9.5W/kg for adult rats and 

0.6, 2.2, 10.4W/kg for juvenile rats, respectively, were compared to sham-exposed controls. 

Under these conditions, no increase in FITC-albumin was seen in the cerebrospinal fluid of 

exposed rats as compared to sham exposed controls. It was concluded that no effect on the 

function of the blood cerebrospinal fluid barrier was seen.  

 

In a recent study, the permeability of the human BBB after mobile phone exposure was 

assessed measuring blood levels of S100B and transthyretin in human volunteers by 

Söderqvist et al. (88). S100B is a calcium-binding protein, and it has been shown to be 

increased in serum after damage to the BBB. Transthyretin, also known as pre-albumin, is 

synthesised both in the liver and the choroid plexus. 30 min of GSM-900-like exposure at 

SAR-values of 1 W/kg was used. No difference was seen regarding S100, but transthyretin 

was increased 60 min after the termination of exposure as compared to the control situation. 

The concentrations of S100B and transthyretin were also analysed 30 min prior to provocation 

and after 30 min rest, showing a decrease after 30 min rest, which was suggested, might be 

due to less stress after the 30 min rest. Thus, it is interesting that despite this decline, which 

might be due to relaxation, still an increase in thransthyretin could be measured 30 min after 

exposure. It was also put forward, that it could not be excluded that the thransthyretin rise 

might be a compensation to the previous decrease, and that new studies including more 

participants and also a sham group would be needed.  

 

We have in the past investigated whether MW exposure, CW and at different SAR levels 

might enhance S-100 protein levels in the blood of a large proportion of our rats. We could 

conclude that no significant differences were seen (see Figure 7 below) (to be published).   
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Figure 7. S-100 in the blood of rats after EMF exposure (to be published in Acta Scientiarum 

Lundensia). 

 

 

In another study, by Sirav and Seyhan (89), exposure to CW EMFs at 900 and 1,800 MHz for 

20 min, increased the BBB permeability of male but not female rats. Evans blue dye, which 

binds to serum albumin after injection, was used to quantitatively measure BBB permeability. 

A strength of this study, was the ability to objectively quantify the Evans blue uptake in the 

brain. The finding that only male, and not female rats, are affected, is however not fully 

addressed. 

 

 

In Vitro Models 

In recent years, there has been an increasing use of in vitro models in the search for BBB 

effects of EMF exposure. In vitro models of the BBB have been studied, as by Schirmacher et 

al. (90), with co-cultures consisting of rat astrocytes and porcine brain capillary cells. 

Exposure to GSM-1800 for 4 d with average SAR of 0.3 W/kg increased the permeability of 

14C-sucrose significantly compared to unexposed samples in the studied BBB model. These 

findings were not repeated in experiments performed later by the same group, after 

modifications of their in vitro BBB model (91). The modified BBB model had a higher 

general tightness. It was speculated that at a higher original BBB permeability, which was 
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present in the first study by Schirmacher et al. (90), the cultures were more susceptible to the 

RF EMFs. Using porcine brain microvascular endothelial cell cultures as an in vitro model of 

the BBB, no effects on barrier tightness, transport behavior, and integrity of tight junction 

proteins were observed after exposure to UMTS EMFs at 1.966 GHz for 1–3 d at different 

field strengths at 3.4–34 V/m, generating a maximum SAR of 1.8 W/kg (92). 

 

 

In the search after the mechanism underlying non thermal EMF effects, Leszczynski et al. 

(93) observed human endothelial cells, with the interesting finding that GSM-900 exposure 

for 1 h with SAR-values of 2 W/kg resulted in changes in the phosphorylation status of many 

proteins. Among the affected pathways, the hsp27/p38MAPK stress response pathway was 

found, with a transient phosphorylation of hsp27 as a result of the mobile phone exposure. 

This generated the hypothesis that the mobile-phone induced hsp27-activation might stabilize 

stress fibers and in this way cause an increase in the BBB permeability. Furthermore, it was 

also suggested that several brain-damaging factors might all contribute to the mobile phone- 

induced effects observed in the brain and other structures as well. 

 

 

 

Further perspectives of the importance of the BBB including the human situation 

 

BBB in the Context of Alzheimer’s Disease and the findings by the Zlokovic Group 

 

The BBB, as mentioned previously, is of essential role for maintaining an accurate brain 

function. As described by Zlokovic (94), in a review regarding BBB in correlation to 

neurodegenerative disorders, BBB breakdown can be due to tight junction disruption, 

alterations of angiogenesis or vessel regression, hypoperfusion, inflammatory response and 

alterations of the transport of molecules across the BBB (94). Further, as Zlokovic 

hypothesises, this might contribute to neurodegenerative disorders, such as Alzheimer’s 

disease (AD), Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis.  

 

In the review by Zlokovic (94), a neurovascular disease pathway is presented, regarding 

possible genesis of AD, where it is suggested that changes in vascular genes and receptors in 

brain capillaries and small arteries might disrupt BBB functions, leading to an accumulation 
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of amyloid beta (Aβ), a neuroinflammatory response and BBB breakdown and further on 

accumulation of Aβ, loss of the BBB to clear Aβ (due to affected synaptic transmission, 

neuronal injury and recruitment of microglia) and secretion of proinflammatory cytokines. 

Ultimately, this is suggested to lead to disappearance of the capillary unit, increasing Aβ 

deposits and synaptic and neuronal loss (94).  

 

This observation might explain how vascular disease contributes to Alzheimer's disease (AD) 

risk; the heterogeneity of AD; and supports the idea that exclusively focusing on amyloid is 

likely to be disappointing. 

 

Neuronal injury resulting from vascular defects that are not related to amyloid-beta but is 

related to damage results from a breakdown of the blood-brain barrier and a reduction in 

blood flow (94). Although Amyloid beta definitely has an important role in Alzheimer's 

disease it's very important to investigate other leads, perhaps where amyloid-beta isn't as 

centrally involved.  

 

Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE4. APOE4 is a major 

genetic risk factor for Alzheimer's disease and is associated with Down's syndrome dementia 

and poor neurological outcome after traumatic brain injury and haemorrhage. Neurovascular 

dysfunction is present in normal APOE4 carriers and individuals with APOE4-associated 

disorders. In mice, lack of APOE leads to blood-brain barrier (BBB) breakdown, whereas 

APOE4 increases BBB susceptibility to injury. How APOE genotype affects brain 

microcirculation remains elusive. Using different APOE transgenic mice, including mice with 

ablation and/or inhibition of cyclophilin A (CypA), it has been shown show that expression of 

APOE4 and lack of murine APOE, but not APOE2 and APOE3, leads to BBB breakdown by 

activating a proinflammatory CypA-nuclear factor-kappa B-matrix-metalloproteinase-9 

pathway in pericytes. These findings suggest that CypA is a key target for treating APOE4-

mediated neurovascular injury and the resulting neuronal dysfunction and degeneration. The 

data reviewed above support an essential role of neurovascular and BBB mechanisms in 

contributing to both, onset and progression of AD (95, 96). 
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BBB in the context of Alzheimer’s Disease – Importance of EMF Exposure 

In this context, the findings of Arendash et al., that long-term EMF reduced brain Aβ 

deposition through Aβ anti-aggregation actions in AD mice, are highly interesting (97). It was 

also found, by Mori and Arendash et al., that long-term exposure to high frequency EMF 

treatment prevented cognitive impairment in AD transgenic (Tg) mice and improved memory 

in normal mice and that an increase in neuronal activity could be observed in the EMF 

exposed groups (98). Furthermore, it was found by the group that EMF treatment enhances 

brain mitochondrial functions in AD Tg as well as normal mice and that no increase in brain 

temperature could be found in connection to the EMF exposure (99).  An interesting aspect in 

this context, is the role of mitochondria for many cellular functions, including reactive oxygen 

species generation, apoptosis, and Ca2
+
 homeostasis as was mentioned by Dragicevic et al. 

and reviewed by Nicholls (99, 100). 

 

In the first mentioned study by Arendash et al. (97), mice were EMF exposed with start at 

young age or at adult age. In the young-age group, 24 mice were divided into 4 subgroups: 

n=6 were Tg controls, n=6 were Tg animals treated with EMF, n=6 were non-transgenic (NT) 

controls and n=6 were NT animals treated with EMF. 2.5, 4-5 and 6-7 months after daily 

GSM-900 EMF exposure (two 1-hour sessions daily, at SAR 0.25 W/kg), the animals were 

evaluated by cognitive tests. At the end of the study, Aβ in the brains was evaluated by 

immunohistochemistry. No effect on cognitive functions was observed after 2 months of 

exposure. However, for the Tg+EMF mice with start of EMF exposure at young age, the 

cognitive function was maintained after 6-7 months of exposure, while it deteriorated in the 

Tg group. In a final task for NT mice after 7 months of EMF, the EMF actually improved the 

mnemonic function. In the adult-age group, Tg animals had impaired cognitive functions at 

the age of 4 months. 28 Tg and NT mice were included. After long-term EMF exposure (2, 5 

and 8 months) the memory was tested. While 2 months of EMF exposure had no effect, 5 

months of exposure had positive effects only on NT mice, and 8 months of exposure had 

beneficial effects for the Tg mice, with better results in the Tg+EMF group as compared to 

the Tg controls. Also the NT+EMF mice had an improved function as compared to NT 

controls after 8 months. Staining for Aβ revealed lower values on both hippocampus and the 

entorhinal cortex in the Tg+EMF group as compared to the Tg control group. Hippocampal 
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tissue from Tg mice were then exposed to EMF for 4 days, after which it was shown that the 

Aβ amount had decreased as compared to non-exposed control tissue.  It was also reported 

that a t1° temperature increase was observed in EMF exposed animals during exposure, but 

not in between exposure sessions (97). 

 

In the study by Mori and Arendash (98), n=6 mice were Tg controls, carrying the mutant 

APPK670N , n=10 mice were Tg treated with EMF, n=4 mice were NT controls and n=5 

mice were NT treated with EMF. EMF exposed animals were placed in a Faraday cage, 

receiving two 2-hour periods of EMF treatment at GSM-900 frequencies, pulse modulated at 

SAR 0.25-1.05 W/kg. The neuronal expression of c-Fos was taken as an indicator of neuronal 

activity. With immunohistochemistry, it was found that c-Fos was increased in both the 

NT+EMF group, as well as in the Tg+EMF group in the entorhinal cortex. However, only this 

one brain region was analyzed, since c-Fos expression was too low in other regions, which the 

authors hypothesised might be due to that c-Fos in an early response gene, and that at a 

certain time after stimulation, when the animals were sacrificed, the expression had already 

declined in other regions, such as hippocampus. In a cognitive test (Y-maze), it was found 

that EMF improved the performance in both NT and Tg group as compared to untreated 

controls. It should also be noted, that despite the very interesting findings, the number of 

included animals is quite small (98). 

EMF and 
18

FDG Uptake – Recent Studies 

The question whether EMF exposure from mobile phones has neuronal effects in the human 

situation was recently addressed by an American research group led by Volkow et al., 

conducting a PET study on 
18

F-fluorodeoxyglucose (
18

FDG) uptake (101). Though PET-

studies on humans in correlation to EMF exposure have also been previously made, the 

purpose of this study was to extend the study material and use the more direct measure of 

brain glucose metabolism by the uptake of 
18

FDG instead of the previously used CBF 

(cerebral blood flow) measure, which might be a more indirect sign of neuronal activity and 

also reflect short-term alterations (60s) as compared to the more long-lasting ones observed 

with 
18

FDG (suggested to be in the range of 30 min). 
18

FDG is actively transported across the 

BBB into the cells, where it is phosphorylated, and is, among others, used as a prognostic 

value for following low-grade brain tumours, where an increased uptake in previously low-
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grade tumours is an indicator of anaplastic transformation (for review into the topic of 
18

FDG 

and brain tumours (102). 

(space) 

In the study by Volkow et al. (101), in total, 47 persons were involved, and effects upon brain 

glucose metabolism of EMF exposure were evaluated using PET with injection of 
18

FDG. 

PET scans were performed both with and without EMF exposure (50 min of GSM-900 with 

maximum SAR of 0.901 W/kg), and the participants were blinded to the exposure situation. 

Whereas whole-brain metabolism was not affected, there were regional differences, in the 

right orbitofrontal cortex and the lower part of the right superior temporal gyrus (that is, the 

same side as the mobile phone was placed at) with increased metabolism in the exposure 

situation of about 7% as compared to control. There was a positive correlation between the 

strength of the E-field from the phones and the brain activation. Interestingly, it was 

hypothesized that RF-EMF exposure might increase the excitability of brain neurons.  

 

Following the study by Volkow et al. (101), Kwon et al. (103) also investigated effects of 

GSM-900 exposure upon brain 
18

FDG uptake. Thirteen persons were exposed to GSM-900 

for 30 minutes to the right side of the head, and all subjects were also sham-exposed, and 

blinded to the exposure situation (SAR-values of maximum 0.74 W/kg in the head and 0.23 

W/kg in the brain tissue). Contrary to the findings of Volkow et al. (101), the study by Kwon 

et al. (103) demonstrated a decrease in brain 
18

FDG uptake after GSM-900 exposure, with 

decreased uptake values in the temporoparietal junction. A volume-of-interest analysis 

focused upon the right temporal lobe, showed a decreased 
18

FDG uptake in the anterior 

inferior temporal cortex. No effects on task performance were found, and no correlation 

between temperature or 
18

FDG uptake (a temperature increase of <0.21°C was found on the 

skin on the exposed side of the head) (103). 

 

In the animal situation, Frilot et al. investigated the effect of ELF magnetic field exposure (2.5 

G at 60 Hz) upon 
18

FDG uptake in rats, comparing uptake with and without EMF exposure. 

An increased glucose uptake was found in the hindbrain when the field was orthogonally to 

the sagittal plane, but not when the angle varied randomly between the field and sagittal 

plane. These effects were hypothesized to be coupled to induction of electric field on the gate 

of ion channels (104).  
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Possible connection between BBB leakage and nerve cell injury 

 

It has been suggested that BBB leakage is the major reason for nerve cell injury, 

such as that seen in dark neurons in stroke-prone spontaneously hypertensive rats (105). Much 

speaks in favour of this possibility. The parallel findings in the Lund material of neuronal 

uptake of albumin and dark neurons may support the hypothesis that albumin leakage into the 

brain is the cause for the neuronal damage observed after 28 and 50 d. It should, however, be 

pointed out that the connection is not yet proven (Figure 8). 

 

7d     14 d    28 d 50 d

Albumin 0.04     0.02 ns          0.04
foci

Neuronal 0.02      0.005     ns ns
albumin

Dark ns ns 0.01 0.001
neurons

Exposed vs sham

© Salford et al  

Figure 8. Results from the Lund group (61-63)   

 

Also, other unwanted and toxic molecules in the blood may leak into the brain tissue in 

parallel with the albumin, and concentrate in and damage the neurons and glial cells of the 

brain. In favour of a causal connection between albumin and neuronal damage is a series of 

experiments performed in rats by another group at Lund University; albumin leaks into the 

brain and neuronal degeneration is seen in areas with BBB disruption in several 

circumstances: after intracarotid infusion of hyperosmolar solutions in rats (106) in the stroke 
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prone hypertensive rat (105); and in acute hypertension by aortic compression in rats (22). 

Furthermore, it has been shown in other laboratories that epileptic seizures cause 

extravasation of plasma into brain parenchyma (21), and in the clinical situation the cerebellar 

Purkinje cells are heavily exposed to plasma constituents and degenerate in epileptic patients . 

There are indications that an already disrupted BBB is more sensitive to the RF fields than an 

intact BBB (74, 91). It has been stated by other researchers that albumin is the most likely 

neurotoxin in serum (64). It has been demonstrated that injection of albumin into the brain 

parenchyma of rats gives rise to neuronal damage. When 25 micro-litres of rat albumin is 

infused into rat neostriatum, 10 and 30, but not 3 mg/ ml albumin causes neuronal cell death 

and axonal severe damage (65). It also causes leakage of endogenous albumin in and around 

the area of neuronal damage. However, it is still unclear whether the albumin leakage 

demonstrated in our experiments locally reaches such concentrations. 

 

 

Possible mechanisms 

 

Microarray analysis of the expression of all the rats’ genes in cortex and hippocampus, after 

exposure to GSM RFs or sham exposure for 6 h, has shown interesting differences between 

exposed animals and controls as described by Nittby et al. (107). Genes of interest for 

membrane transport show highly significant differences. This may be of importance in 

conjunction with our earlier findings of albumin leakage into neurons around capillaries in 

exposed animals. It can be noted here that among the significantly altered genes from these 

evaluations, two variants of the gene RGS4 are up-regulated in hippocampal tissue from 

exposed rats as compared to the sham-exposed rats (unpublished results). RGS is a regulator 

of G protein signalling, and it has been proposed that RGS4 might regulate BBB permeability 

in mammals, in a way corresponding to the role of its Loco homolog G protein coupled 

receptor (GPCR) in developing and maintaining the BBB permeability of Drosophila (7). 

 

It has also been suggested in other connections that manifestations of BBB disruption might 

also be mediated by the formation of free radicals, such as O2
-
, H2O2, and hydroxyl radical, 

which are supposed to oxidize cell membrane lipids by virtue of the high concentration of 

polyunsaturated fatty acids in these membrane constituents (108). As an example of this, it 

was reported by Chan et al.(109), that treatment of the brain of rats with a free-radical 
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generating system resulted in lipid-peroxidation, and an increased permeation of Evans blue 

due to barrier breakdown.  

 

Recently, a detailed molecular mechanism, by means of which mobile phone radiation might 

exert its effects, has been proposed (110). By using Rat1 and HeLa cells, it was shown that 

EMF exposure resulted in rapid activation of ERK/ MAPKs (mitogen-activated protein 

kinase). The activation of these ERKs was mediated by reactive oxygen species (ROS), 

resulting in a signalling cascade ultimately affecting transcription, by the central key role of 

ERKs in signalling pathways. 

 

In the continued search for the mechanisms behind EMF mediated effects, their interaction 

with calcium-45 transport in bio-membranes has been studied (111) and Ca2
+
-efflux over 

plasma membranes has been observed in plasma vesicles from spinach exposed to ELF 

magnetic fields (112). With this model, quantum mechanical theoretical models for the 

interaction between magnetic fields and biological systems are tested. The model proposed by 

Blanchard and Blackman (113), in which it is assumed that biologically active ions can be 

bound to a channel protein and in this way alter the opening state of that channel, could in this 

way be quantitatively confirmed. Thus, the membrane is one site of interaction between the 

magnetic fields and the cell, and more specifically, the Ca2
+
-channels, are one of the targets. 

More recently, new models for the interaction between magnetic fields and hydrogen nuclei 

also have been proposed.  

 

EMF-induced Ca2
+
-efflux over plasma membranes, understandably, can have many different 

effects on the target cells. Some agents that increase the BBB permeability act through a 

contractile mechanism that widens the intercellular junctions of the capillary endothelium. An 

increase of free Ca2
+
 should mediate these changes, thereby resulting in measurable 

alterations of intracellular Ca2
+
-levels in brain capillary cells after exposure to BBB-

disrupting agents (108). 

 

Another hypothesis is that EMF-induced intracellular Ca2
+
-alterations might affect Ets genes, 

which are transcription factors expressed in different tissues (114). In this context, we could 

add that in our gene expression material from GSM-exposed rats vs., sham-exposed rats, one 

Ets variant gene is actually significantly up-regulated in hippocampus and one Ets1 gene is 

significantly up-regulated in cortex of the exposed animals. 
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EMF induced BBB permeability – with the aim of medical use 

 

In the attempt to further try to understand the underlying mechanisms of the RF effects, we 

recently undertook a study upon snail nociception, with 1-hour GSM-1800 exposure of the 

land snail H. pomatia. This revealed, that the exposure induced analgesia in the snail model, 

with a significantly increased latency of reaction when placed on a hot plate, as compared to 

when only sham exposed. The vast knowledge about the physiology of the snail, its 

neurotransmission systems and it simplicity as compared the mammals may provide a tool for 

successful continued search for the mechanisms behind the effects of the GSM EMF upon 

biology (115). 

 

In a recent study by Kuo et al (116), it was described how EMFs might be utilized to facilitate 

transport across the BBB. In an in vitro model, human micro-vascular endothelial cells were 

co-cultured with human astrocytes. Effects of EMF upon P-glycoprotein (P-gp) and multi-

drug resistance -associated proteins (MRP) were tested in connection to treatment with anti-

retroviral drugs, where the MRPs and P-gp are known to play an important role in multidrug 

resistance, which is encountered in carcinomas and therapies for acquired immune-deficiency 

(Kuo et al. 2012). With increasing EMF frequencies up to 900 MHz (both 715MHz and 900 

MHz), the endocytotic uptake of calcein was increased (5mW, square wave with amplitude 

modulation at 20 MHz for 4 hours). Treatment with EMF could also inhibit expression of 

MRP and P-gp after treatment with anti-retroviral drugs, indicating that it might be useful in 

order to deliver antiretroviral proteins into the brain, by decreasing the efflux of the drugs due 

to the MRPs and P-gl. 

 

Kuo et al.  (117) also showed that EMF exposure (915 MHz EMFs at 5 mW with 20 MHz 

amplitude modulation for 4 hours) in combination with cationic solid lipid nanoparticles 

(CSLNs) could increase the transport of the antiretroviral drug Saquinavir 22-fold across 

human brain-microvascular endothelial cells (as compared to a 17-fold increase when only 

CSLNs were used). 
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Conclusions   

 

In this review, we have reported the results of our group’s research during the last 24 years, 

and the results of similar, but seldom identical, experiments of several other groups around 

the world. When summing up what we have described here, we are convinced that RF 

electromagnetic fields have effects upon biology, and we believe that it is more probable than 

unlikely, that non-thermal electromagnetic fields from mobile phones and base stations do 

have effects also upon the human brain. However, in this context, it is also important to point 

out, that the studies from our laboratory, as well as most studies presented above and available 

in literature, have been performed using animals and not humans. Thus no definitive 

conclusions can be drawn regarding effects of mobile phone use upon the human BBB.  

 

However, studies in humans utilizing radiopharmaceuticals have been performed by Volkow 

et al. (101) upon brain glucose metabolism, and as was described by Saha et al. (118) already 

in 1994, studies with PET or SPECT and radiopharmaceuticals are used in brain imaging. 

 

Further, a tool to directly study the human BBB has recently been described (119). It is based 

upon a non-radioactive methodology for in vivo non-invasive, real-time imaging of BBB 

permeability for conventional drugs, using nitroxyl radicals as spin-labels and MRI. In this 

connection, it should be mentioned though, that MRI has the drawback of possibly itself 

influence upon the results. 

 

Based upon what has been presented here, we feel that the WHO IARC classification of RFR 

at the level 2B is adequate at present. 

  

The question whether existing FCC/IEE and/or ICNIRP public safety limits and reference 

levels are adequate to protect the public is not easily answered.  The reported studies on EMF 

induced BBB disruption have shown partially contradictory results from different laboratories. 

However, the fact that an abundance of studies do show effects is an important warning.  This 

is true even if it can be summarized that the effects most often are weak and are seen in about 

40% of the exposed animals.  

 

 



45 
 

However, we have stressed the following opinion in several publications during the past 

years: - “The intense use of mobile phones, not least by youngsters, is a serious memento. A 

neuronal damage may not have immediately demonstrable consequences, even if repeated. It 

may, however, in the long run, result in reduced brain reserve capacity that might be unveiled 

by other later neuronal disease or even the wear and tear of ageing. We can not exclude that 

after some decades of (often), daily use, a whole generation of users, may suffer negative 

effects such as autoimmune and neuro-degenerative diseases maybe already in their middle 

age”.  

 

One remarkable observation, which we have made in our studies throughout the years, is that 

exposure with whole-body average power densities below 10 mW/kg gives rise to a more 

pronounced albumin leakage than higher power densities, all at non-thermal levels. These 

very low SAR-values, such as 1 mW/kg, exist at a distance of more than one meter away from 

the mobile phone antenna and at a distance of about 150–200 m from a base station. 

Further, when a mobile phone operating at 915 MHz (and its antenna) is held 1.4 cm from the 

human head, the very low SAR levels of 10 mW/kg exist in deep-lying parts of the human 

brain such as the basal ganglia, and the power density of 1 mW/kg and less is absorbed in 

thalamus bilaterally. 

 

With this information as a background, it is difficult to recommend safety limits as the 

function of existing mobile systems might not allow for limits that produce SAR levels below 

1 or 0,1 mW/kg in the human brain, which are reported to cause a pathological leakage of the 

BBB and to neuronal damage. 

 

Demonstrated effects on the BBB, as well as a series of other effects upon biology (120) have 

given rise to scientific concern and to public anxiety. It is up to the society and our politicians 

and also the providers of the radiofrequency-emitting technologies to support continued 

research in order to understand the nature of the effects, thereby neutralizing or at least 

reducing them.   Also, it should be kept in mind that proven effects on biology also means that 

positive potentials might be revealed. This might be useful in medical applications, for 

example a controlled opening of the BBB would enable previously excluded pharmaceuticals 

to reach their targets within the brain tissue. 
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I.  Introduction 

 

During the recent decade potential health risks from microwave exposure during use of wireless 

phones has been discussed both in scientific settings but also by the layman. Especially the use 

of mobile phones has been of concern, to less extent use of cordless desktop phones (digital 

enhanced cordless telephone; DECT). The Nordic countries were among the first in the world to 

widely adopt use of such devices, probably due to the mobile phone companies like Ericsson in 

Sweden and Nokia in Finland. 

 

These countries may be taken as models for the introduction of this new technology on the 

market. Thus, the analogue mobile phone system (Nordic Mobile Telephony, NMT) using 450 

MHz started to operate in Sweden in 1981. First, it was used in cars with external antenna but 

from 1984 mobile (portable!) phones existed. This system is still used in Sweden but only to a 

minor extent. The 900 MHz NMT system operated in Sweden between 1986-2000. The GSM 

phone (Global System for Mobile communication) started in 1991 and is the most used phone 

type today, although the 3G phone (third generation mobile phone, UMTS) is increasingly used 

now. 

 

The risk of brain tumors has been of special concern since the brain is the organ mainly exposed 

during such phone calls. Most studies on this topic have been of the case-control design and no 

results exist from prospective cohort studies. However, the results have been hampered by too 

short tumor-induction period in most studies or with limited number of long-term users, i.e.  > 

10 years latency time. As to carcinogenesis short latency period is of limited value to predict 

long-term health risks. Usually a latency period of at least 10 years is needed for more firm 

conclusions. It should noted that for several carcinogens longer latency periods are often 
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required, such as smoking and lung cancer, asbestos and lung cancer, dioxins and certain cancer 

types etc.  

 

By now a number of studies exist that give results for brain tumour risk and use of mobile 

phones for subjects with latency period > 10 years. Most of these results are based on low 

numbers but nevertheless may together give a pattern of increased risk. In this review we discuss 

all studies on this topic that have been published so far. Moreover, we present a meta-analysis of 

results from studies with at least 10 years latency period. Only the Hardell group in Sweden has 

published results also for use of cordless phones. Recently the same group published an 

overview of long-term use of cellular phones and the risk for brain tumors, especially with use 

for 10 years or more (Hardell et al 2007). In the following a brief summary is given of these 

results with the addition of two more study published after that review (Klaeboe et al 2007, 

Schlehofer et al 2007). For further details see Hardell et al (2007). 

 

II.  Materials and Methods 

 

The Pub Med database (www.ncbi.nlm.nih.gov) was used for an up-dated search of published 

studies in this area using mobile/cellular/cordless telephone and brain tumour/neoplasm/acoustic 

neuroma/meningioma/glioma as searching terms. Personal knowledge of published studies was 

also used in order to get as comprehensive review as possible. Regarding several publication of 

the same study the most recent one with relevant data was used. We identified 20 studies to be 

included. Two were cohort studies (one study analysed twice) and 18 were case-control studies. 

No mortality studies were included. Three studies came from USA, four from Denmark, one 

from Finland, five from Sweden, two from Germany, one from the UK, one from Japan, one 

from Norway and two from study groups partly overlapping previously mentioned studies.  

http://www.ncbi.nlm.nih.gov/
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III.  Results 

 

A. The first Swedish studies 

The first study by Hardell et al (1999, 2001) included cases and controls collected during 1994-

96 in Sweden. Only living cases were included. Two controls were selected to each case from 

the Population Registry. The questionnaire was answered by 217 (93 %) cases and 439 (94 %) 

controls. Overall no association between mobile phone use and brain tumours was found, but 

when analysing ipsilateral phone use a somewhat increased risk was seen especially for tumours 

in the temporal, occipital or temporoparietal lobe yielding odds ratio (OR) = 2.4, 95 % 

confidence interval (CI) = 0.97-6.1 (Hardell et al 2001).  

 

Hardell et al (2006a) made a pooled analysis for benign brain tumours from their two case-

control studies. Cases were reported from Cancer Registries and controls were population based. 

The questionnaire was answered by 1,254 (88 %) cases and 2,162 (89 %) controls. Also use of 

cordless desktop phones was assessed. Use of cellular phones gave for acoustic neuroma OR = 

1.7, 95 % CI 1.2-2.3 increasing to OR = 2.9, 95 % CI = 1.6-5.5 with > 10 year latency period. 

The corresponding results for cordless phones were OR = 1.5, 95 % CI = 1.04-2.0, and OR = 

1.0, 95 % CI 0.3-2.9, respectively. Regarding meningioma cellular phones gave OR = 1.1, 95 % 

CI = 0.9-1.3, and cordless OR = 1.1, 95 % CI = 0.9-1.4. Using > 10 year latency period ORs 

increased, for cellular telephones OR = 1.5, 95 % CI = 0.98-2.4, and for cordless phones OR = 

1.6, 95 % CI = 0.9-2.8.  

 

The pooled analyses of the two case control studies of malignant brain tumours by Hardell et al 

(2006b) included 905 (90%) cases and the same control group as for benign tumours was used, 
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2,162 (89 %) subjects. Overall for low-grade astrocytoma cellular phones gave OR= 1.4, 95 % 

CI = 0.9-2.3 and cordless phones OR = 1.4, 95 % CI = 0.9-3.4. The corresponding results for 

high-grade astrocytoma were OR = 1.4, 95 % CI = 1.1-1.8, and OR = 1.5, 95 % CI = 1.1-1.9, 

respectively. Using > 10 year latency period gave for low-grade astrocytoma and use of cellular 

phones OR = 1.5, 95 % CI = 0.6-3.8 (ipsilateral OR = 1.2, 95 % CI = 0.5-5.8), and for cordless 

phones OR = 1.6, 95 % CI = 0.5-4.6 (ipsilateral OR = 3.2, 95 % CI = 0.6-16). For high-grade 

astrocytoma in the same latency period cellular phones gave OR = 3.1, 95 % CI = 2.0-4.6 

(ipsilateral OR = 5.4, 95 % CI = 3.0-9.6), and cordless phones OR = 2.2, 95 % CI = 1.3-3.9 

(ipsilateral OR = 4.7, 95 % CI = 1.8-13).  

 

B. Studies from USA 

Muscat et al (2000) studied patients with malignant brain tumours from five different hospitals 

in USA. Controls were hospital patients. Data from 469 (82 %) cases and 422 (90 %) controls 

were available. Overall no association was found, OR for handheld cellular phones was 0.9, 95 

% CI = 0.6-1.2, but the mean duration of use was short, only 2.8 years for cases and 2.7 years 

for controls. For neuroepithelioma OR = 2.1, 95 % CI = 0.9-4.7, was reported. The study is 

inconclusive since no data were available on long-term users (> 10 years latency period). Some 

support of an association was obtained since of 41 evaluable tumours, 26 occurred at the side of 

the head mostly used during calls and 15 on the contralateral side. 

 

Also the study by Inskip et al (2001) from USA had few long-term users of mobile phones, only 

11 cases with glioma, 6 with meningioma and 5 with acoustic neuroma with > 5 years regular 

use. No subjects had > 10 years use. The study comprised 489 (92 %) hospital cases with 

malignant brain tumours, 197 with meningioma and 96 with acoustic neuroma, and 799 (86 %) 

hospital-based controls. Overall no significant associations were found. Regarding different 
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types of glioma OR = 1.8, 95 % CI = 0.7-5.1 was found for anaplastic astrocytoma. Duration of 

use > 5 years gave for acoustic neuroma OR increased to 1.9, 95 % CI = 0.6-5.9.  

 

In another study by Muscat et al (2002) presented results from a hospital based case-control 

study on acoustic neuroma on 90 (100 %) patients and 86 (100 %) controls. Cell phone use 1-2 

years gave OR = 0.5, 95 % CI = 0.2-1.3 (n=7 cases), increasing to OR = 1.7, 95 % CI = 0.5-5.1 

(n=11 cases), in the group with 3-6 years use. Average use among cases was 4.1 years and 

among controls 2.2 years. 

 

C. Danish cohort study 

A population based cohort study in Denmark of mobile phone users during 1982 to 1995 

included over 700,000 users (Johansen et al 2001). About 200,000 individuals were excluded 

since they had company paid mobile phones. Of digital (GSM) subscribers only nine cases had 

used the phone for > 3 years duration yielding standardised incidence ratio (SIR) of 1.2, 95 % CI 

= 0.6-2.3. No subjects with 10-year use were reported. 

 

This cohort study was updated with follow-up through 2002 for cancer incidence (Schüz et al 

2006).  There was no truly unexposed group for comparison since a large part of the population 

uses wireless phones. Moreover the excluded company subscribers (> 200 000 or 32 %) were 

apparently included in the reference population. There was also a very skewed sex distribution 

with 85 % men and only 15 % women in the cohort. SIR was significantly decreased to 0.95, 95 

% CI = 0.9-0.97 for all cancers indicating a  “healthy worker” effect in the study. In the group 

with > 10 years since first subscription significantly decreased SIR of 0.7, 95 % CI = 0.4-0.95 

was found for brain and nervous system tumours indicating methodological problems in the 

study. No latency data were given or laterality of phone use in relation to tumour localisation in 
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the brain. This study was uninformative regarding long-term health effects from mobile phone 

use. 

 

D. Finnish study 

Auvinen et al (2002) did a register based case-control study on brain and salivary gland tumors 

in Finland. All cases aged 20-69 years diagnosed in 1996 were included; 398 brain tumour cases 

and 34 salivary gland tumour cases. The duration of use was short, for analogue users 2-3 years 

and for digital less than one year. No association was found for salivary gland tumours. For 

glioma OR = 2.1, 95 % CI = 1.3-3.4 was calculated for use of analogue phones, but no 

association was found for digital mobile phones. When duration of use of analogue phones was 

used as a continuous variable an increased risk was found for glioma with OR = 1.2, 95 % CI = 

1.1-1.5 per year of use.  

 

E. The Interphone studies 

1.  Acoustic neuroma 

The Swedish part of the Interphone study on acoustic neuroma included exposure data from 148 

(93 %) cases and 604 (72 %) population based controls (Lönn et al 2004). Use of digital phones 

with time > 5 years since first use gave OR = 1.2, 95 % CI = 0.7-2.1. No subjects were reported 

with use of a digital phone > 10 years. An association was found for use of analogue phones 

yielding for > 10 years latency period OR = 1.8, 95 % CI = 0.8-4.3 increasing to OR = 3.9, 95 % 

CI = 1.6-9.5 for ipsilateral use.  

 

In Denmark the Interphone study included 106 (82 %) interviewed cases with acoustic neuroma 

and 212 (64 %) population-based controls (Christensen et al 2004). Significantly larger tumours 

were found among cellular phone users, 1.66 cm3 compared with 1.39 cm3 among non-users, p = 
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0.03. However OR was not significantly increased but only two cases had use a mobile phone 

regularly > 10 years. 

 

Schoemaker et al (2005) presented results for acoustic neuroma as part of the Interphone study 

performed in 6 different regions in the Nordic countries and UK, as previously partly reported 

(Lönn et al 2004; Christensen et al 2004). The results were based on 678 (82 %) cases and 3,553 

(42 %) controls. Lifetime use of mobile phone for > 10 years gave for ipsilateral acoustic 

neuroma OR = 1.8, 95 % CI = 1.1-3.1, and for contralateral OR = 0.9, 95 % CI = 0.5-1.8. 

 

The study from Japan by Takebayashi et al (2006) included 101 (84 %) acoustic neuroma cases 

aged 30-69 years and diagnosed during 2000-2004.  Using random digit dialling 339 (52 %) 

controls were interview. No association was found, OR = 0.7, 95% CI = 0.4 – 1.2. No exposure 

related increase in the risk of acoustic neuroma was observed when the cumulative length of use 

(<4 years, 4-8 years, >8 years) or cumulative call time (<300 hours, 300-900 hours, >900 hours) 

was used as an exposure index. The OR was 1.1, 95% CI = 0.6 - 2.1, when the reference date 

was set to five years before the diagnosis. Further, laterality of mobile phone use was not 

associated with tumours. No cases with > 10 years latency period were reported. 

 

Use of mobile phones and risk of acoustic neuroma were published from Norway as part of the 

Interphone study (Klaeboe et al 2007). It included 45 (68 %) acoustic neuroma cases and 358 

(69 %) controls. A decreased risk was found with OR = 0.5, 95 % CI = 0.2-1.0. Using different 

criteria such as duration of regular use, time since first regular use, cumulative use etc 22 

additional ORs and CIs were calculated. Time since first regular use for < 6 years gave OR = 
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1.0, 95 % CI = 0.2-5.7. All 21 other ORs were < 1.0 indicating systematic bias in the study. No 

case had a latency period of 10 years.  

 

Schlehofer et al (2007) reported results from the German part of the Interphone study on 

sporadic acoustic neuroma. The study was performed during October 2000 and October 2003. 

Four study areas were included and cases were aged 30-59 years, but from October 1, 2001 

extended to include the age group 60-69 years. They were recruited from hospitals and included 

97 (89 %) cases, however, three with trigeminus neuroma. Controls were randomly selected 

from population registries and in total 202 (55 %) agreed to participate. No association was 

found for regular mobile phone use, OR = 0.7, 95 % CI = 0.4-1.2. Most ORs were < 1.0 and a 

decreasing trend of the risk was found for time since first regular use, lifetime number of use 

and duration of calls. No case had a latency period > 10 years. However, increased OR was 

found for highly exposed in “specified occupational exposure” yielding OR = 1.5, 95 % CI =0.5-

4.2. 

E. The Interphone studies 

2.  Glioma, meningioma 

Lönn et al (2005) also studied glioma and meningioma. Data were obtained for 371 (74 %) 

glioma and 273 (85 %) meningioma cases. The control group consisted of 674 (71 %) subjects. 

No association was found although time since first regular phone use for  > 10 years gave for 

ipsilateral glioma OR = 1.6, 95 % CI = 0.8-3.4 and for contralateral glioma OR = 0.7, 95 % CI = 

0.3-1.5.  

For ipsilateral meningioma OR = 1.3, 95 % CI = 0.5-3.9 was calculated and for contralateral OR 

= 0.5, 95 % CI = 0.1-1.7 using 10 > years latency period. 
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The Danish part of the Interphone study on brain tumours (Christensen et al, 2005) included 252 

(71 %) persons with glioma, 175 (74 %) with meningioma and 822 (64 %) controls. For 

meningioma OR = 0.8, 95 % CI = 0.5-1.3 was calculated and for low-grade glioma OR = 1.1, 95 

% CI = 0.6-2.0, and for high-grade glioma OR = 0.6, 95 % CI = 0.4-0.9 were found.  Use for > 

10 years yielded for meningioma OR = 1.0, 95 % CI = 0.3-3.2, low-grade glioma OR = 1.6, 95 

% CI = 0.4-6.1 and for high-grade glioma OR = 0.5, 95 % CI = 0.2-1.3. Regarding high-grade 

glioma 17 ORs were presented and all showed OR < 1.0. 

 

Results from England were based on 966 (51 %) glioma cases and 1,716 (45 %) controls 

(Hepworth et al 2006). Cases were ascertained from multiple sources including hospital 

departments and cancer registries. The controls were randomly selected from general 

practioners’ lists. Regular phone use gave OR = 0.9, 95 % CI = 0.8-1.1, increasing to OR = 1.2, 

95 % CI = 1.02-1.5 for ipsilateral use but OR = 0.8, 95 % CI = 0.6-0.9 for contralateral use. 

Ipsilateral use for > 10 years produced OR = 1.6, 95 % CI = 0.9-2.8, and contralateral OR = 0.8, 

95 % CI = 0.4-1.4. 

 

Schüz et al (2006) carried out a population-based case-control study in three regions of 

Germany, with incident cases of glioma and meningioma aged 30-69 years during 2000-2003. 

Controls were randomly drawn from population registries. In total, 366 (80 %) glioma cases, 

381 (88 %) meningioma cases, and 1,494 (61 %) controls were interviewed. For glioma OR = 

1.0, 95% CI = 0.7 - 1.3 and for meningioma OR = 0.8, 95% CI = 0.6 - 1.1 were obtained. 

However, among persons who had used cellular phones for  > 10 years increased risk was found 

for glioma; OR = 2.2, 95% CI = 0.9 - 5.1 but not for meningioma; OR = 1.1, 95% CI = 0.4 – 3.4. 

Among women they found OR = 2.0, 95 % CI = 1.1-3.5 for high-grade glioma for "regular" 

cell-phone use.  
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Summary results for mobile phone use and risk of glioma in Denmark, and parts of Finland, 

Norway, Sweden and United Kingdom have been published (Lahkola et al 2007). Of the 

included Interphone studies results had already been published from Sweden (Lönn et al 2005), 

Denmark (Christensen et al 2005) and UK (Hepworth et al 2006). The results were based on 

2,530 eligible cases but only 1,521 (60%) participated. Regular mobile phone use gave OR = 

0.8, 95 % CI = 0.7-0.9, but cumulative hours of use yielded OR = 1.006, 95 % CI = 1.002-1.010 

per 100 hours. Ipsilateral mobile phone use for > 10 years gave OR = 1.4, 95 % CI = 1.01-1.9, p 

trend = 0.04 and contralateral use OR = 1.0, 95 % CI = 0.7-1.4.  

 

Use of mobile phones and risk of glioma and meningioma were published from Norway as part 

of the Interphone study (Klaeboe et al 2007). It included 289 (71 %) glioma cases, 207 (69 %) 

meningioma cases and 358 (69 %) controls. Significantly decreased OR = 0.6, 95 % CI = 0.4-

0.9 was found for glioma and decreased OR = 0.8, 95 % CI = 0.5-1.1 for meningioma. For 

glioma 22 additional ORs were calculated using different exposure criteria as discussed above 

and all calculations yielded OR < 1.0, seven significantly so. Also for meningioma most ORs 

were < 1.0. Again these results indicate systematic bias in the study. 

 

F. Meta-analysis 

A meta-analysis of the risk for acoustic neuroma, glioma and meningioma was performed for 

mobile phone use with a latency period of 10 years or more (Hardell et al 2007). For acoustic 

neuroma studies by Lönn et al (2004), Christensen et al (2004) Schoemaker et al (2005) and 

Hardell et al (2006a) were included, all giving results for at least 10 years latency period or 
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more. Overall OR = 1.3, 95 % CI = 0.6-2.8 was obtained increasing to OR = 2.4, 95 % CI = 1.1-

5.3 for ipsilateral mobile phone use (Lönn et al 2004, Schoemaker et al 2005, Hardell et al 

2006).  For glioma OR = 1.2, 95 % CI = 0.8-1.9 was calculated (Lönn et al 2005, Christensen et 

al 2005, Hepworth et al 2006, Schüz et al 2006, Hardell et al 2006b, Lahkola et al 2007).  

Ipsilateral use yielded OR = 2.0, 95 % CI = 1.2-3.4 (Lönn et al 2005, Hepworth et al 2006, 

Hardell et al 2006b, Lahkola et al 2007). In total OR = 1.3, 95 % CI = 0.9-1.8 was found for 

meningioma (Lönn et al 2005, Christensen et al 2005, Schüz et al 2006, Hardell et al 2006a) 

increasing to OR = 1.7, 95 % CI = 0.99-3.1 for ipsilateral use (Lönn et al 2005, Hardell et al 

2006b). 

 

IV.  Discussion 

 

This review included 20 studies, two cohort studies and 18 case-control studies. We recently 

made a review on this topic and more details can be found in that publication (Hardell et al 

2007). Only two studies have been published since then. Both were on acoustic neuroma 

(Klaeboe et al 2007, Schlehofer et al 2007). They were small with no cases with a latency period 

of at least 10 years. Furthermore, most ORs were < 1.0 indicating serious methodological 

problems in the studies.  

 

So far most studies have had no or limited information on long-term users. No other studies than 

from the Hardell group has published results for use of cordless phones (Hardell et al 2006a,b). 

As we have discussed in our publications it is pertinent to include also such use in this type of 

studies. Cordless phones are an important source of exposure to microwaves and they are 

usually used for a longer time period on daily basis as compared with mobile phones.  Thus, to 

exclude such use seems to underestimate the risk for brain tumors from use of wireless phones.  
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It should be noted that the Hardell group has included also use of cordless phones, and thus in 

the exposure assessment the “unexposed” cases and controls have not been exposed to either 

cordless or cellular phones. This is in contrast to the Interphone study where the “unexposed” 

may have been exposed to cordless phones of unknown amount. 

 

Of the 18 case-control studies 11 gave results for > 10 years use or latency period. However, 

most of the results were based on low numbers. Thus, it is necessary to get an overview if there 

is a consistent pattern of increased risk with longer latency period and to make a formal meta-

analysis of these findings. Since brain tumours are a heterogenic group of tumours it is 

reasonable to separate the results for malignant and benign tumours, as has been done in the 

various studies.  

 

The Danish cohort study (Johansen et al, 2001) is not very informative due to limits in study 

design, analysis and follow-up. Schüz et al. (2006) reported an update of this previous study on 

mobile phone subscribers in Denmark.  Since this report has gained substantial media coverage 

as “proof” of no brain tumor risk from mobile phone use we will discuss the shortcomings of the 

study in more detail in the following. 

 

The cohort was established for persons that some time during 1982–1995 were registered 

cellular telephone users and has now been followed against the Danish Cancer Registry until 

2002, seven years more than in the previous study. Previously (Johansen et al, 2001) 9 persons 

with brain tumors had used GSM phones for > 3 years, and OR =1.2 was reported. Now, data 

were not provided for type of phone or years of use. Rather the calculation of latency was based 

on first year of registration. 
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During early 1980s almost all cellular telephones were used in cars with external antennae. 

These subjects were unexposed to electromagnetic fields (EMF). No information regarding such 

use is provided, and one may assume that such participants are now included as exposed 

although they were not. Over 200 000 (32 %) company subscribers were excluded from the 

cohort. These are the heaviest users and are billed 4.5 times more than the layman in Sweden. 

They started use the earliest, but were included in the “non-user” group, i.e., the general Danish 

population.  

 

SIR among cellular telephone users was 1.21 for temporal glioma (Schüz et al 2006), a region 

most exposed to EMF, based on 54 persons and not on phone type or time of first use (latency 

period). No information regarding the ear used and correlation with tumor site was given.  The 

expected numbers were based on the general population. Because a large part of the population 

uses mobile phones and/or cordless phones, and the latter use was not assessed at all in the 

study, there is no truly unexposed group for comparison.  Risk of cancer was underestimated, 

e.g., in the group with first use > 10 years, the associated risk for brain tumors was low (SIR 

=0.7, 95 % CI = 0.4- 0.95). Relying on private cellular network subscription as measure of 

mobile phone use has been questioned (Ahlbom et al 2004, Funch et al 1996). 

 

There seems to be a “healthy worker” effect in the study because of the decreased overall cancer 

risk (SIR= 0.9, 95 % CI = 0.9-0.95). Of the subscribers 85 % were men and 15 % women. 

Certainly early mobile phone users are not socioeconomically representative of the whole 

Danish population, used for comparison. The cohort only included people > 18 years of age.  

We reported (Hardell et al 2004, 2006a,b) that cellular telephone use beginning before age 20 is 

associated with a higher risk of brain tumours than use starting after age 20.   
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The authors do not acknowledge the contribution by the telecom industry as cited in the first 

publication (Johansen et al 2001), i.e., TelemarkDanmarkMobil and Sonofom. Two of the 

authors are affiliated with the private International Epidemiology Institute, Rockville, MD, 

USA, which has contributed financially to the study. Where the International Epidemiology 

Institute gets its money from is not declared. In the application to the Danish National Mobile 

Phone Program, which funded part of the study, no mention of the involvement or payment of 

these two consultants was made, a fact that is now being set under question. 

 
Regarding the case-control studies there seems to be a consistent pattern of an increased risk for 

acoustic neuroma using a 10-year latency period and considering ipsilateral exposure. It might 

be a “signal” tumour type for increased brain tumour risk from microwave exposure, since it is 

located in an anatomical area with high exposure during calls with cellular or cordless phones 

(Hardell et al, 2003). Christensen et al (2004) found no association using a > 10 year latency 

period, but the result was based on only 2 cases. Interestingly, the tumours were significantly 

larger in the total group of regular mobile phone users. 

 

 In our study we found an increased risk also with shorter latency period than 10 years (Hardell 

et al 2006a). However, it is not known at what stage in the carcinogenesis microwaves act. An 

effect might exist at different stages both of promoter and initiator type. We conclude that the 

results on acoustic neuroma are consistent with an association with use of cellular phones using 

a latency period of > 10 years. 

 

Regarding meningioma no consistent pattern of an association was found, although ipsilateral 

exposure in the > 10 years latency group increased the risk in the meta-analysis. For a definite 
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conclusion longer follow-up studies are needed. We conclude that the results are not consistent 

with an association between use of mobile phones and meningioma.  

 

Malignant brain tumours have been studied in 8 case-control studies. One study was register 

based and showed an increased risk associated with analogue phone use although the latency 

period seemed to be short (Auvinen et al 2002). The risk of glioma increased significantly per 

year of use. Five studies gave results for use of cell phone for 10 years or more. The pattern of 

an association was consistent in the different studies, except for the Danish study by Christensen 

et al (2005). In that study all 17 odds ratios for high-grade glioma were < 1.0 indicating 

systematic bias in assessment of exposure.  

 

Our meta-analysis showed a significantly increased risk for ipsilateral use. We conclude that 

using > 10 years latency period gives a consistent pattern of an association between use of 

mobile phones and glioma. 

 

Regarding the Interphone studies the German part (Schüz et al 2006) was commented on by 

Morgan (2006) and these comments may also apply to the other Interphone studies. Morgan 

noted that the definition of a "regular" cell-phone user was so minimal that almost all "regular" 

cell-phone users would not be expected to be at risk, even if cell-phone use was found to create 

very high risks of glioma and meningioma. As for longer periods of "regular" cell-phone use, 

Schüz et al (2006) reported that only 14 percent of the glioma cases and 6 percent of the 

meningioma cases had used a cell phone for 5 years or more. For 10 years or more, the 

percentages were 3 percent and 1 percent, respectively. The authors replied that even long-term 

users in the study had barely more than 10 years of regular use and, in the beginning, were not 

heavy users; hence, they could not draw conclusions on heavy long-term use. 
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Methodological issues in the Interphone studies have been also discussed by Vrijhed et al 

(2006a,b). It was concluded that actual use of mobile phones was underestimated in light users 

and overestimated in heavy users. Random recall bias could lead to large underestimation in the 

risk of brain tumours associated with mobile phone use. According to the authors there was a 

selection bias in the Interphone study resulting in under selection of unexposed controls with 

decreasing risk at low to moderate exposure levels. Some of the Interphone studies had a low 

response rate, especially among controls giving potential selection bias. 

 

A formal meta-analysis on mobile phone use and intracranial tumors was performed by Lahkola 

et al (2006). No data were given for > 10 year latency period. Overall the risk increased for 

ipsilateral tumors, OR = 1.3, 95 % CI = 0.99-1.9 whereas no increased risk was found for 

contralateral tumors, OR = 1.0, 95 % CI = 0.8-1.4.  

 

V.  Conclusions 

In summary we conclude that our review yielded a consistent pattern of an increased risk for 

acoustic neuroma and glioma after > 10 years mobile phone use. We conclude that current 

standard for exposure to microwaves during mobile phone use is not safe for long-term brain 

tumor risk and needs to be revised. 
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Table. Summary of 20 studies on the use of cellular telephones and brain tumour risk. For further 

details, see Hardell et al (2007). Odds ratio (OR), 95 % confidence interval (CI) and standardised 

incidence ratio (SIR) are given. 

Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Hardell et al 
1999, 2001 
Sweden 

 
 
1994-1996 
Case-control 

 
 

20-80 
years Brain tumours 

217 
 

OR 1.0 
(0.7-1.4) 

Analogue and digital cell 
phone use 

34 
 

OR 1.1 
(0.6-1.8) 

Ipsilateral 
 

16 OR 1.2 
(0.6-2.6) 

> 10 year latency, 
analogue cell phone 

 
Muscat et al 
2000 USA 

 
1994-1998 
Case-control  

 
18-80 
years 

Brain tumours 
 

17 
 

OR 0.7 
(0.4-1.4) 

 
Mean duration of use, 2.8 
years Neuorepithelioma 35 OR 2.1 

(0.9-4.7) 

Johansen et 
al 2001 
Denmark 

 
1982-1995 
Cohort  

 
0 to > 65 

years 

 
Brain tumours 

20 
 

SIR 1.3  
(0.8-2.1) 

Analogue and digital cell 
phone use 

9 SIR 1.2 
(0.6-2.3) 

> 3 years duration of 
digital subscription  

 
Inskip et al 
2001 
USA 

 
 
1994-1998 
Case-control 

 
 

> 18 years 

Acoustic neuroma 
 

5 
 

OR 1.9 
(0.6-5.9) 

> 5 years of cell phone 
use 

Glioma 
 

11 
 

OR 0.6 
(0.3-1.3) 

Meningioma 
6 OR 0.9 

(0.3-2.7) 
Muscat et al 
2002 USA 

1997-1999 
Case-control > 18 years Acoustic neuroma 11 OR 1.7 

(0.5-5.1) 
3-6 years of cell phone 
use 

Auvinen et al 
2002 
Finland 

1996 
Case-control, 
register 
based 

20-69 
years Glioma 

119 OR 1.5 
(1.0-2.4) 

Analogue and digital cell 
phone ”ever” use 

40 OR 2.1 
(1.3-3.4)  

Analogue cell phone 
”ever” used 

11 OR 2.4  
(1.2-5.1) 

Analogue cell phone use 
1-2 years 

11 OR 2.0  
(1.0-4.1) 

Analogue cell phone use, 
>2 years 

Lönn et al 
2004 
Sweden 
Interphone 

1999-2002 
Case-control 

20-69 
years Acoustic neuroma 

12 OR 1.8 
(0.8-4.3) 

>10 years of cell phone 
use, result for either side 
of head 

12 OR 3.9  

(1.6-9.5) 

>10 years of cell phone 
use on same side of head 
as tumour 
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Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Christensen 
et al 2004 
Denmark 
Interphone 

2000-2002 
Case-control 

20-69 
years Acoustic neuroma 

45 

 
OR 0.9 
(0.5-1.6) 
 

 
Regular use 

2 OR 0.2 
(0.04-1.1) 

> 10 years cell phone use 
on same side of head as 
tumour. 
 
Significantly larger 
tumours among cellular 
phone users 1.66 cm3 
versus 1.39 cm3, p=0.03. 

Lönn et al 
2005 Sweden 
Interphone 
 

2000-2002 
Case-control 
 

20-69 
years 

 

Glioma 

214 OR 0.8 
(0.6-1.0) 

 
Regular use 
 

15 

 
OR 1.6 
(0.8-3.4)  
 

>10 years since first 
“regular” cell phone use 
on same side of head as 
tumour 

11 OR 0.7 
(0.3-1.5) 

>10 years since first 
“regular” cell phone use 
on opposite side of head 
as tumour. 

Meningioma 

118 OR 0.7 
(0.5-0.9) 

 
Regular use 

5 OR 1.3 
(0.5-3.9) 

>10 years since first 
“regular” cell phone use 
on same side of head as 
tumour 

3 OR 0.5 
(0.1-1.7) 

>10 years since first 
“regular” cell phone use 
on opposite side of head 
as tumour. 
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Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Schoemaker 
et al 2005 
Denmark, 
Finland, 
Sweden,  
Norway, 
Scotland, 
England, 
Interphone 

1999-2004 
Case-control 

18-69 
years 

(variable) 
Acoustic neuroma 

360 OR 0.9 
(0.7-1.1) 

 
Regular use 
 

23 

 
OR 1.8 
(1.1-3.1) 

 

> 10 lifetime years of cell 
phone use on same side of 
head as tumour 

12 OR 0.9 
(0.5-1.8) 

> 10 lifetime years of cell 
phone use on opposite 
side of head as tumour 

Christensen 
et al 2005 
Denmark 
Interphone 

2000-2002 
Case-control 

20-69 
years 

Low-grade glioma 
47 OR 1.1 

(0.6-2.0) 

 
Regular use 
 

9 OR 1.6 
(0.4-6.1) 

>10 years since first 
regular use of cell phone  

High-grade 
glioma 

 
59 

 

 
OR 0.6 
(0.4-0.9) 
 

 
Regular use 

8 OR 0.5 
(0.2-1.3) 

>10 years since first 
regular use of cell phone 
 
17 odds ratios for high-
grade glioma, all < 1.0, 
indicates systematic bias 
 

Meningioma 

67 

 
OR 0.8 
(0.5-1.3) 

 

 
Regular use 
 
 

6 
OR 1.0 
(0.3-3.2) 

 

>10 years since first 
regular use of cell phone 

Hepworth et 
al 2006 UK 
Interphone 

2000-2004 
Case-control 

18-69 
years Glioma 

 
508 

 

 
OR 0.9 
(0.8-1.1) 

 

 
Regular use 
 

NA 
OR 1.6 
(0.9-2.8) 

 

>10 years of cell phone 
use on same side of head 
as tumour. 

NA OR 0.8 
(0.4-1.4) 

>10 years of cell phone 
use on opposite side of 
head as tumour. 
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Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Schüz et al 
2006 
Germany 
Interphone 

2000-2003 
Case-control 

30-59 
years 

 
Glioma 

 

138 

 
OR 1.0 
(0.7-1.3) 

 

 
Regular use 
 

12 OR 2.2 
(0.9-5.1) 

> 10 years since first 
regular use of cell phone  

30 OR 2.0 
(1.1-3.5) 

Female regular use of cell 
phone 

Meningioma 

 
104 

 
 

 
OR 0.8  
(0.6-1.1) 

 

 
Regular use 
 

5 OR 1.1 
(0.4-3.4) 

> 10 years since first 
regular use of cell phone 

Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 
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Hardell et al 
2006a 
Sweden 

1997-2003 
Case-control 

20-80 
years 

Acoustic neuroma 
 

130 OR 1.7 
(1.2-2.3) 

> 1 year latency of cell 
phone use 

20 OR 2.9 
(1.6-5.5) 

> 10 years latency of 
cell phone use 

10 OR 3.5 
(1.5-7.8) 

> 10 years of ipsilateral 
cell phone use 

4 OR 1.0 
(0.3-2.9) 

> 10 years latency of 
cordless phone use 

3 
OR 3.1 
(0.8-12) 

> 10 years latency of 
ipsilateral cordless 
phone use 

Meningioma 

347 OR 1.1 
(0.9-1.3) 

> 1 year latency of cell 
phone use 

38 OR 1.5 
(0.98-2.4) 

> 10 years latency of 
cell phone use 

15 OR 2.0 
(0.98-3.9) 

> 10 years latency of 
ipsilateral cell phone use 

23 OR 1.6 
(0.9-2.8) 

> 10 years latency of 
cordless phone use 

9 
OR 3.2 
(1.2-8.4) 

> 10 years latency of 
ipsilateral cordless 
phone use 

Hardell et al 
2006b 
Sweden 

1997-2003 
Case-control 

20-80 
years 

Glioma,  
high-grade 

281 
OR 1.4 
(1.1-1.8) 

> 1 year latency of cell 
phone use 

71 OR 3.1 
(2.0-4.6) 

> 10 years latency of 
cell phone use 

39 OR 5.4 
(3.0-9.6) 

> 10 years latency of 
ipsilateral cell phone use 

23 OR 2.2 
(1.3-3.9) 

> 10 years of cordless 
phone use 

10 
OR 4.7 

(1.8-13) 
> 10 years latency of 
ipsilateral cordless 
phone use 

Glioma,  
low-grade 

65 
OR 1.4 
(0.9-2.3) 

> 1 year latency of cell 
phone use 

7 OR 1.5 
(0.6-3.8) 

> 10 years latency of 
cell phone use 

2 OR 1.2 
(0.3-5.8) 

> 10 years latency of 
ipsilateral cell phone use 

5 OR 1.6 
(0.5-4.6) 

> 10 years latency of 
cordless phone use 

3 
OR 3.2 
(0.6-16) 

> 10 years latency of 
ipsilateral cordless 
phone use 
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Study Years 

Study Type 

Age Tumour type No. of 

Cases 

Odds ratio,  

95 % 

confidence 

interval 

Comments 

Takebayashi  
et al  
2006  
Tokyo 
Interphone 

2000-2004 
Case-control 

30-69 
years  

 
 
 
 

Acoustic neuroma 

51 OR 0.7 
(0.4-1.2) 

 
Regular use 
 

4 

 
OR 0.8 
(0.2-2.7) 

 

Length of use > 8 
years 

20 OR 0.9 
(0.5-1.6) 

Ipsilateral use 
 

Schüz et al 
2006 
Denmark 

1982-2002 
Cohort >18 years 

Glioma 257 SIR 1.0 
(0.9-1.1)  

420 095 telephone 
subscribers 
 
 
Latency > 10 years 

Meningioma 68 SIR 0.9 
(0.7-1.1) 

Nerve sheat 
tumors 32 SIR 0.7 

(0.5-1.0) 
Brain and nervous 

system 28 SIR 0.7 
(0.4-0.95) 

Lahkola et al 
2007 
Denmark, 
Norway, 
Finland, 
Sweden, UK 
Interphone 

September 
2000-
February 
2004 
(differed 
between 
countries) 
Case-control 

 
20-69 
years 
(Nordic  
countries), 
18-59 
years (UK) 

Glioma 

 
867 

 

 
OR 0.8 
(0.7-0.9) 

 

 
Regular use 
 

77 OR 1.4 
(1.01-1.9) 

Ipsilateral mobile 
phone use, > 10 years 
since first use,  p for 
trend = 0.04 

Klaeboe et al 
2007 
Norway 
Interphone 

2001-2002 
Case-control 

19-69 
years 

Glioma 161 OR 0.6 
(0.4-0.9) 

Regular use 
Meningioma 111 

OR 0.8 
(0.5-1.1) 

Schlehofer  
et al 
2007 
Germany 
Interphone 

2000-2003 
Case-control 

30-69 
years Acoustic neuroma 29 OR 0.7 

(0.4-1.2) Regular use 
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I. INTRODUCTION 

 

Primary central nervous system (CNS) tumors are a heterogeneous group of benign and 

malignant neoplasms localized in the brain, the spinal cord and their coverings. They differ in 

histological type, tissue of origin, anatomic site, growth pattern, age distribution, sex ratio, 

clinical appearance and many other features including molecular neuropathological markers. 

These features are not independent but little is known about the etiology of these tumors and 

the reason for the observed epidemiological patterns. The rapidly developing field of 

molecular neuropathology may provide clues to solve these problems in the future. 

Brain tumors, accounting for the majority of CNS tumors, are rare. Annually about 36,000 

36000 new cases are diagnosed in the US and about 180,000 180000 world-wide. The age 

distribution has two peaks: incidence is about 35 cases per million per year below 10 years of 

age (which is mainly due to tumors originating from mesodermal and embryonic tissues, 

medulloblastoma and astrocytoma of the juvenile pilocytic type), and after age 15 there is a 

steady increase of incidence with increasing age reaching its second peak of about 200 cases 

per million per year at an age around 75 years. The burden of CNS cancers is distinctly higher 

in children making up around 20% of all childhood malignancies, while in adults less than 2% 

of all cancers are primary brain cancers.  

 

There are some rare cases of inherited cancer syndromes (e.g. von Hippel-Lindau disease, Li-

Fraumeni syndrome) that are related to brain tumor risk, accounting for a small fraction of 

cases. Except for therapeutic x-rays no environmental or lifestyle life-stile factor has 

unequivocally been established as risk factor for brain tumors. Non-whites Non whites seem 

to have lower risk, and incidence tends to be higher with increasing socio-economic status. 

However, because of the rather advanced age of 75 of peak incidence, such differences may 

partly be due to differences in life-expectancy. During the last decades some types of brain 

tumors show a steady increase of a few percent per year, which might to some extent be 

related to the introduction of computed tomography and other high-resolution neuroimaging 

methods.  

 

Since the report of Wertheimer and Leeper in 1979 of an increased incidence of brain tumors 

in children living in homes with an expected higher exposure to power-frequency electric and 
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magnetic fields, exposure to electromagnetic fields have become an area of interest in the 

study of factors affecting brain tumor risk.  

This review focuses on the radio frequency (RF) part of the electromagnetic spectrum (3 kHz 

to 300 GHz). However, because the epidemiology of mobile phone use is covered in another 

section, it will be restricted to RF exposure conditions other than microwaves from mobile 

phone use. Exposure to ELF magnetic fields and childhood brain tumors is covered in the 

chapter about childhood cancers.  

 

 

II. Material and Methods 

 

Published articles of relevant studies restricted to the last 20 years were obtained by searching 

PubMed using the following terms: 

(“radio frequency” OR electromagnetic* OR microwaves) AND (“brain cancer” OR brain 

tumor* OR “CNS cancer” OR CNS tumor* OR glioma* OR meningioma* OR neuroma*) 

NOT (“power frequency” OR “low frequency”) AND epidemiology 

 

The search resulted in 101 hits. After removing reviews and animal or in vitro studies as well 

as studies of mobile phone use, 8 articles remained. A hand search in review papers (Krewski 

et al. 2001; Elwood 2003; Ahlbom et al. 2004; Kundi et al. 2004) and reference lists of the 

articles found in PubMed revealed another 7 papers; hence the final body of evidence consists 

of 15 studies of exposure to various types of RF fields. 

 

Of the 15 studies 8 were cohort studies, 3 case-control studies and 4 of an ecological type. 

The majority (11) were occupational studies, two studies investigated children, and one 

ecological study investigated adults and one study both, adults and children. 

 

III. Epidemiological studies of RF fields and brain tumors 

 

Table 1 gives an overview of the 15 studies obtained by the literature search with respect to 

study type, assessment of exposure and outcome, confounders considered and matching 

variables used, number of cases included and selection method of study participants. Results 

are summarized in Table 2. 
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In the following paragraphs each study is briefly discussed with respect to its strengths and 

weaknesses.  

 

A.  Thomas et al. 1987 

 

This case-control study included 435 deaths from brain or CNS tumors and 386 deaths from 

other causes as controls. Only adult males were included. Basis of data collection on 

occupational history were interview with next-of-kin. Two methods of classification were 

used: one method assigned subjects to one of three categories (never exposed to RF/ever 

exposed to RF in an electrical or electronics job/ever exposed to RF but not in an electrical or 

electronics job), the other method consisted in a classification of each job by an industrial 

hygienist hyginiest for presumed exposure to RF, soldering fumes, and lead. Both methods 

revealed significantly increased brain tumor risks of presumed occupational exposure to RF 

fields. This increase was due to an association in electronics and electrical jobs with astrocytic 

tumors as the predominant outcome associated with employment in these categories. In 

addition a significant increase of brain tumor risk was found for increasing duration of 

exposure.  

 

Although relying on information of next-of-kin could be a source of misclassification, one 

strength of this study is it’s its relying on occupational history only that could be assumed to 

be more accurate than recall of exposure to various agents. The two methods of classification 

led to almost the same results, which lends support to the hypothesis that indeed exposure in 

electrical and electronics jobs is associated with an increased brain tumor risk. Due to the 

strong relationship between RF exposure and exposure to lead, solvents or soldering fumes in 

these jobs, it is not possible to separate effects of these exposures. However, analysis of 

exposure to lead did not show a consistent relationship with brain tumor risk, indicating that it 

may not confound the relationship to RF exposure.  

 

Because this study is of dead cases only it is likely over-representing high grade brain tumors 

that may not all be associated with exposure which leads to an effect dilution. Exposure 

misclassification, if it is non-differential in cases and controls, also tends to reduce effect 

estimates.  
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A weakness of this study is obviously its lack of an exposure indicator other than the 

occupational category. While there is no doubt that in these jobs some exposure to RF fields 

occur quite regularly, specific characteristics including frequency ranges, modulation, 

intensity, duration and distance from the source vary considerably. Overall the study (as well 

as two earlier ones outside the search window: Lin et al. 1985 and Milham 1985) are 

sufficient to formulate a research hypothesis that can be tested in appropriately designed 

subsequent investigations. Unfortunately such studies have never been conducted. 

 

B. Milham 1988 

 

In this cohort study of 67,829 amateur radio operators holding a license within 1/1979 to 

6/1984 in Washington and California 29 brain tumor deaths occurred during the follow up 

period with 21 expected.  

 

It should be noted that there was a substantial and statistically significant lower number of 

overall deaths of less than three quarters of deaths expected from country mortality rates. This 

could be due to both a ‘healthy-worker’ effect as well as an effect of socio-economic status. In 

lieu of computing standardized mortality ratios (SMR) it may be instructive to look at the 

proportional mortality rates in the reference population and the amateur radio operators: 0.6% 

of all deaths are expected to be due to brain tumors in the reference population while in 

amateur radio operators twice as many occurred (1.2%). Whether or not this is an indication 

of an increased brain tumor risk due to RF exposure is difficult to assess. First of all this study 

is a register only investigation and no information on intensity, frequency and duration of 

engagement in amateur radio operations are available. In a later analysis the author reported 

about results using a proxy of intensity and duration of exposure: the license class. In this 

analysis indications of an increase of risk with increasing license class were obtained. 

This study could and should have started off a thorough follow up of amateur radio operators 

and nested case-control studies to address the problem of potential confounders and to narrow 

down the conditions that may be responsible for the increased mortality from some cancers. It 

is another loose end that leaves us without a clear message.  

 

Although no risk factor for brain cancer except therapeutic ionizing radiation is known, there 

are some indications that risk increases with social class. The reason for this association is 

unknown but life-style factors may play a role as well as concomitant causes of death that 
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could lead to a spurious reduction of risk in lower class populations because brain tumors 

have their peak close to life-expectancy.  

 

 

C. Selvin et al. 1992 

 

The objective of this investigation was not primarily to study the relationship between RF 

exposure and childhood cancer but to address the general problem of how to assess disease 

incidence or mortality in relation to a point source. As the point source the Sutro Tower in 

San Francisco, the only microwaves emitting tower in this county, was chosen. A total of 35 

brain tumor deaths occurred among 50,686 white individuals at risk aged less than 21 in the 

years 1973-88 in an area of approximately 6 km around the tower. The exact location of 

residence could not be obtained; therefore each case was located in the center of the census 

tract. Different methods of analysis were applied to assess a potential relationship between 

distance from the tower and brain tumor risk. Relative risk for brain tumors for a distance less 

than 3.5 km from Sutro Tower compared to more than 3.5 km was 1.162 and not significant. 

The study explored different methodological procedures and has its merits from a 

methodological point of view. However, it starts from the wrong assumption: that distance to 

a point source is a valid proxy for intensity of exposure. Under ideal conditions of spherical 

symmetry of an emission this assumption holds, however, there are almost no real life 

situations where this assumption is sufficiently close to actual exposure levels. And it is 

definitely not true for the Sutro Tower. Radiations from the antennae are directed towards the 

horizon and the complex pattern of emission with main and side lobes results in a complex 

pattern of RF exposure at ground level. Furthermore, the area is topographically structured 

with hills and valleys such that areas of high exposure at the vertices are in close proximity to 

areas of low exposure at the shadowed side downhill.  

 

Studying the relationship between a point source and disease is not only difficult due to the 

complex relationship between distance and exposure but also because of the fact that humans 

are not stable at a certain location. This is of greater importance for adults who may commute 

from and to work places and have generally a greater radius of activity as compared to 

children. Nevertheless, there is at least a high chance of one long-lasting stable location that is 

when people sleep in their beds. Therefore, studies in relation to a point source should attempt 

to assess exposure at the location of the bed. Because the objective of this study was not the 
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assessment of a potential brain tumor risk but the application of methods for the analysis of 

spatial data, no attempts were made to measure actual exposure. 

 

 

D.  Tynes et al. 1992 

 

In this study information on occupations obtained for all Norwegians every 10 years was used 

to assess cancer incidence in relation to job titles. In 1960 37,945 male workers were 

identified that had jobs with possible exposure to EMFs and among these 3,017 with possible 

RF exposure. Overall 119 brain tumor cases were found in the cancer registry between 1961 

and 1985. Of these cases 6 occurred in the subgroup of workers possibly exposed to RF fields. 

The overall expected number of brain tumor cases was 109 and 12 for the subgroup with 

possible RF exposure. Hence no increased brain tumor risk could be detected.  

 

Despite the long follow-up period of 25 years with an accumulated number of 65,500 person-

years the expected number of brain tumors diagnosed during that period is too low to detect a 

moderately elevated risk of 1.3 to 1.5.   

 

As mentioned above, all studies solely relying on job titles lead to exposure misclassification 

and, therefore, to a dilution of risk. For dichotomous exposure variables (exposed/not 

exposed) and assuming a negligibly small proportion of exposed in the reference population 

standardized incidence ratios (SIR) are biased by a factor (1+f*(SIR-1))/SIR, if f denotes the 

fraction of true exposed and SIR is the true incidence ratio. Hence a true SIR of 2.0 is reduced 

to 1.5 if only 50% in the cohort are actually exposed. The observed SIR is further reduced if 

the assumption of a negligible fraction of exposed in the reference population is wrong. In this 

case the bias factor given above is further divided by (1+g*(SIR-1)), where g is the fraction of 

exposed in the general population. 

 

While a cohort study that is based on registry data has the advantage of independence from 

recall errors and selection bias due to possible differential participation, it has the 

disadvantage that registry data are generally insufficient to provide reliable exposure 

indicators. While no association with brain tumors could be detected in this study it revealed 

an increased number of leukemia cases in occupations with possible RF exposure. This could 
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be due to the higher incidence of leukemia or to a stronger association or to different latency 

periods and various other reasons including chance. 

 

 

 

E.  Grayson 1996 

 

In this case-control study nested within approx. 880,000 US Air Force personnel with at least 

one years of service during the study period of 1970-89 primary malignant brain tumor cases 

were ascertained by screening hospital discharge records. The study included only males and 

only as long as they were on Air Force records. From 246 cases detected 16 were dropped due 

to incomplete or ambiguous data. For each case four controls were randomly selected from 

the case’s risk set matching it exactly on year of birth and race. Controls who were diagnosed 

with diseases that may be associated with EMF exposure (leukemia, breast cancer, malignant 

melanoma) were excluded from the risk set. 

 

One strength of this study is the detailed job history filed for each cohort member that could 

be used for retrospective exposure assessment. Furthermore, Air Force files contained detailed 

data from personal dosímetry on ionizing radiation for the different posts and jobs. 

Classification of RF field exposure was based on a detailed job exposure matrix with over 

1,950 entries, indexing 552 different job titles. One source of classification was recorded 

events of exposure to RF fields above 100 W/m2. By this method probable exposure was 

assigned if for a job such events were recorded in the past as well as for closely related jobs.  

Possible exposure was assigned for jobs that required operation of RF emitters but without 

recorded overexposure. 

 

A further strength is the thorough consideration of possible confounders. Because of the 

possible relationship of brain tumor risk with socio-economic status (SES), military rank was 

used as a surrogate for SES and included in the analysis as well as ionizing radiation exposure 

that has previously been shown to increase brain tumor risk. 

 

Exposure to RF fields was associated with a moderate but statistically significant increased 

risk of OR=1.39. Investigation of duration of exposure was compromised by an ambiguity 

introduced by the calculation of an exposure score as the product of exposure and months. 



  

10 
 

Nevertheless, for those ever exposed there were indications of an increasing risk with 

increasing exposure duration. 

 

A weakness of this investigation is its incomplete follow-up of cohort members. This could 

have resulted in an underestimation of the true risk. Leaving the Air Force could have been 

more likely in those exposed to RF fields and developing a brain tumor. Some malignant 

brain tumors have early signs that could be incompatible with the Air Force job especially if 

involving operation of RF equipment (like seizures, severe headaches, somnolence, and 

absences). Because the study did not involve personal contact it is free of other selection 

biases.  

 

F. Szmigielski 1996 

 

In this military cohort study of cancer morbidity Polish military career personnel was assessed 

for occupational exposure to RF fields based on service records. The study covered 15 years 

(1971-85) including approx. 128,000 persons per year. Expected rates for 12 cancer types 

were calculated based on the age specific morbidity in those classified as unexposed. 

For brain and nervous system tumors a significantly increased ratio of observed to expected 

(OER=1.91) was found. Other malignancies with significantly increased incidence in exposed 

were: esophageal and stomach cancers, colorectal cancers, melanoma, and 

leukemia/lymphoma. 

 

One strength of this study is its substantial size with almost 2 million person-years of follow-

up. Furthermore, accurate military records on job assignment and on exposure from military 

safety groups gives a unique opportunity to assess long-term exposure effects based on 

already filed data.  

 

Some important data are missing because they were military classified information that could 

not be provided in the paper. This includes the exact number of cases of the different 

neoplasms. However, from the data presented an observed number of brain tumors of about 

46 can be calculated.  

 

The study has been criticized for an alleged bias because more information on risk factors was 

available for cancer cases. It is true that military medical boards collected data for cases such 
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as life style factors and exposure to possible carcinogens during service, however, at no stage 

this information entered the analysis. Therefore, this criticism is unfounded. Such information 

could have been utilized within a nested case-control study applying the same methods of 

assessment of risk factors for controls as has been done for cases. Because some findings, 

such as the increased risk for esophagus/stomach cancer, that are rarely reported in relation to 

RF exposure warrant further study, such a nested case-control approach is recommended. It 

could, albeit with some difficulties, even be successfully conducted retrospectively. 

 

G.  Hocking et al. 1996 

 

In an ecological study cancer incidence and mortality in nine municipalities of northern 

Sydney during 1972-90 three of which surround three TV towers were assessed. Population 

size in the three municipalities located within a radius of  approximately approx. 4 km around 

the TV towers amounts to 135,000 while population size in the six municipalities further 

away was 450,000. High-power transmission commenced in 1956, an additional 100 kW 

transmission started in 1965 and another 300 kV broadcast in 1980. Carrier frequencies varied 

between 63 and 533 MHz for TV broadcasting and was around 100 MHz for FM radio 

broadcast.  

 

During the study period 740 primary malignant brain tumors were diagnosed in adults and 64 

in children, 606 deaths due to brain cancer occurred in adults and 30 in children. While 

incidence of lymphatic leukemia was significantly higher in adults as well as in children 

inhabiting the three municipalities surrounding the transmission towers compared to the six 

districts further away, brain tumor incidence was not significantly elevated (RR=0.89 in 

adults and 1.10 in children).  

 

As has been stated above, distance from a transmitter is a poor proxy for exposure. Some 

measurements done in the study area obtained levels much lower than those calculated from 

the emission power and antenna gain. Several factors are responsible for this effect: multiple 

reflections, attenuation by buildings and vegetation, ground undulations, non-coincidence of 

maxima for the different signals as well as complex radiation characteristics of the broadcast 

antennae.  
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The exact location of the residence of cases could not be provided which reduces the potential 

of the study to relate incidences to measurements or calculations of RF fields.    Authors 

discussed some potential sources of bias such as migration and other exposures in the 

different regions. However, the most important disadvantage in such studies is that individual 

risk factors cannot be adjusted for. Both spurious positive as well as false negative results can 

be obtained by disregarding such individual variables. 

 

H.  Tynes et al. 1996 

 

In a historical cohort study 2,619 Norwegian female radio and telegraph operators certified 

between 1920 and 1980 were followed from 1961 through 1991 for entries in the cancer 

registry. During this period a total of 140 cases of cancer occurred which are about 20% more 

than expected from the Norwegian population. Among these were 5 brain tumor cases closely 

matching the number expected.  

 

An excess for breast cancer was found in this study that may be related to a combination of 

RF field exposure and night work. For other cancers including brain cancer numbers of cases 

were too low to address exposure risk.  

 

In this very thoroughly conducted study including a nested case-control approach for breast 

cancer, measurements at historical transmitters on ships, comparison with women at other 

jobs on sea, brain tumors were not distinctly higher than expected from the reference 

population. However, because of the limited cohort size a moderately increased risk cannot be 

excluded. 

 

I.  Dolk et al. 1997a 

 

This ecological small area study of cancer incidence 1974-86 near the Sutton Coldfield 

TV/radio transmitter at the northern edge of the city of Birmingham (England) was initiated 

by an unconfirmed report of a ‘cluster’ of leukemias and lymphomas. The transmitter came 

into service in 1949. Transmission at 1 megawatt (effective radiated power erp) began in 

1964, at 3 MW in 1969, and at 4 MW in 1982. The tower has a height of 240 m with no big 

hills in the surrounding area. The study area was defined by a circle of 10 km radius centered 

at the transmitter. The population within this area was about 408,000. All cancers, excluding 
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non-melanoma skin cancer, were considered focusing on hematopoietic and lymphatic 

cancers, brain and nervous system cancers, eye cancer, and male breast cancer. Childhood 

cancers were restricted to all cancers and all leukemias. 

 

In the study area a small but significant excess of all cancers was observed in adults. All 

leukemias and non-Hodgkin’s lymphoma were particularly elevated and incidence within 2 to 

4 km from the tower was about 30% higher than expected. Brain tumors were only analyzed 

for distances of within 2 km and the whole study area. Within 2 km an increased OER of 1.29 

for all brain tumors and 1.31 for malignant brain tumors was calculated based on 17 and 12 

cases, respectively.  

 

Also this investigation suffers from using distance from the tower as proxy for intensity of 

exposure. The wrong assumption that exposure decreases with increasing distance invalidates 

the statistical trend test applied. Measurements conducted in the study area revealed the poor 

relationship with distance but without consequences on the evaluation of the data. Overall the 

study is consistent with a moderately increased risk of hematopoietic and lymphatic cancers 

as well as some other cancers including brain cancer in the vicinity of high-power transmitters 

that, if related to RF fields, must be substantially higher for actual exposure. 

 

The Sutton Coldfield study was later continued (Cooper & Saunders 2001) to cover the period 

1987-94. The study revealed, compared to the earlier period, an almost unchanged increase of 

leukemias and non-Hodgkin’s lymphoma in adults and a slight increase in children. 

 

J.  Dolk et al. 1997b 

 

Because the Sutton Coldfield study was triggered by a cluster report and to provide 

independent test of hypotheses arising from that study, similar methods as applied in the 

previous study were used to study all high-power TV/radio transmitters (≥ 500 kW ERP) in 

Great Britain. In adults leukemias, bladder cancer, and skin melanoma, and in children, 

leukemias and brain tumors were studied. The study period was 1974-86 for England and 

somewhat shorter in Wales and Scotland.  

 

Although population density around transmitters was not always as high as in the case of the 

Sutton Coldfield tower, with an average population density of only about one third of that 
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around Sutton Coldfield tower within 2 km from the towers, in the most important range of 2 

to 4 km from the transmitters, where in many cases the maximum of radiated RF at ground 

level is reached, population density was similar. The study of all high-power transmitters 

essentially corroborated the findings for adult leukemias with an increase of incidence 

between 10 and 50% in the distance band of 2 to 4 km from the transmitters for the different 

transmitter types. Most of these increased incidences were statistically significant. 

For children only the incidence in the whole study area and within a distance of 2 km was 

calculated, which is unfortunate because the area close to the towers is sparsely populated and 

exposure is low. Number of brain tumors in children was slightly above expectation (244 

observed and 231 expected). 

 

In contrast to the interpretation by the authors, the study of all high power transmitters 

essentially replicated and supported the findings of an excess incidence of leukemias in 

relation to RF emission from TV/radio towers. Because the different heights and radiation 

characteristics of the transmitters result in different exposure patterns at ground level, the 

consistent increase in an area that is likely close to the maximum of exposure supports the 

hypothesis of an association. 

 

K.  Lagorio et al. 1997 

 

A mortality study of a cohort of 481 female plastic-ware workers employed between 1962-92 

in an Italian plant, 302 of which were engaged in the sealing department with exposure to RF 

fields, was reported by Lagorio et al. (1997). For RF-sealers 6,772 person-years of follow-up 

were accumulated and overall 9 deaths occurred, 6 of which were from malignant neoplasms 

(which are twice as many as expected from comparison with the local reference population). 

In the 31 years only one brain cancer occurred but only 0.1 were expected. 

 

Although the small size of the cohort and the potential exposure to other agents except RF 

fields such as solvents and vinyl chloride prohibit far reaching conclusion, much more of such 

thorough follow-up studies of exposed cohorts are needed to accumulate a body of evidence 

that can provide a useful basis for analysis. 

 

L. Finkelstein 1998 
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A preliminary study intended to form the basis for an assessment of cancer risks associated 

with handheld radar devices was conducted among a cohort of 20,601 male Ontario police 

officers. The retrospective follow up covered the period of 1964-95. By linkage with the 

cancer registry and mortality database 650 cases of cancer were detected.  

Testicular cancer and melanoma showed an excess incidence while overall cancer incidence 

was reduces as expected from a working cohort. Overall 16 cases of primary malignant brain 

tumors occurred which are slightly less than expected. 

 

The author had difficulties to build up a proper cohort because some departments refused to 

participate and others couldn’t spare the time to provide lists of all officers employed during 

the target period. Furthermore, while cancer sites of primary interest showed actually an 

increased incidence calling for a nested case-control approach, this study was never conducted 

due to lack of interest and support of the authorities.  

 

M. Morgan et al. 2000 

 

In an occupational cohort study all US Motorola employees with at least 6 months cumulative 

employment and at least 1 day of employment in the period 1976-96 were included. A total of 

195,775 workers contributing about 2,7 million person-years were available for the study. The 

cohort was compared to the SSA Master Mortality File and the National Death Index to 

obtain vital status. Death certificates were obtained by states’ vital statistics offices and 

company records. Exposure was assessed by expert opinion. Four RF exposure groups were 

defined with increasing level of estimated RF exposure. Only about 5% of the total cohort 

was classified as highly exposed and more than 70% with only background exposure. Neither 

private nor occupational mobile phone use was included. 

 

Overall 6,296 deaths occurred in the cohort in 21 years, which were only two thirds of deaths 

expected from mortality data of the four countries where most Motorola facilities are located. 

This reduction is too pronounced to be solely due to a healthy worker effect, other factors 

such as higher SES must have contributed, an interpretation supported by the substantial 

reduction of mortality from all life-style associated causes of death. Internal comparisons 

were done for mortality from brain cancer and hematopoietic and lymphatic cancers. Brain 

tumor mortality was slightly but insignificantly elevated in high and moderately high exposed 

workers as compared to those with no or low RF exposure.  
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This study of a huge cohort demonstrates the limitations of such a study design. The majority 

of the cohort (58%) consisted of retired or terminated workers that may or may not 

accumulate further RF exposure at other companies. Furthermore, it can be assumed that 

Motorola employees were among the first that used mobile phones at the workplace and 

privately. Neglecting mobile phone use may diminish the gradient of exposures between 

occupational groups studied. It would have been better to conduct nested case-control studies 

instead of using internal comparison that may be compromised by mobility bias, exposure 

misclassification and other sources of bias.  

 

N.  Groves et al. 2002 

 

In this military cohort study of 40,581 men followed from the year of graduation (1950-1954) 

from Navy technical schools through 1997, known as the Korean War Veterans study, groups 

of sailors with imputed difference in likelihood and amount of exposure to radar waves were 

compared with respect to mortality. The original study, with a follow up through 1974, 

(Robinette et al. 1980) reported increased risks of cancer of the hematopoietic and lymphatic 

system, of the lung and digestive system for the high exposure group but was handicapped by 

the lack of information on date of birth of the cohort members. For the extended follow up 

study many missing birth dates were found in the Veterans Administration Master Index. 

Nevertheless, birth date remained unknown for over 8% of the cohort. Based on expert 

opinion low RF exposure was assigned to job classifications of radioman, radarman, and 

aviation electrician’s mate, high exposure stratum included men with job classifications of 

electronics technician, aviation electronics technician, and fire control technician.  

By matching against the Social Security Administration’s Death Master File and the National 

Death Index 8,393 deceased subjects were identified through 1997. This number is 

substantially and significantly lower as expected from the male white US population. A 

healthy soldier effect may have been responsible for a lower mortality rate in the 1950ies but 

cannot explain the reduced mortality after 40 years. It has not been reported how long the 

cohort members stayed in service nor were life-style factors investigated; however, of more 

than 40% of the cohort no social security number could be obtained suggesting possible 

under-estimation of deaths.  
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Comparison of high- with low-exposure groups revealed significantly lower mortality from 

life-style associated causes of death (lung cancer, vascular diseases, diabetes mellitus, chronic 

obstructive pulmonary disease, liver cirrhosis) and significantly higher mortality from all 

leukemias and external causes of death. Increased mortality from leukemias was found in all 

high exposure groups but the most pronounced increase was observed in aviation electronics 

technicians. Brain cancer was less frequent in all high exposure groups compared to the low 

exposure category.  

 

The long period of follow up of this large cohort with start of follow up almost at the same 

time (1950-54) and at a time when exposure commenced is a great advantage of this 

investigation. However, there are a number of shortcomings: follow up was possibly 

incomplete by unknown social security number of a substantial proportion of the cohort; 

almost half of all deaths in the first 20 years were from external causes which could have 

obscured an effect of exposure; duration and intensity of exposure is unknown as well as 

potential exposure after leaving the Navy; classification into low and high exposure groups 

may introduce substantial misclassification. In the earlier report, inspection of Navy records 

for a sample from the high exposure group revealed that 24% had no exposure to radar waves 

at all.  

 

Concerning brain tumors, assuming an effect of radar exposure on growth rate, exposure 

during the Korean War and no exposure afterwards would be expected to result in only a 

slightly increased risk during a period of about 10 years after the war. Sailors were about 20 

to 25 years at that time. The fraction with an already initiated brain tumor during this age 

range is estimated to be less than 3 in 100,000 per year. Increase of growth rate even if 

substantial cannot result in an effect observable in a cohort of that size. If radar exposure 

increases the likelihood of malignant transformation this could increase the incidence during a 

time window of 10 to 20 years after the exposure period. Results of the Israeli study of x-ray 

treated tinea capitis (Sadetzki et al. 2005) suggest an even longer latency, however, risk 

decreased with increasing age at first exposure to x-rays. In addition, for malignant brain 

tumors there is a less pronounced relationship to ionizing radiation, and a higher risk was 

observed for meningioma that were not investigated in the Korean War Veterans study. 

Taking the data on ionizing radiation as a guiding principle for brain tumor initiation, radar 

exposure of sailors during their twenties might result in an increase of brain tumor mortality 

of about 10 to 15%, i.e. a maximum of 8 additional cases among 20,000. Considering the 
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biases of the study such a low risk is easily obscured. Hence neither tumor promotion nor 

initiation may be detected in this study even if there is an increased risk. Because of the 

mentioned limitation to a certain time window with possibly increased incidence due to 

exposures during service in the Korean War, it would have been instructive to compute 

Kaplan-Meier estimates for cumulative brain tumor mortality.  

 

N.  Berg et al. 2006 

 

In the German part of the Interphone study special attention was paid to occupational history 

and exposure to RF fields at workplaces. Incident meningioma (n=381, response rate 88%) 

and glioma cases (n=366, response rate 80%) aged 30-69 years were selected from four 

neurological clinics. Overall 1,535 (participation rate 63%) were randomly selected from 

population registries matched to the cases by sex, age, and region. Most cases were 

interviewed during their stay in hospitals, controls were interviewed at home. The interview 

contained several screening questions about occupations that are probably associated with RF 

exposure. If any of these screening questions were marked additional questions were asked 

about the job. Based on the literature and the evaluation by two industrial hygienists a 

classification into the following categories was performed: no RF exposure/not probably RF 

exposed/probably ER exposed/highly RF exposed. In total about 13% (299 cases and 

controls) were classified with at least possible RF exposure at the workplace. Analyses were 

adjusted for region, sex, age, SES, urban/rural residence, ionizing radiation exposure in the 

head/neck region. Mobile phone use was not considered as a confounder. 

While overall RF exposure at workplaces showed no increased odds-ratios, high exposure and 

especially for durations of 10 years or more resulted in elevated risk estimates that were, 

however, not significant. This result was similar for meningioma (OR=1.55 for high exposure 

for 10 years or more) and glioma (OR=1.39). 

 

The study tried to assess potential workplace exposure as precisely as possible in a personal 

interview, but still misclassification may have occurred especially in the probable and not 

probable categories while the high exposure group is likely to have had at least occasionally 

above average RF exposure. Odds ratios are in the range expected if exposure results in a 

substantial increase of growth rate. The small number of highly and long-term exposed cases 

(13 glioma and 6 meningioma) prohibit, however, far reaching conclusions. 
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IV.    Evaluation of  Evidence 

 

Due to the varying endpoints, methods used and populations included and the small number 

of studies a formal meta-analysis is not possible. The following figure shows the results 

detailed in Table 2 in an easily comprehendible way. 

Only few studies found clear indications of an association between RF exposure and brain 

tumors: one cohort study (Szmigielski 1996) and two case-control studies (Thomas et al. 

1987, Grayson 1996). None of the ecological studies demonstrated a tendency for an 

increased risk in the vicinity of RF transmitters.  

 

The discussion of the 15 published investigations revealed shortcomings in all studies. The 

greatest problem was encountered in the difficulties to reliably assess actual exposure. Even if 

we don’t know the relevant aspect of the exposure, if any, that is responsible for an increased 

risk, the type, duration and amount of exposure must be determined in order to use the studies 

in derivations of exposure standards. None of the studies included a useful quantitative 

indicator of intensity of exposure and even duration of exposure was rarely addressed. 

Concerning type of exposure only quite crude and broad categories were used. 
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Fig. 1: Estimates of relative risk (and 95% confidence intervals) of various RF exposures with 

respect to brain tumors (B+NS…brain and nervous system tumors, BT…brain tumors, 

M…menigioma, G…glioma; all others primary malignant brain tumors) 

 

In ecological studies, although for the studied population the exposure - despite considerable 

variations in time - is similar with respect to carrier frequency, modulation etc. it is quite 

different between various types of transmitters and hence results are not easily generalized. 

Considering the discussion of the different investigations and the fact that most biases 

encountered tend to dilute a potential risk, the compiled evidence from occupational cohorts is 

compatible with a moderately increased risk of RF exposure. Because of the lack of actual 

measurements but observing that exposure above guideline levels must have been a rare event 

a precautionary approach must result in a reduction of occupational exposure levels and 

organizational measures to avoid over-exposure. Although brain tumors are rare and the 

population attributable risk is low (assuming 13% of adults being occupationally exposed to 

RF fields as inferred from Berg et al. 2006, and assuming a relative risk of 1.3, about 4% of 

brain tumors can be attributed to RF exposure, i.e. 1,350 cases per years in the US). 

 

V. EVALUATION OF CANCER-RELATED ENDPOINTS (RF EXPOSURE) 

  

A. Assessment of Epidemiological Evidence by IEEE (C95.1 Revision) 

 

In their 2006 revision of the standard C95.1 IEEE has assessed the evidence from 

epidemiology for cancer related endpoints in chapter B.7.3. The assessment relies mainly on 

the reviews of Bergqvist (1997), Moulder et al. (1999) and Elwood (2003). These reviews and 

the IEEE overview share the same deficiencies. The main lines of argumentation would be 

impossible in any other field of environmental health and closely resemble the strategy used 

to dismiss a power frequency exposure/childhood leukemia association. In the following 

paragraphs the assessment by IEEE will be briefly discussed. 

Cluster studies, such as the one performed in Sutton Coldfield in the U.K. in response 
to a cluster of leukemia and lymphoma in adults living close to an RF broadcasting 
transmitter (Dolk et al. [R624]), are inherently difficult to interpret because of the 
impossibility of assessing all of the effects that chance variation might have 
contributed to the cluster. In the initial Sutton Coldfield study, the authors correctly 
concluded that no causal association could be drawn between the presence of the 
cluster and RF exposure from broadcasting towers (Dolk et al. [R625]) (Cooper et al. 
[R760]). (IEEE C 95.1 – 2005, p.75) 

 
First of all the Sutton Coldfield study was no cluster study but an ecological investigation. It 

is true that it was initiated by an unconfirmed report of a cluster of leukemia and lymphoma in 
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the vicinity of a broadcasting transmitter but it proceeded independently of this initial report 

and used registry data on the population living within a radius of 10 km around the 

transmitter. The statement that such studies are “inherently difficult to interpret because of the 

impossibility of assessing all of the effects that chance variation might have contributed to the 

cluster” is ridiculous not only because the study is no cluster study but because it is 

impossible for any study to “assess all effects that chance variation might have contributed” to 

the endpoint under investigation. It is not mentioned that the study was supplemented by a 

larger investigation of another 20 high-power transmitters in Great Britain. The difficulties of 

interpreting ecological studies is related to the fact that potential confounders can only be 

related to a segment of the population but not to individuals and that in general duration and 

intensity of exposure are not known for individual members of the different strata. While 

evidence for an effect on brain tumor incidence from both studies (Dolk et al. 1997a, 1997b) 

is weak, there is consistent evidence for a relation to hematopoietic cancers. This evidence has 

been overlooked by the authors due their wrong assumption about the relation between 

proximity to the transmitter and exposure.  

Inconsistent effects have been reported between residential proximity to other RF 
broadcast towers and adverse health endpoints (Bielski [R267]) (Maskarinec et al. 
[R579]) (Selvin and Merrill [R823]) (Michelozzi et al. [R858]) (Altpeter et al. [R977]) 
(Hallberg and Johansson [R995], [R996]) (Boscolo [R1012]), although many of these 
studies have significant flaws in their study design (making them difficult to interpret). 
(IEEE C 95.1 – 2005, p.75) 

 
Although it is not stated what these “inconsistent effects” might be, the statement is flawed in 

more than this respect. First of all the study by Bielski (1994) is an occupational investigation 

and not about residential proximity to RF broadcast towers, second three of these 

investigations (Selvin et al. 1992; Maskarinec et al. 1994; Michelozzi et al. 2002) included 

leukemia as an endpoint with indications of an increased incidence consistent with the studies 

from Great Britain (Dolk et al. 1997a, 1997b) and Australia (Hocking et al. 1996). Note that 

the study by Selvin et al. (1992), as stated previously, intended to compare different methods 

to assess the relationship between a point source and diseases and did erroneously assume a 

monotonous relationship between exposure and distance from a transmitter. Correcting this 

error there seems to be an increased probability of childhood leukemia in areas receiving the 

highest exposure from the Sutro tower. The other three investigations (Altpeter et al. 1995; 

Boscolo 2001; Hallberg & Johansson 2002) have nothing in common and hence cannot be 

inconsistent.    
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An increased incidence and mortality rate of childhood leukemia was reported in 
Australia with residential proximity to a specific RF broadcasting tower (Hocking et 
al. [R633]), although subsequent reanalysis of the data showed the results may have 
been influenced by other confounding variables within the study location (McKenzie et 
al. [R669]). (IEEE C 95.1 – 2005, p.75) 

 
This is another example how carelessly and sloppy the evidence is dealt with by the IEEE 

committee. The study of Hocking et al. (1996) was not about “proximity to a specific RF 

broadcasting tower” but about an area where three broadcasting towers are located. While 

there is always the possibility of confounders influencing results of an epidemiologic 

investigation, the ‘reanalysis’ of McKenzie et al. (1998) is seriously flawed and cannot 

support the cited statement. Hocking et al. (1996) combined the districts near the broadcasting 

area and those further away based on homogeneity analyses, while McKenzie et al. (1998) 

omitted one area with high incidence (and highest exposure) based on inspection of data. Any 

statistical analysis subsequent to such data picking is useless.  

While scattered reports of adverse health effects associated with occupational 
exposure to RF do exist (Demers et al. [R36]) (Kurt and Milham [R68]) (Pearce 
[R110]) (Speers et al. [R125]) (Thomas et al. [R128]) (Pearce et al. [R199], [R211]) 
(Hayes et al. [R207]) (Cantor et al. [R268]) (Davis and Mostofi [R563]) (Tynes et al. 
[R570], [R605]) (Grayson [R592]) (Richter et al. [R747]) (Holly et al. [R838]) these 
studies are largely inconsistent with each other in terms of the adverse health 
endpoints affected, and often show no clear dose response with RF exposure. Many 
have serious flaws in their study design, contain limited or insufficient RF exposure 
assessment, and are generally inconsistent with the absence of findings of an 
association from other occupational studies (Tornqvist et al. [R131]) (Coleman 
[R142]) (Lilienfeld et al. [R146]) (Robinette and Silverman [R147], [R148]) 
(Siekierzynski et al. [R151], [R152]) (Wright et al. [R213]) (Coleman et al. [R214]) 
(Muhm [R506]) (Czerski et al. [R542]) (Hill [R568]) (Lagorio et al. [R616]) (Kaplan 
et al. [R647]) (Morgan et al. [R701]) (Gallagher et al. [R822]) (Groves et al. [R853]) 
(Wiklund [R1013]) (Armstrong et al. [R1014]). (IEEE C 95.1 – 2005, p.75) 
 

Even allowing for restrictions of space for a discussion of the evidence, greater nonsense has 

not been produced so far in this field as condensed in these two sentences. Putting higgledy-

piggledy all sorts of studies together and then wondering about endpoints being inconsistent is 

an intellectual masterpiece. Of the occupational studies mentioned, three (Thomas et al. 1987; 

Speers et al. 1988; Grayson 1996) were about brain cancer, three about hematopoietic cancers 

(Pearce et al. 1985; Kurt & Milham 1988; Pearce 1988), two about testicular cancer (Hayes et 

al. 1990; Davis & Mostofi 1993), one about male (Demers et al. 1991) and two about female 

breast cancer (Cantor et al. 1995, Tynes et al. 1996) the latter including other cancers as well, 
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and one about intraocular melanoma (Holly et al. 1996). Three further studies (Pearce et al. 

1989; Tynes et al. 1992; Richter et al. 2000) investigated several or all malignancies. These 

studies differ not only in endpoints, study type (cohort, case-control, and cluster) but also in 

the methods of exposure assessment. Ignorance of the IEEE reviewers is underlined by the 

compilation of studies characterized by an “absence of findings of an association”. Not only 

did several of these studies indeed indicate an association of cancer risk with EMF exposure 

(Lilienfeld et al. 1978; Robinette et al. 1980; Tornqvist et al. 1991; Armstrong et al. 1994; 

Lagorio et al. 1997; Groves et al. 2002) but two were no epidemiologic studies at all 

(Siekierzynski et al. 1974; Czerski et al. 1974) and several were rather addressing ELF 

exposure (Tornqvist et al. 1991; Wright et al. 1982; Coleman et al. 1983; Gallagher et al. 

1991) and one (Wiklund 1981) was a cluster study in the telecommunication administration 

with uncertain type of exposure. Simply confronting studies finding an effect with others that 

were ‘negative’ is scientifically flawed and permits neither the conclusion that there is nor 

that there is no association between exposure and cancer risk. Even if all studies would have 

applied the same method, assessed the same endpoint and used the same exposure metric, 

studies reporting a significantly increased cancer risk are not outweighed by others that did 

not.        

While micronuclei formation in workers occupationally exposed from broadcast 
antennas has been reported (Garaj-Vrhovac [R757]) (Lalic et al. [R791]), these 
findings were not verified in a larger study of more than 40 Australian linemen 
exposed under similar conditions (Garson et al. [R186]). (IEEE C 95.1 – 2005, pp.75-
76) 

 
It goes without saying that also this statement is wrong. Garson et al. (1991) did not 

investigate micronuclei formation, their workers were considerably shorter exposed and it 

were not more than 40 linemen but 38 radio-lineman.  

No clear association could be established between occupational exposures of parents 
to a number of agents, including RF, and effects (neuroblastoma) in their offspring 
(Spitz and Johnson [R289]) (De Roos et al. [R798]). (IEEE C 95.1 – 2005, p.76) 

 
What is meant by ‘no clear association’ is obscure. Spitz and Johnson (1985) found a 

significantly increased risk for paternal occupational exposure to electromagnetic fields, and 

also De Roos et al. (2001) found several jobs with paternal as well as maternal exposure to 

EMFs associated with an elevated risk for neuroblastoma in their children. However, broad 

groupings of occupations with ELF, RF EMF, as well as ionizing radiation (!) exposure did 

not reveal an increased risk. 
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One study reported a slight excess in brain tumors associated with combined exposure 
to RF and other exposures associated with electrical or electronic jobs, but not with 
RF alone (Thomas et al. [R128]). A study of a Polish military cohort reported a 
substantial excess of total cancer and several cancer sub-types with jobs associated 
with RF exposure (Szmigielski [R578]), (Szmigielski and Kubacki [R982]), although 
questions have been raised about severe bias in the exposure assessment of this study 
(Elwood [R665]) (Bergqvist [R1015]) (Stewart [R1133]). Studies by Milham of U.S. 
amateur radio operators reported an excess in one of nine types of leukemia assessed 
(see [R101], [R102], [R209], [R215], and [R569]), but not for total tumors, total 
leukemia, or brain tumors, and potential confounding factors might have included 
exposure to soldering fumes, degreasing agents and over-representation of a 
particular social class. (IEEE C 95.1 – 2005, p.76) 
 

Again the evidence is incorrectly summarized for all cited investigations. Thomas et al. 

(1987) found a significantly elevated risk for brain tumors among all men exposed to RF 

fields and in particular in those exposed for 20 or more years. There were indications that this 

elevated risk is due to a subgroup with electrical or electronics jobs. The group of those 

exposed in other jobs is heterogeneous and may contain subjects with low or no exposure (e.g. 

some groups of welders) and therefore lack of an association could be due to a dilution effect 

from exposure misclassification. 

 

As mentioned previously criticism of the Polish military cohort study about exposure 

assessment is unfounded. Bergqvist (1997), Elwood (1999) and Stewart (2000) criticized that 

the military health board assessed a number of potential risk factors only for cancer cases. 

However, they overlooked that the study was a cohort and not a case-control study and that at 

no stage information about these factors entered the analysis and therefore couldn’t affect the 

results in any way.  

 

The study by Milham (1988a, 1988b) of radio amateur operators revealed a significantly 

increased standardized mortality ratio (SMR) for acute myeloid leukemia while the overall 

mortality and cancer mortality was significantly reduced relative to the country mortality 

rates. As mentioned previously this points to a ‘healthy worker’ effect as well as to an 

influence of life-style factors (mortality related to smoking and overweight were reduced). 

From the mentioned nine types of leukemia three with expectancies below one and no case 

observed couldn’t be assessed, from the six remaining types five had elevated SMRs with 

AML, the most frequent type in adults, being significantly elevated. 
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The last portion of the IEEE review of epidemiology studies is dedicated to mobile phone 

investigations that are discussed in another contribution. 

The following citation presents the IEEE summary in its full length: 

The epidemiological evidence to date does not show clear or consistent evidence to 
indicate a causal role of RF exposures in connection with human cancer or other 
disease endpoints. Many of the relevant studies, however, are weak in terms of their 
design, their lack of detailed exposure assessment, and have potential biases in the 
data. While the available results do not indicate a strong causal association, they 
cannot establish the absence of a hazard. They do indicate that for commonly 
encountered RF exposures, any health effects, if they exist, must be small. Even though 
epidemiological evidence cannot rule out a causal relationship, the overall weight-of-
evidence is consistent with the results of the long term animal studies showing no 
evidence of physiological, pathological or disease-specific effects. (IEEE C95.1 - 
2005; pp.76-77) 

 
As already pointed out earlier (Kundi 2006) there is an intolerable tendency in the past years 

that confronted with an undeniable epidemiologic evidence of an association between an 

agent and adverse health effects such as cancer, interested parties take their resort to the 

concept of causality based on the wrong assumption evidence to “indicate a causal role” is a 

lot more difficult to provide. Unprecedented, however, is the notion of “a strong causal 

association”. Whatever the meaning of this exceptional statement, the conclusion that, if 

health effects of commonly encountered RF exposures exist, they must be small, is wrong. To 

the contrary: considering the “lack of detailed exposure assessment” and other potential biases 

that predominantly lead to an underestimation of the risk, the evidence points to a quite 

substantial hazard. While the animal studies reviewed in another section of the IEEE standard 

document cannot be discussed here it should be underlined that they are generally insufficient 

to support either an increased risk or the lack of health relevant effects. Therefore they cannot 

be used in a weight-of-evidence statement as has been made by IEEE, that there is no 

evidence for adverse health effects of RF exposure.   
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VI.   CONCLUSIONS 

 

 

• Only few studies of long-term exposure to low levels of RF fields and brain tumors 

exist, all of which have methodological shortcomings including lack of quantitative exposure 

assessment. Given the crude exposure categories and the likelihood of a bias towards the null 

hypothesis of no association the body of evidence is consistent with a moderately elevated 

risk. 

 

• Occupational studies indicate that long term exposure at workplaces may be associated 

with an elevated brain tumor risk. 

 

• Although in some occupations and especially in military jobs current exposure 

guidelines may have sometimes been reached or exceeded, overall the evidence suggest that 

long-term exposure to levels generally lying below current guideline levels still carry the risk 

of increasing the incidence of brain tumors. 

 

• Although the population attributable risk is low (likely below 4%), still more than 

1,000 cases per year in the US can be attributed to RF exposure at workplaces alone. Due to 

the lack of conclusive studies of environmental RF exposure and brain tumors the potential of 

these exposures to increase the risk cannot be estimated. 

  

• Epidemiological studies as reviewed in the IEEE C95.1 revision (2006) are deficient 

to the extent that the entire analysis is professionally unsupportable.  IEEEs dismissal of 

epidemiological studies that link RF exposure to cancer endpoints should be disregarded, as 

well as any IEEE conclusions drawn from this flawed analysis of epidemiological studies. 
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Table 1: Synopsis of epidemiologic studies of or including brain tumors (1987 – 2006) 

Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Thomas et al. 

1987 

Northern New Jersey, 

Philadelphia, gulf coast 

of Lousiana/1979-

1981/Case-control  

Interviews with 

next-of-kin about 

occupational 

history – response 

rates: cases 74%, 

controls 63%; 

JEM (2 methods)  

Death certificates 

verified through 

review of hospital 

records 

age(m), (only 

males), year of 

death(m), area 

of residence(m), 

educational 

level, (lead, 

soldering 

fumes) 

435/386 Cases: deaths of brain 

tumor or CNS tumors 

of white males 

(age>30) from death 

certificates 

Controls: deaths from 

other causes than 

brain tumors, 

epilepsy, etc. 

Milham 1988 Washington, 

California/1979-

1984/Cohort  

Amateur radio 

operator license 

within 1/1979 to 

6/1984 

Mortality records age, (only 

males), race, 

year of death 

29 67829 operators, 

search of deaths in 

state registry through 

1984 

Selvin et al. 1992 San Francisco/1973-

1988/Spatial cluster  

Distance of center 

of census tract to 

microwave tower 

(Sutro tower) 

SEER records - 35 Search of cancer 

deaths of white 

individuals (age<21) 

Tynes et al. 1992 Norway/1961-1985 

/Occupational cohort  

Job title in 1960 

and 1970 

censuses and 

expert 

categorization 

Cancer registry age, (only 

males) 

119 overall, 6 

in subgroup 

with possible 

RF exposure 

Cohort of 37945 male 

workers identified 

that had jobs in 1960 

with possible EMF 

exposure. among 

these 3017 with 

possible RF exposure 

Grayson 1996 US Air Force/1970- Detailed job Screening of age(m), 230/920 Cohort of ~880000 



Brain Tumors and RF Effects 
 

                                                                                                         3/8 

Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

1989/Nested case-

control  

history and 

classification 

based on JEM 

(RF/MW 

exposure from 

frequent 

measurements) 

hospital discharge 

records 

race(m), 

military rank, 

(ELF and 

ionizing 

radiation 

exposure) 

US Air Force 

members with at least 

one completed year 

of service within the 

study period, no 

follow up after 

subjects left service 

Szmigielski 1996 Poland (military)/1971 

-1985/Occupational 

cohort 

Allocation to 

RF/MW exposure 

group based on 

service records, 

documented 

measurements of 

military safety 

groups 

Incident cases 

from central and 

regional military 

hospitals and 

military health 

departments 

age, (only 

males) 

~46 Annual number of 

~127800 military 

career personnel, 

~3720 RF/MW 

exposed per year 

Hocking et al. 

1996 

Sydney (Australia)/ 

1972-1990/Ecological 

Municipalities 

within ~4 km of 3 

TV broadcasting 

towers considered 

higher exposed as 

compared to 6 

further away 

Incident and death 

cases from cancer 

registry 

age, sex, 

calendar period 

740 (incident) 

606 (mortality) 

64 age<15 

(incident) 

30 age<15 

(mortality) 

Study population: 

inner area ~135000, 

outer area ~450000 

  

Tynes et al. 1996 Norway/1961-1991/ 

Occupational cohort  

Certified radio 

and telegraph 

Cancer registry age, (only 

females) 

5 2619 women certified 

as radio or telegraph 



Brain Tumors and RF Effects 
 

                                                                                                         4/8 

Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

operators 1920-

1980 (98% 

worked on 

merchant ships); 

spot 

measurements on 

ships with old-

fashioned 

equipment 

operators by 

Norwegian Telecom 

Dolk et al. 1997a Birmingham (GB)/ 

1974-1986/Ecological 

Living near a 

TV/FM radio 

transmitter 

(Sutton Coldfield) 

Cancer registry age, sex, 

calendar year, 

SES 

332 Population (age≥15) 

~408000 within 10 

km of the transmitter 

Dolk et al. 1997b GB/1974-1986/ 

Ecological 

Living near a 

high power (≥500 

kW erp) 

transmitter 

(overall 21) 

Cancer registry age, sex, 

calendar year, 

SES 

244 Population (age<15) 

within 10 km of one 

of 20 high power 

transmitters 

Lagorio et al. 

1997 

Italy/1962-1992/ 

Occupational cohort 

Working as RF 

heat-sealer 

operator 

Cancer deaths 

from registry 

age, (only 

females), 

calendar period, 

region 

1 302 women 

employed 1962-1992 

in a plastic-ware 

manufacturing plant 

as RF sealers 

Finkelstein 1998 Ontario (Canada)/ 

1964-1995/ 

Occupational cohort 

Working as a 

police officer 

(possible 

Cancer registry age, (only 

males), calendar 

year 

16 20601 male officers 

of Ontario Police 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

handheld radar 

exposure) 

Morgan et al. 

2000 

USA/1976-1996/ 

Occupational cohort 

Jobs classified 

according to work 

with RF emitting 

devices with 

different output 

power 

Death certificates 

from states’ 

statistics offices 

age, sex, period 

of hire 

51 All U.S. Motorola 

employees with at 

least 1 day 

employment 1976-

1996 (195775 

workers, 2,7 million 

person-years) 

Groves et al. 

2002 

USA/1950-1997/ 

Occupational cohort 

6 occupational 

groups 3 with 

assumed low 

radar exposure 

(radar-, radio 

operator, aviation 

electrician’s 

mate) and 3 with 

assumed high 

exposure 

(aviation 

electronics -, 

electronics -, fire 

control 

technician) 

Death certificate 

from a state vital 

statistics office or 

National Death 

Index Plus 

age at entry, 

(only males), 

attained age 

88 40581 Navy Korean 

War veterans 

graduated 1950-54 

from Navy technical 

schools; follow-up 

from graduation 

through 1997 

Berg et al. 2006 Germany/2000-2003/ 

Case-control 

JEM from 

occupational 

history collected 

in interview 

Histological 

verified cases of 

glioma and 

meningioma 

age(m), sex(m), 

region(m), SES, 

urban/rural, 

smoking, 

Glioma 

366/732 

Meningioma 

381/762 

All histological 

confirmed cases of 

glioma and 

meningioma from 4 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

ionizing rad. 

exposure 

neurosurgical clinics 

(age: 30-69) (part.rate 

84%); frequency 

matched controls 

from population 

registry (part.rate 

63%)  
SES…socio-economic status, JEM…job exposure matrix, erp…equivalent radiation power,  RF/MW…radio frequency/microwaves, CNS…central nervous system, ELF…extremely low frequency 
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Table 2: Synopsis of main results of brain tumor studies (1987 – 2006) 

Study Endpoint Exposure category Meas. Outcome [95% CI] 

Thomas et al. 1987 Brain tumor deaths (ICD not specified) Ever exposed to RF OR 1.6 [1.0 – 2.4] 

  Electrical/electronics job OR 2.3 [1.3 – 4.2] 

  Unexposed*   

  Ever exposed < 5 y OR 1.0 

                         5-19 y OR 2.3 

                         20+ y OR 2.0 

Milham 1988
 

Brain cancer deaths (ICD-8: 191) All  SMR 1.39 [0.93 – 2.00] 

  Novice
a 

SMR 0.34 

  Technician SMR 1.12 

  General SMR 1.75 

  Advanced SMR 1.74 

  Extra SMR 1.14 

Selvin et al. 1992 Brain cancer deaths (ICD-O: 191.2) > 3.5 km distance from tower*   

   3.5 km
b RR 1.16 [0.60 – 2.26] 

Tynes et al. 1992 Incident brain cancer (ICD-7: 193) All with possible EMF 

exposure 

SIR 1.09 [0.90 – 1.41] 

  Subgroup possible RF 

exposure
c 

SIR 0.49 [0.18 – 1.06] 

Grayson 1996 Incident brain cancer (ICD-9: 191) Never RF/MW exposed*   

  Ever exposed OR 1.39 [1.01 – 1.90] 

Szmigielski 1996 Incident nervous system & brain 

tumors 

RF/MW exposed OER 1.91 [1.08 – 3.47] 

Hocking et al. 1996 Brain cancer (ICD-9: 191) Outer area*   

  Inner area (incident, overall) RR 0.89 [0.71 – 1.11] 

  Inner area (mortality, overall) RR 0.82 [0.63 – 1.07] 

  Inner area (incident, age<15) RR 1.10 [0.59 – 2.06] 

  Inner area (mortality, age<15) RR 0.73 [0.26 – 2.10] 

Tynes et al. 1996 Incident brain cancer (ICD-7: 193) All SIR 1.0 [0.3 – 2.3] 

Dolk et al. 1997a Incident brain tumors (ICD-8/9: 191, 

192) 

0-2 km from transmitter OER 1.29 [0.80 – 2.06] 

  0-10 km from transmitter OER 1.04 [0.94 – 1.16] 
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Study Endpoint Exposure category Meas. Outcome [95% CI] 

Dolk et al. 1997b Incident brain tumors (ICD-8/9: 191, 

192) 

0-2 km from transmitter OER 0.62 [0.17 – 1.59] 

  0-10 km from transmitter OER 1.06 [0.93 – 1.20] 

Lagorio et al. 1997 Brain cancer deaths (ICD-9: 191) RF sealer operator OER 1 : 0.1 

Finkelstein 1998 Incident brain cancer (ICD-9: 191) All police officers SIR 0.84 [0.48 – 1.36] 

Morgan et al. 2000 Incident brain cancer (ICD-9: 191) No RF exposure*   

  Low
d 

RR 0.92 [0.43 – 1.77] 

  Moderate RR 1.18 [0.36 – 2.92] 

  High RR 1.07 [0.32 – 2.66] 

Groves et al. 2002 Brain cancer deaths (ICD-9: 191) Low radar exposure*   

  High radar exposure RR 0.65 [0.43 – 1.01] 

Berg et al. 2006 Incident glioma (ICD-O3: C71) No occup. RF/MW exposure*   

  Probably no exposure OR 0.84 [0.48 – 1.46] 

  Probable exposure OR 0.84 [0.46 – 1.56] 

  High exposure OR 1.22 [0.69 – 2.15] 

  No high exposure*   

  High exposure <10 y OR 1.11 [0.48 – 2.56] 

  High exposure ≥ 10 y OR 1.39 [0.67 – 2.88] 

 Incident meningioma (ICD-O3: C70.0) No occup. RF/MW exposure*   

  Probably no exposure OR 1.11 [0.57 – 2.15] 

  Probable exposure OR 1.01 [0.52 – 1.93] 

  High exposure OR 1.34 [0.61 – 2.96] 

  No high exposure*   

  High exposure <10 y OR 1.15 [0.37 – 3.48] 

  High exposure ≥ 10 y OR 1.55 [0.52 – 4.62] 
a
 From Milham 1988b, license classes as proxy for exposure duration 

b
 Based on the assumption that exposure is higher near the microwave tower 

c
 Computed based on Table 5 in Tynes et al. 1992 

d
 Classification according to power output of equipment used for longest period of employment 

OR…odds-ratio, SIR…standardized incidence  ratio, SMR…standardized mortality ratio, RR…relative risk (rate ratio), OER…observed/expected ratio 
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I.  INTRODUCTION 

 

In May 2011 the International Agency for Research on Cancer (IARC) at WHO categorised the 

radiofrequency electromagnetic fields (RF-EMF) from mobile phones, and from other devices 

that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e. a ‘possible’, human 

carcinogen (Baan et al., 2011, IARC, 2011). Nine years earlier IARC had also classified 

extremely low frequency (ELF) magnetic field as Group 2B carcinogen (IARC, 2002).  

 

The IARC decision on mobile phones was based mainly on case-control studies from the 

Hardell group in Sweden and the IARC Interphone study. Both provided supportive results on 

positive associations between two types of brain tumors; glioma and acoustic neuroma, and 

exposure to RF-EMF from wireless phones.  

 

The final IARC decision was confirmed by voting of 29 scientists (one not present during 

voting) at the meeting. A large majority of participants voted to classify RF-EMF radiation as 

‘possibly carcinogenic’ to humans, Group 2B.  The decision was also based on occupational 

studies. We present in this paper an updated review of evidence of the association between use 

of wireless phones and brain tumors including also papers published after the IARC evaluation.   

 

The Nordic countries were among the first countries in the world to widely adopt the wireless 

telecommunications technology. Analogue phones (NMT; Nordic Mobile Telephone System) 

were introduced in the early 1980s using both 450 and 900 Megahertz (MHz) frequencies. NMT 

450 was used in Sweden from 1981-2007, NMT 900 operated during 1986-2000.  

 

The digital system (GSM; Global System for Mobile Communication) using dual band, 900 and 

1800 MHz, started to operate in 1991 and dominates now the market. The third generation of 

mobile phones, 3G or UMTS (Universal Mobile Telecommunication System), using 1 900/2 100 

MHz RF fields has been introduced worldwide in recent years, in Sweden in 2003. Currently the 

fourth generation, 4G (Terrestrial 3G), operating at 800/2600 MHz and Trunked Radio 

Communication (TETRA 380-400 MHz) are being established in Europe. Nowadays mobile 

phones are used more than landline phones in Sweden 

(http://www.pts.se/upload/Rapporter/Tele/2011/sv-telemarknad-halvar-2011-pts-er-2011-

21.pdf). Worldwide, an estimate of 5.9 billion mobile phone subscriptions was reported at the 

http://www.pts.se/upload/Rapporter/Tele/2011/sv-telemarknad-halvar-2011-pts-er-2011-21.pdf
http://www.pts.se/upload/Rapporter/Tele/2011/sv-telemarknad-halvar-2011-pts-er-2011-21.pdf


   

end of 2011 by the International Telecommunication Union (ITU; http://www.itu.int/ITU-

D/ict/facts/2011/material/ICTFactsFigures2011.pdf).  

 

Desktop cordless phones (DECT) have been used in Sweden since 1988, first using analogue 

800-900 MHz RF fields, but since early 1990s using a digital 1900 MHz system. These cordless 

phones are becoming more common than traditional landlines. They emit RF-EMF radiation 

similar to that of mobile phones.  Thus when human health risks are evaluated it is also 

necessary to consider the use of cordless phones along with mobile phones. 

 

The real increase in use and exposure to radiation fields from wireless phones (mobile phones 

and cordless phones) in most countries has occurred since the end of the 1990s. The brain is the 

main target organ during use of the handheld phone (Cardis et al., 2008). Fear of an increased 

risk for brain tumors has dominated the debate during the last one or two decades. While RF-

EMFs do not have sufficient energy to break chemical bonds like ionising radiation, at least not 

directly, they can nevertheless have harmful effects on biological tissues. Plausible biological 

mechanisms for these effects include DNA damage, impairment of DNA repair mechanisms, 

and epigenetic changes to DNA (see also chapters by H. Lai (Genotoxicity) and I. Belyaev 

(Physical and Biological Mechanisms). 

 

Primary brain tumors (central nervous system; CNS) constitute of a heterogeneous group of 

neoplasms of different histological types depending on tissue of origin with different growth 

patterns, molecular markers, anatomical localisations, and age and gender distributions. The 

clinical appearance, treatment and prognosis are quite different depending on tumor type. 

 

There are few established risk factors for brain tumors besides ionising radiation (Preston Martin 

et al., 2006). Higher socio-economic status tends to be related to higher incidence and some rare 

inherited cancer syndromes account for a small fraction of tumors (Preston Martin et al., 2006). 

Familial aggregation of glioma has also been reported (Scheurer et al., 2010). 

 

We base this review primarily on the Hardell group papers and the WHO Interphone study 

(Interphone Study Group, 2010, 2011, Cardis et al., 2011). More discussion of the results and 

responses, agreements and disagreements of the findings for the Hardell group and Interphone 

studies can be found in Hardell et al., (2012, 2013). 

http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf


   

II.  MATERIALS AND METHODS 

 

The PubMed database (www.ncbi.nlm.nih.gov) was used for an up-dated search of published 

studies in this area using mobile/cellular/cordless telephone and brain tumour/neoplasm/acoustic 

neuroma/meningioma/glioma as searching terms. Personal knowledge of published studies was 

also used in order to get as up-to-date review as possible. 

 

 

III.  RESULTS 

 

Brain tumors overall  

 

Exposure to the radiation from the phones is generally higher in the temporal lobe, the part of 

the brain that is near to the ear (Cardis et al., 2008). For tumors located in the temporal, occipital 

or temporoparietal lobe areas of the brain an increased risk was found for ipsilateral exposure, 

that is the telephone was mostly used on the same side of the head as the tumor appeared, 

yielding OR = 2.42, 95 % CI = 0.97-6.05 (Hardell et al., 2001). This was the first study in the 

world that indicated an association between use of mobile phones and an increased risk for brain 

tumors. However, the results were based on low numbers of exposed subjects and different 

histopathological types of brain tumors so no firm conclusions could be drawn. Furthermore, 

this first study did not include use of cordless phones, see also Hardell et al., (1999). 

 

Glioma  

 

Glioma is the most common malignant brain tumor and represents about 60 % of all central 

nervous system tumors. The most common glioma subtype is astrocytoma. Astrocytic tumors 

are divided in two groups depending on the malignant potential; low-grade (WHO grades I-II) 

and high-grade (WHO grades III-IV). Low-grade astrocytoma has a relatively favourable 

prognosis, whereas survival is shorter for patients with high-grade glioma. Glioblastoma 

multiforme (WHO grade IV) accounts for 60-75 % of all astrocytoma.  

 

The Hardell group in Sweden studied the association between use of mobile and cordless phones 

and brain tumors diagnosed during 1997-2003. First, cases diagnosed during 1 January 1997 to 

30 June 2000 were included (Hardell et al., 2002, 2003). The next study period included 1 July 

2000 to 31 December 2003 (Hardell et al., 2005, 2006a). The methods were the same with the 

same inclusion criteria and an identical questionnaire in both studies. 

http://www.ncbi.nlm.nih.gov/


   

 

In short, both men and women aged 20-80 years at the time of diagnosis were included and all 

were alive at the time of inclusion in the study. They were reported from cancer registries and 

had all a brain tumor verified by histopathology. The Swedish Population Registry was used for 

identification of matched controls. In addition to other exposures use of wireless phones was 

carefully assessed by a self-administered questionnaire supplemented over the phone. The ear 

that had mostly been used during calls with mobile phone and/or cordless phone was assessed 

by separate questions. This information was checked during the supplementary phone calls and 

finally also by a separate letter with good agreement between these three methods.  

 

Use of the wireless phone was defined as ipsilateral (> 50 % of the time), or contralateral (< 50 

% of the time) in relation to tumor side. The matched control was assigned the same side as the 

tumor of the respective case. Use of hands free devices was also assessed as well as use in a car 

with external antenna. Such use was not included in the calculation of cumulative number of 

hours for life time use. Latency time was defined as the period from the year of first use until 

diagnosis (corresponding year for the matched control). 

 

Medical records including computer tomography (CT) and/or magnetic resonance imaging 

(MRI) were used to define tumor localisation in the brain. Further details can be found in the 

publications. 

 

As a response to a critique from Boice and McLaughlin (2002) that the exclusion of deceased 

cases was a source of bias in our studies we performed a study on the cases with a malignant 

brain tumor that had died before inclusion in the case-control studies 1997-2003. These cases 

represented patients with a poor prognosis, mostly with astrocytoma WHO grade IV 

(glioblastoma multiforme). Controls were selected from the Death Registry in Sweden. The 

study encompassed 464 cases and 464 controls that had died from a malignant disease and 463 

controls with other causes of death. Exposure was assessed by a questionnaire sent to the next of 

kin to each deceased case and control. The questionnaire was similar as in previous studies. This 

investigation confirmed the previous results of an association between use of mobile phones and 

malignant brain tumors (Hardell et al., 2010).  

 



   

We have previously published pooled analysis of malignant brain tumors diagnosed during the 

period 1997-2003 (Hardell et al., 2006b). These results were updated including also results for 

the deceased cases with malignant brain tumors (Hardell et al., 2011a, Carlberg, Hardell 2012). 

The results on use of wireless phones were based on 1,251 cases with malignant brain tumor 

(response rate 85%) and 2,438 controls (response rate 84%). Most cases had glioma (n=1,148) 

so we present in the following results for that type of tumor. Latency was divided in three 

categories, >1-5 years, >5-10 years, and > 10 years from first use of a wireless phone until 

diagnosis of glioma.  

 

Both use of mobile and cordless phone gave an increased risk overall, highest in the latency 

group >10 years, increasing further for ipsilateral use yielding for mobile phone OR = 2.9, 95 % 

CI = 1.8-4.7 and for cordless phone OR = 3.8, 95 % CI = 1.8-8.1 (Table 1). Highest ORs were 

found in the > 10 year latency group for total wireless phone use as well, OR = 2.1, 95 % CI = 

1.6-2.8.  

OR increased statistically significant for glioma for cumulative use of wireless phones per 100 

h; OR = 1.014, 95 % CI = 1.008-1.019, and per year of latency; OR = 1.056, 95 % CI = 1.037-

1.075 (Carlberg and Hardell, 2012). Separate calculations of mobile phone and cordless phone 

use yielded similar results with statistically significant increasing risks.  

 

The Interphone study was conducted at 16 research centres in 13 countries during varying time 

periods between 2000 and 2004 under the guidance of IARC. An increased risk for brain tumor 

was found in some separate country studies and decreased risk in other studies as we have 

discussed elsewhere (Hardell et al., 2008, 2009). After several years of delay the overall 

Interphone results were finally published in May 2010 (Interphone Study Group, 2010). 

 

In total 4,301 glioma cases were included in Interphone and the final results were based on 

2,708 participating cases (response rate 64 %, range by centre 36-92 %). In total 14,354 

potential controls were identified and interviews were completed with 7,658 (53 %, range 42-74 

%). The low participation rates in some centres may have created selection bias, see Hardell et 

al., (2008). 

 

Regular use of mobile phone in the past > 1 year gave for glioma OR = 0.81, 95 % CI = 0.70-

0.94 (Table 1). Subgroup analyses showed statistically significant increased risk in the highest 



   

exposure group, i.e. those with cumulative mobile phone use > 1,640 hours, OR = 1.40, 95 % CI 

= 1.03-1.89. The risk increased further for glioma in the temporal lobe yielding OR = 1.87, 95 % 

CI = 1.09-3.22. In the same exposure category, cumulative use > 1,640 hours and ipsilateral 

exposure produced OR = 1.96, 95 % CI = 1.22-3.16 in total (no data given for temporal lobe). 

 

In Appendix 2 (Interphone Study Group, 2010, available on the web) analysis was restricted to 

ever-regular users of mobile phones. Cumulative call time > 1,640 hours gave OR = 1.82, 95 % 

CI = 1.15-2.89 compared with use < 5 hours. Time since start of regular use (latency) > 10 years 

produced OR = 2.18, 95 % CI = 1.43-3.31; reference entity 1-1.9 years. 

 

The Interphone study group concluded: “However, biases and errors limit the strength of the 

conclusions we can draw from these analyses and prevent a causal interpretation.” In an 

editorial accompanying the Interphone results the main conclusion of the Interphone results was 

described as “both elegant and oracular…(which) tolerates diametrically opposite readings” 

(Saracci and Samet 2010). Several methodological reasons why the Interphone results were 

likely to have underestimated the risks were discussed including the short latency period since 

first exposures became widespread; less than 10 % of the Interphone cases had more than 10 

years exposure. “None of the today’s established carcinogens, including tobacco, could have 

been firmly identified as increasing risk in the first 10 years or so since first exposure”. 

 

Estimated RF-EMF dose in the tumor area from mobile phone use was associated with an 

increased risk of glioma in parts of the Interphone study (Cardis et al., 2011). OR increased with 

increasing total cumulative dose of specific energy (J/kg) absorbed at the estimated tumor centre 

for more than 7 years before diagnosis giving OR = 1.91, 95 % CI = 1.05-3.47 (p trend = 0.01) 

in the highest quintile of exposure. A similar study based on less clear methods was later 

published by another part of the Interphone study group (Larjavaara et al., 2011). The results 

seemed not to support the findings of Cardis et al., (2011). However, only 42 cases had used a 

mobile phone for more than 10 years and no analysis was made of the most exposed group with 

longest duration of use.   

 

Based on Hardell et al (2011b) and Interphone Study Group (2010) we made meta-analysis of 

glioma and use of mobile phones. Random-effects model was used based on test for 

heterogeneity in the overall (≥10 years and ≥1,640 hours) groups. We used published results in 



   

Interphone since we do not have access to their database. Our results were recalculated to these 

groups of exposure. The meta-analysis yielded for mobile phone use OR = 1.71, 95 % CI = 

1.04-2.81 for glioma in the temporal lobe in the > 10 years latency group. Ipsilateral mobile 

phone use > 1,640 h in total gave the highest risk, OR = 2.29, 95 % CI = 1.56-3.37 (Hardell et al 

2012). This meta-analysis strengthens a causal association between use of mobile phones and 

glioma.  

 

Meningioma 

 

Meningioma is the most common benign brain tumor. It develops from the pia and arachnoid 

that covers the central nervous system. Meningioma is an encapsulated and well-demarked 

tumor more common in women than in men. It is rarely malignant.  

 

A pooled analysis of benign brain tumors from the two case-control studies from the Hardell 

group as discussed above (Hardell et at., 2006c, Hardell and Carlberg, 2009) gave regarding 

meningioma and use of mobile phone OR = 1.1, 95 % CI = 0.9-1.3, and cordless phone OR = 

1.1, 95 % CI = 0.9-1.4 (Table 2). Using > 10 year latency period OR increased; for mobile 

phone to OR = 1.5, 95 % CI = 0.98-2.4, and for cordless phone to OR = 1.8, 95 % CI = 1.01-3.2. 

Ipsilateral mobile phone use in the > 10 years latency group yielded OR = 1.6, 95 % CI = 0.9-

2.9, and cordless phone OR = 3.0, 95 % CI = 1.3-7.2. These results were based on rather low 

numbers of exposed cases, however.  

 

Regular use of mobile phone produced in the Interphone study (2010) a statistically significant 

decreased risk for meningioma, OR = 0.79, 95 % CI = 0.68-0.91, Table 2. The risk increased 

somewhat with cumulative use > 1,640 hours and ipsilateral mobile phone use to OR = 1.45, 95 

% CI = 0.80-2.61. Analysis restricted to tumors in the temporal lobe or to the group of ever-

regular use did not change the overall pattern of no increased risk. 

 

We performed meta-analysis of meningioma for use of mobile phone based on results in the 

Hardell group and Interphone results similarly as for glioma. No statistically significant 

decreased or increased risk was found (Hardell et al., 2012). These results support the 

conclusion that up to latency > 10 years or cumulative use >1,640 hours there is no consistent 

pattern of an association between use of mobile phones and meningioma. 

 



   

Acoustic neuroma  

 

Acoustic neuroma or Vestibular Schwannoma is a slow growing benign tumor located in the 

eighth cranial nerve in the auditory canal. It grows gradually out into the cerebellopontine angle 

with potential compression of vital brain stem centres. Tinnitus and hearing problems are usual 

first symptoms of acoustic neuroma. The eighth cranial nerve is located close to the handheld 

wireless phone when used, so there is particular concern of an increased risk for neuroma 

development due to exposure to EMF-RF emissions during use of these devices. 

 

The pooled analysis of the Hardell group studies yielded regarding use of mobile phones for 

acoustic neuroma OR = 1.7, 95 % CI = 1.2-2.3 increasing to OR = 2.9, 95 % CI = 1.6-5.5 with > 

10 years latency period, Table 3. Ipsilateral use increased the risk further; in the > 10 years 

latency group to OR = 3.0, 95 % CI = 1.4-4.2 (Hardell and Carlberg, 2009). Cordless phone use 

gave OR = 1.5, 95 % CI = 1.04-2.0 increasing to OR = 1.7, 95 % CI =1.2-2.5 for ipsilateral use 

in the > 1 year latency group.  

 

In the Interphone study (2011) 1,121 (82 %) acoustic neuroma cases participated, range 70-100 

% by centre. Of the controls 7,658 (53 %) completed the interviews, range 35-74 % by centre. 

The final matched analysis (1:1 or 1:2) consisted of 1,105 cases and 2,145 controls. Overall no 

increased risk was found censoring exposure at one year or at 5 years before reference date, OR 

= 0.85, 95 % CI = 0.69-1.04 and OR = 0.95, 95 % CI = 0.77-1.17, respectively (Table 3). 

 

Cumulative number of hours of ipsilateral mobile phone use > 1,640 hours up to 1 year before 

reference date gave OR = 2.33, 95 % CI = 1.23-4.40 and contralateral use OR = 0.72, 95 % CI = 

0.34-1.53 for acoustic neuroma, see Table 3 (Interphone Study Group, 2011). For cumulative 

number of hours of ipsilateral mobile phone use > 1,640 hours up to 5 years before reference 

date OR = 3.53, 95 % CI = 1.59-7.82, and for contralateral use OR = 1.69, 95 % CI = 0.43-6.69 

were obtained. The risk increased further for cumulative ipsilateral use > 1,640 hours with start 

> 10 years before reference date to OR = 3.74, 95 % CI = 1.58-8.83. Contralateral use in that 

group yielded OR = 0.48, 95 % CI = 0.12-1.94, however based on only 4 exposed cases and 9 

exposed controls. Overall OR = 1.93, 95 % CI = 1.10-3.38 was obtained for long-term use with 

start > 10 years before reference date and cumulative call time > 1,640 hours.  

 



   

Similar analyses of the data as in Appendix 2 for glioma (see Interphone Study Group, 2010) 

yielded highest OR for acoustic neuroma in the shortest latency group, 2-4 years before 

reference date, OR = 1.41, 95 % CI = 0.82-2.40. Lower OR was calculated in the > 10 years 

group, OR = 1.08, 95 % CI = 0.58-2.04. Somewhat higher risk than in total, OR = 1.32, 95 % CI 

= 0.88-1.97, was found for cumulative mobile phone use > 1,640 hours; OR = 1.74, 95 % CI = 

0.90-3.36, in this analysis restricted to only regular users. No results were given for ipsilateral 

use. 

 

We performed meta-analysis of the results for use of mobile phone and the association with 

acoustic neuroma based on results by the Hardell group and Interphone study (Hardell et al 

2012). For the latency group > 10 years highest risk was obtained for ipsilateral use, OR = 1.81, 

95 % CI = 0.73-4.45. The risk increased further for cumulative use > 1,640 hours yielding OR = 

2.55, 95 % CI = 1.50-4.40 for ipsilateral use. The meta-analysis strengthens a causal association 

between use of mobile phones and acoustic neuroma.  

 

A case-case study was performed in Japan (Sato et al., 2011). The cases were identified during 

2000-2006 at 22 participating neurosurgery departments. The diagnosis was based on 

histopathology or CT/MRI imaging. Of 1,589 cases 816 (51 %) agreed to participate and 

answered a mailed questionnaire. The final analysis included 787 cases, Cases with ipsilateral 

use were regarded as exposed and those with contralateral use were assumed to be unexposed 

and were used as the reference category. Overall no increased risk was found. However, for 

average daily call duration > 20 minutes with reference date 1 year Risk Ratio (RR) = 2.74, 95 

% CI = 1.18-7.85 was found increasing to OR = 3.08, 95 % CI = 1.47-7.41 with reference date 5 

years before diagnosis (Table 3). Unfortunately no results were given for cumulative number of 

hours for use over the years. For cordless phones no increased risk was found but the analysis 

was not very informative.  

 

Risks to children and adolescents 

 

The developing brain is more sensitive to toxins (Kheifets et al., 2005) and it is still developing 

until about 20 years of age (Dosenbach et al., 2010). Children have smaller head and thinner 

skull bone than adults. Their brain tissue has also higher conductivity and these circumstances 

give higher absorption from RF-EMF than for adults (Cardis et al., 2008, Christ et al., 2010, 

Gandhi et al., 2012). Use of wireless phones is widespread among children and adolescents 



   

(Söderqvist et al., 2007, 2008). The greater absorption of RF energy per unit of time, the greater 

sensitivity of their brains, and their longer lifetimes with the risk to develop a brain tumor leaves 

children at a higher risk than adults from mobile phone radiation. 

 

We have published results regarding brain tumor risk for different age groups at the time of 

diagnosis (Hardell et al., 2004) or age at first use of wireless phones (Hardell and Carlberg, 

2009, Hardell et al., 2011a, 2012, 2013). Three age groups for first use of a wireless phone were 

used: <20 years, 20-49 years and 50-80 years. Highest risk for glioma was found for first use of 

mobile phone or cordless phone before the age of 20 years (Table 4). Thus, mobile phone use 

yielded for glioma OR = 3.1, 95 % CI = 1.4-6.7 and cordless phone OR 2.6, 95 % CI = 1.2-5.5.  

 

Also for acoustic neuroma the risk was highest in the youngest age group with OR = 5.0, 95 % 

CI = 1.5-16 for use of mobile phone. Only one case had first use of cordless phone before the 

age of 20, so no conclusions could be drawn for cordless phones. Regarding meningioma no 

clear pattern of age-dependent increased risk was seen.  

 

A multi-centre case-control study was conducted in Denmark, Sweden, Norway, and 

Switzerland, CEFALO (Aydin et al., 2011). It included children and adolescents aged 7–19 

years and has been commented elsewhere in detail since serious methodological problems exist 

in the study design and interpretation of the results (Söderqvist et al., 2011). In CEFALO a 

statistically non-significant increased risk for brain tumors among regular users (one call per 

week for at least 6 months) of mobile phones was found; OR = 1.36, 95 % CI = 0.92-2.02. This 

OR increased somewhat with cumulative duration of subscriptions and duration of calls (Aydin 

et al., 2011). No data for long-term use were given; the longest latency period was 5 years. 

Further support of a true association was found in the results based on operator-recorded use for 

62 cases and 101 controls, which for time since first subscription >2.8 years yielded a 

statistically significant OR of 2.15, 95 % CI = 1.07-4.29, with a statistically significant trend 

(p=0.001).  

 

Use of cordless phones was covered only in the first 3 years of use. No explanation was given 

for this most peculiar definition. Wireless phone use was not considered, that is use of both 

mobile phones and cordless phones as the relevant exposure category, as used by the Hardell 

group and adopted by IARC (Baan et al., 2011). Instead Aydin et al., (2011) included use of 



   

cordless phones in the ‘unexposed’ category when risk estimates were calculated for mobile 

phone use. Similarly, regarding use of cordless phones RF-EMF emissions from mobile phones 

were regarded as ‘no exposure’. Thus, an increased risk was potentially concealed. 

 

The authors summarised that they “did not observe that regular use of a mobile phone increased 

the risk for brain tumors.” An editorial in the same journal accompanied that conclusion by 

stating by that the study showed “no increased risk of brain tumors” (Boice and Tarone, 2011). 

This was echoed by a news release from the Karolinska Institute in Stockholm claiming that the 

results of no increased risk were ‘reassuring’ (Karolinska Institute, 2011). However the results 

indicate a moderately increased risk, in spite of low exposure, short latency period and 

limitations in study design and analyses. Certainly it cannot be used as reassuring evidence 

against an association, see Söderqvist et al., (2011). 

 

Danish cohort study on mobile phone subscribers 

 

An attempt to establish a cohort of mobile phone users was made in Denmark in co-operation 

between the Danish Cancer Society and the International Epidemiology Institute (IEI), 

Rockville, MD, USA. It was financed by grants from two Danish telecom operation companies 

(TeleDenmark Mobil and Sonafon), IEI, and the Danish Cancer Society. The source of money 

for IEI has not been disclosed.  

 

The Danish study on brain tumor risk among mobile phone subscribers has so far resulted in 

four publications (Johansen et al., 2001, Schüz et al., 2006, Frei et al., 2011, Schüz et al., 2011). 

It included subjects from January 1, 1982 until December 31, 1995 identified from the 

computerised files of the two Danish operating companies, TeleDenmark Mobil and Sonofon. A 

total of 723,421 subscribers were initially identified but the final cohort consisted of only 58 % 

of these subjects. Due to lack of names of individual users 200,507 corporate users were 

excluded.  

 

We have discussed elsewhere several shortcomings in the Danish cohort study such as exclusion 

of corporate users, no individual exposure data, users of cordless phones are included in the 

reference category, no control for use of mobile phones in the population after the establishment 

of the cohort, and no operator-verified data on years of subscription is available (Söderqvist et 

al., 2012). These limitations are likely to have led to an underestimate of any risk in this study. 



   

One would also expect considerable misclassification of mobile phone use both among 

subscribers and the reference population since no new subscribers were included in the exposed 

cohort after 1995.  

 

The IARC working group concluded that the methods used could have resulted in considerable 

misclassification in exposure assessment in the Danish cohort study on mobile phone 

subscribers (Baan et al., 2011). 

 

After the outcome of the IARC-evaluation was made public in June 2011 (Baan et al., 2011) two 

additional reports on the Danish cohort were published (Frei et al., 2011, Schüz et al., 2011). 

Both were new up-dates of the initial cohort and included more information on risk related to 

longer follow-up. One focused on acoustic neuroma (Schüz et al., 2011) while the other gave 

results both for all cancers and separately for glioma and meningioma (Frei et al., 2011). This 

time the number of the cohort was reduced to 358,403 (49.5 %) of the initially identified 

subscribers (n=723,421). The major additional exclusion (n=54,350) was due to record linkage 

with the Danish so-called CANULI cohort on socioeconomic factors (Dalton et al., 2008). 

 

The authors of the Danish study have themselves pointed out the main causes of considerable 

exposure misclassifications (Frei et al., 2011). While at least non-response and recall bias can be 

excluded the study has serious limitations related to exposure assessment (Söderqvist et al., 

2012). In fact, these limitations cloud the findings of the four reports to such an extent they are 

uninformative at best. At worst, they may be used in a seemingly solid argument against an 

increased risk; as reassuring results from a large nationwide cohort study. 

 

Brain tumor incidence 

 

It has been suggested that overall incidence data on brain tumors for countries show no 

increasing trends and may be used to disqualify the association between mobile phone use and 

brain tumors observed in the case-control studies (Aydin et al., 2011; Ahlbom, and Feychting, 

2011; Deltour et al., 2012; Little et al., 2012).  

 

However, by now several studies show increasing incidence of brain tumors. In Denmark a 

statistically significant increase in incidence rate per year for brain and central nervous system 



   

tumors (combined) was seen during 2000-2009; in men +2.7 %, 95 % CI = +1.1 to 4.3 % and in 

women +2.9 %, 95 % CI = +0.7 to 5.2 % (NORDCAN). Updated results for brain and central 

nervous system tumors have been released in Denmark. The age-standardized incidence of brain 

and central nervous system tumors increased with 40 % among men and 29 % among women 

during 2001-2010 (Sundhedsstyrelsen, 2010). A more recent news release based on the Danish 

Cancer Register stated that during the last 10 years there has been an increasing number of cases 

with the most malignant glioma type, glioblastoma multiforme (astrocytoma WHO grade IV), 

especially among men 

(http://www.cancer.dk/Nyheder/nyhedsartikler/2012kv4/Kraftig+stigning+i+hjernesvulster.htm)

.   

 

Little et al., (2012) studied the incidence rates of glioma during 1992-2008 in the United States 

and compared with ORs for glioma associated with mobile phone use in the 2010 Interphone 

publication (Interphone Study Group, 2010) and our pooled results published in 2011 (Hardell et 

al., 2011a). Since our results are discussed and questioned by Little et al their study needs to be 

reviewed in more detail. Our response to the journal (BMJ) was never accepted for publication 

in the journal and cannot be found via PubMed, only on the web 

(http://www.bmj.com/content/344/bmj.e1147/rr/578564). 

 

First, one important methodological issue that was not stated in the abstract or in the article 

[Figures 2-4] by Little et al., (2012), but can be found in the web appendix, is that observed rates 

were based on men aged 60-64 years from the Los Angeles SEER registry as the baseline 

category. These data were used to estimate rates in the entire dataset, men and women aged > 18 

years and all 12 SEER registries. Thereby numerous assumptions were made as pointed out by 

Kundi (2012) and Davis et al., (2012). 

 

Using only men, as Little et al., did, ignores the fact that women had less frequent use of mobile 

phones than men in our studies (Table 5). Overall 31 % of women reported such use versus 57 

% of men. Furthermore, use varies with age group with a large difference according to age, as 

we have explored in our publications (Hardell and Carlberg, 2009, Hardell et al., 2011a). Thus, 

the age group 60-64 year old men is not valid to use for these calculations.  

 

http://www.bmj.com/content/344/bmj.e1147/rr/578564
http://www.cancer.dk/Nyheder/nyhedsartikler/2012kv4/Kraftig+stigning+i+hjernesvulster.htm


   

There are several other points that may be added. Another example is that the results for 

anatomical localisations and tumor grade [in Table 5 in the article] by Little et al are based on 

numerous assumptions from SEER data, Interphone and the Hardell group studies. The authors 

seem not to have paid attention to the fact that the fraction of mobile phone users differs for 

gender and age, see Table 5.  

 

One interesting result that was not commented further by Little et al., (2012) was the finding of 

a statistically significant yearly increasing incidence of high-grade glioma (WHO grades III-IV) 

in the SEER data for 1992-2008, +0.64%, 95% CI = +0.33 to 0.95 %. On the contrary, the 

incidence of low-grade glioma (WHO grades I-II) decreased with –3.02 %, 95 % CI = –3.49 to –

2.54 %. Little et al., (2012) found also a statistically significant increasing yearly trend for 

glioma in the temporal lobe, +0.73 %, 95 % CI = +0.23 to 1.23 %.  

 

Zada et al., (2012) studied incidence trends of primary malignant brain tumors in the Los 

Angeles area during 1992-2006. The overall incidence of primary malignant brain tumors 

decreased over the time period with the exception of glioblastoma multiforme (astrocytoma 

WHO grade IV). The annual age adjusted incidence rate of that tumor type increased statistically 

significant in the frontal lobe with Annual Percentage Change (APC) +2.4 % to +3.0 % (p < 

0.001) and temporal lobe APC +1.3 % to +2.3 %  (p < 0.027) across all registries. In the 

California Cancer Registry the incidence of glioblastoma multiforme increased also in 

cerebellum, APC +11.9 % (p < 0.001). For lower grade astrocytoma decreases of annual age 

adjusted incidence rates were observed. The authors concluded that there was a real increase in 

the incidence of glioblastoma multiforme in frontal and temporal lobes and cerebellum, areas of 

the brain with the highest absorbed dose of RF-EMF emissions from handheld mobile phones 

(Cardis et al., 2008).  

 

Of interest is also the report by de Vocht et al., (2011) from England that showed for the time 

period 1998 to 2007 a statistically significant increasing incidence of brain tumors, the majority 

glioma, in the temporal lobe for men and women (p < 0.01), and frontal lobe for men (p < 0.01). 

The incidence increased also for women in the frontal lobe, although not statistically significant 

(p = 0.07). The incidence decreased in other parts of the brain.  

 



   

Deltour et al., (2012) reported increasing glioma incidence rates in Denmark, Finland, Norway, 

and Sweden for the time period 1979-2008. APC increased for men with +0.4 %, 95 % CI +0.1 

to 0.6 % and for women with +0.3 %, 95 % CI +0.1 to 0.5 %. A study from Australia for the 

time period 2000-2008 showed that APC for malignant brain tumors increased statistically 

significant +3.9 %, 95 % CI +2.4 to 5.4 % (Dobes et al., 2011). An increase was seen among 

both men and women. The APC for benign tumors increased with +1.7 %, 95 % CI -1.4 to +4.9 

%, thus not statistically significant. 

 

From urban Shanghai an increasing incidence of brain and nervous system tumors for the time 

period 1983-2007 was reported with APC +1.2 %, 95 % CI +0.4 to 1.9 % in males and APC 

+2.8 %, 95 % CI +2.1 to 3.4 % in females (Ding and Wang, 2011).  

 

We reported increasing incidence of astrocytoma WHO grades I-IV during 1970-2007 in 

Sweden. In the age group > 19 years the annual change was +2.16 %, 95 % CI +0.25 to 4.10 % 

during 2000-2007, for further details see Hardell and Carlberg (2009).    

 

 

IV.  DISCUSSION 

 

As pointed out by IARC (Baan et al., 2011) the most comprehensive results on use of wireless 

phones and the association with brain tumors come from the Hardell group in Sweden and the 

international Interphone study. Results for latency time of 10 years or more have been published 

from both study groups.  

 

Both were case-control studies and the cases were recruited during similar time periods, 1997-

2003 in the Hardell group and during 2000-2004 in Interphone, with somewhat different years in 

the varying study regions. There was no overlapping of cases in the Hardell group studies and 

the Swedish part of Interphone.  

 

The Hardell group included cases aged 20-80 years whereas eligible cases in Interphone were 

aged 30-59 years at diagnosis. One control subject matched on age, gender and geographical 

area (region) to each case in the Hardell group studies was drawn from the national population 

register. In Interphone one control was selected for each case from a ‘locally appropriate 

population-based sampling frame’. In Germany two controls were selected and the centres used 



   

individual matching or frequency matching. Regarding the Interphone study on acoustic 

neuroma some centres sampled special controls to the cases, other draw controls from the pool 

of controls in the glioma and meningioma studies, or used a mixture of both methods. In UK 

general practioners’ lists (Hepworth et al 2006) and in Japan random digit dialling were used 

(Takebayashi et al., 2006, 2008). Certainly the methods used in Interphone may introduce 

selection bias.  

 

Use of wireless phones and other exposures were carefully assessed by a self-administered 

questionnaire in the Hardell et al., studies. The information was supplemented over the phone by 

trained interviewers thereby using a structured protocol. This was done blinded as to case or 

control status. After the interviews all personal data like names and addresses were removed 

from the questionnaires so that only an id-number that did not disclose if it was a case or a 

control was shown. Thus, coding of the data for statistical analysis was performed without 

personal data of the individual. 

 

On the contrary information on past mobile phone use was collected during face-to-face 

interviews in Interphone obviously disclosing if it was a case or a control that was interviewed. 

These interviews were performed by a large number of interviewers at different participating 

centres. Experienced interviewers were defined as those who conducted at least 20 interviews. In 

fact, in the sensitivity analysis the risk increased for glioma for cumulative mobile phone use > 

1,640 hours from OR = 1.40, 95 % CI 1.03-1.89 to OR = 1.50, 95 % CI = 1.10-2.06 if 

‘experienced interviewers only’ were considered. The higher risk restricting analysis to 

‘experienced interviewers’ in Interphone indicates observational bias during assessment of 

exposure decreasing the risk. 

 

In the Hardell group studies few persons conducted all interviews of the 1,251 participating 

cases with malignant brain tumor, 1,254 cases with benign brain tumor, and 2,438 controls (total 

4,942; note one case had both a malignant and a benign brain tumor). All interviewers were first 

educated; they used a defined protocol and gained considerable experience as interviewers. In 

fact, they were obliged to carry out the interviews extensively to fulfil the quality in data 

assessment according to the structured protocol. It is obvious that the few interviewers in the 

Hardell group study must have been much more experienced than the diversity of interviewers 

in Interphone.  



   

 

In the personal interviews in Interphone a computer program that guided the interview with 

questions read by the interviewer from a laptop computer screen was used. The answers were 

entered directly into the computer by the interviewer. Using computer based face-to-face 

interviews may be a stressful situation for the patients. In fact patients scored significantly lower 

than controls due to recalling of words (aphasia), problems with writing and drawing due to 

paralysis in the Danish part of Interphone (Christensen et al., 2005). Furthermore, it has not been 

disclosed how the personal interviews were performed in sparsely populated areas, e.g. in the 

Northern Sweden. Did the interviewers travel long distances for interviews of controls in rural 

areas or were all controls living in the largest cities thereby creating selection bias? 

 

In the Hardell group studies the response rate was 85 % (n=1,251) for cases with malignant 

brain tumor, 88 % (n=1,254) for cases with benign brain tumor, and 84 % (n=2,438) for controls 

(Hardell et al., 2006c, Carlberg and Hardell, 2012). Lower response rates were obtained in 

Interphone study, 64 %, range by centre 36-92 %, (n=2,765) for glioma cases, 78 %, range 56-

92 %, (n=2,425) for meningioma cases, 82 %, range 70-100 % (n=1,121) for acoustic neuroma 

cases, and 53 %, range 42-74 %, (n=7,658) for controls (Interphone Study Group, 2010; 2011). 

These low response rates may have created the possibility of considerable selection bias 

(Hardell et al., 2008). Not responding controls in Interphone tended to be less frequent users of 

mobile phone than participating controls leading to underestimation of the risk.  

 

The Hardell group studies included subjects aged 20-80 years, versus 30-59 years in Interphone. 

We have shown that restricting the age group to 30-59 years and considering subjects that used a 

cordless phone as unexposed in the Hardell group studies reduced the ORs and produced results 

quite similar to Interphone (Hardell et al., 2011b). Latency time > 10 years for glioma in the 

temporal lobe yielded OR = 1.40, 95 % CI = 0.70-2.81 in the Hardell group studies and OR = 

1.36, 95 % CI = 0.88-2.11 in Interphone (latency > 10 years). Thus, excluding exposure to RF-

EMFs from cordless phones as in the Interphone study as well as excluding the younger and 

older subjects biased the ORs towards unity in Interphone, which likely dilutes the ability to see 

health risks.  

 

By placing a strong emphasis on incidence data an association between use of wireless phones 

and brain tumors has been challenged (Swerdlow et al., 2011). The authors considered that if the 



   

increased risks seen in case-control studies reflect a causal relationship, there would already be 

an increase in incidence of brain and central nervous system tumors. As discussed above by now 

increasing incidence rates, especially for certain brain tumor types and anatomical localisations 

of relevance, have been reported. The natural history of most glioma from earliest events to 

clinical manifestation is unknown, but most likely several decades. The exposure duration in 

most studies is thus incompatible with a tumor initiating effect. If the exposure on the other hand 

acts as a promoter, this would decrease latency time for already existing tumors, giving a 

temporary but not a continuous increase in incidence (Kundi, 2010).  

 

The first case in the world on worker’s compensation for a brain tumor after long-term use of 

wireless phones was the ruling 12 October 2012 by the Italian Supreme Court. A previous ruling 

that the Insurance Body for Work (INAIL) must grant compensation to a businessman who had 

used wireless phones for 12 years and developed a neurinoma in the brain was affirmed 

(http://www.applelettrosmog.it/public/news.php?id_news=44 ; www.microwavenews.com). He 

had used both mobile and cordless phones for five to six hours per day preferably on the same 

side as the tumour developed. The neurinoma was located in the trigeminal Gasser’s ganglion in 

the brain. This 5
th

 cranial nerve controls facial sensations and muscles. It is the same type of 

tumour as the acoustic neuroma in the 8
th

 cranial nerve located in the same area of the brain. No 

further appeal of the Supreme Court decision is possible. 

 

 

V.  CONCLUSIONS 

 

Based on epidemiological studies there is a consistent pattern of increased risk for glioma and 

acoustic neuroma associated with use of mobile phones and cordless phones. The evidence 

comes mainly from two study centres, the Hardell group in Sweden and the Interphone Study 

Group. No consistent pattern of an increased risk is seen for meningioma. A systematic bias in 

the studies that explains the results would also have been the case for meningioma. The different 

risk pattern for tumor type strengthens the findings regarding glioma and acoustic neuroma. 

Meta-analyses of the Hardell group and Interphone studies show an increased risk for glioma 

and acoustic neuroma. Supportive evidence comes also from anatomical localisation of the 

tumor to the most exposed area of the brain, cumulative exposure in hours and latency time that 

all add to the biological relevance of an increased risk. In addition risk calculations based on 

estimated absorbed dose give strength to the findings. 

http://www.microwavenews.com/
http://www.applelettrosmog.it/public/news.php?id_news=44


   

 

In summary: 

   

 There is reasonable basis to conclude that RF-EMFs are bioactive and have a potential to 

cause health impacts. 

 There is a consistent pattern of increased risk for glioma and acoustic neuroma 

associated with use of wireless phones (mobile phones and cordless phones) mainly 

based on results from case-control studies from the Hardell group and Interphone Final 

Study results. 

 Epidemiological evidence gives that RF-EMF should be classified as a human 

carcinogen. 

 Based on our own research and review of other evidence the existing FCC/IEE and 

ICNIRP public safety limits and reference levels are not adequate to protect public 

health. 

 New public health standards and limits are needed.  
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Table 1. Summary of studies on the use of wireless phones and glioma risk 

Study Years 

Study Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Hardell et al 
(2006b, 
2010, 
2011a) 
Carlberg, 
Hardell 
(2012) 
Sweden 

1997-2003 
Case-control 

20-80 
years 

Glioma (n=1148) 

123 OR 2.5 
(1.8-3.3) 

>10 year latency, mobile 
phone 

57 OR 2.9 
(1.8-4.7) 

>10 year latency, mobile 
phone, ipsilateral, only 
living 

50 OR 2.6 
(1.7-4.1) 

>10 year latency, mobile 

phone only 

45 OR 1.7 
(1.1-2.6) 

>10 year latency, cordless 
phone 

20 OR 3.8 
(1.8-8.1) 

>10 year latency, cordless 
phone, ipsilateral, only 
living 

9 OR 1.2 
(0.5-2.9) 

>10 year latency, cordless 

phone only; >5-10 year 
latency OR 1.9 (1.3-2.9; 
n=55) 

150 OR 2.1  
(1.6-2.8) 

>10 year latency, wireless 
phone (mobile and 
cordless phone) 

Astrocytoma, 
high grade 
(n=820) 

102 OR 3.0 
(2.1-4.2) 

>10 year latency, mobile 
phone 

47 OR 3.9 
(2.3-6.6) 

>10 year latency, mobile 
phone, ipsilateral, only 
living 

37 OR 2.8 
(1.7-4.6) 

>10 year latency, mobile 

phone only 

36 OR 2.0 
(1.2-3.2) 

>10 year latency, cordless 
phone 

15 OR 5.5 
(2.3-13) 

>10 year latency, cordless 
phone, ipsilateral, only 
living 

6 OR 0.9 
(0.3-2.6) 

>10 year latency, cordless 

phone only; >5-10 year 
latency OR 2.4 (1.6-3,7; 
n=44) 

121 OR 2.5 
(1.8-3.4) 

>10 year latency, wireless 
phone (mobile and 
cordless phone) 

  
 
 
 
 



   

Table 1. cont. 
 

Study Years 

Study Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Interphone 
Study 
Group 
(2010) 13 
countries; 
Australia, 
Canada, 
Denmark, 
Finland, 
France, UK, 
Germany, 
Israel, Italy, 
Japan, New 
Zealand, 
Norway, 
Sweden 

2000-2004,  
2-4 years 
depending on 
study region. 
Case-control 

30-59 
years 

Glioma (n=2708) 

1666 OR 0.81 
(0.70-0.94) 

Regular use of mobile 
phone in the past >1 year 

210 OR 1.40 
(1.03-1.89) 

Cumulative hours mobile 
phone > 1640 hours 

78 OR 1.87 
(1.09-3.22) 

Cumulative hours mobile 
phone > 1640 hours, 
tumors in temporal lobe 

100 OR 1.96 
(1.22-3.16) 

Cumulative hours mobile 
phone > 1640 hours, 
ipsilateral mobile phone 
use 

Interphone 
Study 
Group 
(2010) 
Appendix 2 

Glioma (n=1211) 

460 OR 1.68 
(1.16-2.41) 

Restricted to ever regular 

use time since start 2-4 
years; 1-1.9 years as 
reference entity 

468 OR 1.54 
(1.06-2.22) 

Restricted to ever regular 

use time since start 5-9 
years; 1-1.9 years as 
reference entity 

190 OR 2.18 
(1.43-3.31) 

Restricted to ever regular 

use time since start 10+ 
years; 1-1.9 years as 
reference entity 

160 OR 1.82 
(1.15-2.89) 

Restricted to ever regular 

use >1640 hours, <5 
hours as reference entity 

 
 
 
 
 

 

 

 
 
 

 

 



   

Table 2. Summary of studies on the use of wireless phones and meningioma risk 

 

Study Years 

Study 

Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Hardell et al 
(2006c), 
Hardell, 
Carlberg 
(2009) 
Sweden 

1997-2003 
Case-
control 

20-80 years Meningioma 
(n=916) 

347 OR 1.1  
(0.9-1.3) 

> 1 year latency, mobile 
phone use 

38 OR 1.5 
(0.98-2.4) 

> 10 years latency of 
mobile phone use 

18 OR 1.6  
(0.9-2.9) 

> 10 years latency of 
ipsilateral mobile phone 
use 

294 OR 1.1  
(0.9-1.4) 

> 1 year latency, 
cordless phone 

23 OR 1.8 
(1.01-3.2) 

> 10 years latency of 
cordless phone use 

11 OR 3.0 
(1.3-7.2) 

> 10 years latency of 
ipsilateral cordless 
phone use 

Interphone 
Study Group 
(2010) 13 
countries; 
Australia, 
Canada, 
Denmark, 
Finland, 
France, UK, 
Germany, 
Israel, Italy, 
Japan, New 
Zealand, 
Norway, 
Sweden 

2000-2004,  
2-4 years 
depending 
on study 
region. 
Case-
control 

30-59 years Meningioma 
(n=2409) 

1262 OR 0.79 
(0.68-0.91) 

Regular use of mobile 
phone in the past >1 
year 

130 OR 1.15 
(0.81-1.62) 

Cumulative hours 
mobile phone > 1640 
hours 

21 OR 0.94 
(0.31-2.86) 

Cumulative hours 
mobile phone > 1640 
hours, tumors in 
temporal lobe 

46 OR 1.45 
(0.80-2.61) 

Cumulative hours 
mobile phone > 1640 
hours, ipsilateral mobile 
phone use 

 

 

 

 

 

 

 

 

 



   

Table 2. cont. 

 
Study Years 

Study 

Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Interphone 
(2010) 
Appendix 2 

2000-2004,  
2-4 years 
depending 
on study 
region. 
Case-
control 

30-59 years Meningioma 
(n=842) 

362 OR 0.90 
(0.62-1.31) 

Restricted to ever 

regular use time since 
start 2-4 years; 1-1.9 
years as reference entity 

288 OR 0.75 
(0.51-1.10) 

Restricted to ever 

regular use time since 
start 5-9 years; 1-1.9 
years as reference entity 

76 OR 0.86 
(0.51-1.43) 

Restricted to ever 

regular use time since 
start 10+ years; 1-1.9 
years as reference entity 

96 OR 1.10 
(0.65-1.85) 

Restricted to ever 

regular use >1640 
hours, <5 hours as 
reference entity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



   

Table 3. Summary of studies on the use of wireless phones and acoustic neuroma risk 

 

Study Years 

Study Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Hardell et al 
(2006c), 
Hardell, 
Carlberg 
(2009) 
Sweden 

1997-2003 
Case-control 

20-80 
years 

Acoustic neuroma 
(n=243) 

130 OR 1.7 
(1.2-2.3) 

> 1 year latency of mobile 
phone use 

20 OR 2.9 
(1.6-5.5) 

> 10 years latency of 
mobile phone use 

13 OR 3.0 
(1.4-6.2) 

> 10 years of ipsilateral 
mobile phone use 

4 OR 1.3 
(0.4-3.8) 

> 10 years latency of 
cordless phone use 

3 OR 2.3 
(0.6-8.8) 

> 10 years latency of 
ipsilateral cordless phone 
use 

Sato et al 
(2011) 
Japan 

2000-2006 
Case-case All ages Acoustic neuroma 

(n=787) 

97 RR 1.08 
(0.93-1.28) 

Mobile phone, reference 
date 1 year before 
diagnosis, ipsilateral 

86 RR 1.14 
(0.96-1.40) 

Mobile phone, reference 
date 5 years before 
diagnosis, ipsilateral 

18 RR 2.74 
(1.18-7.85) 

Mobile phone, reference 
date 1 year before 
diagnosis, average daily 
call duration >20 min, 
ipsilateral 

28 RR 3.08 
(1.47-7.41) 

Mobile phone, reference 
date 5 years before 
diagnosis, average daily 
call duration >20 min, 
ipsilateral 

45 RR 0.93 
(0.79-1.14) 

Cordless phone, reference 
date 1 year before 
diagnosis, ipsilateral; 

mobile phone non-users 

125 RR 1.02 
(0.91-1.17) 

Cordless phone, reference 
date 5 years before 
diagnosis, ipsilateral; 

mobile phone non-users 
 
 
 
 
 
 
 
 



   

Table 3 cont. 

 
Study Years 

Study Type 

Age Tumour type No. of 

exposed 

cases 

Odds ratio, 

95 % 

confidence 

interval 

Comments 

Interphone 
Study Group 
(2011) 13 
countries; 
Australia, 
Canada, 
Denmark, 
Finland, 
France, UK, 
Germany, 
Israel, Italy, 
Japan, New 
Zealand, 
Norway, 
Sweden 

2000-2004,  
2-4 years 
depending 
on study 
region. 
Case-control 

30-59 
years 

Acoustic neuroma 
(n=1105) 

643 OR 0.85 
(0.69-1.04) 

Mobile phone regular use 
up to 1 year before 
reference date 

304 OR 0.95 
(0.77-1.17) 

Mobile phone regular use 
up to 5 years before 
reference date 

77 OR 1.32 
(0.88-1.97) 

Cumulative hours mobile 
phone > 1640 hours up to 1 
year before reference date 

36 OR 2.79 
(1.51-5.16) 

Cumulative hours mobile 
phone > 1640 hours up to 5 
years before reference date 

47 OR 2.33 
(1.23-4.40) 

Cumulative hours mobile 
phone > 1640 hours up to 1 
year before reference date; 
ipsilateral use 

27 OR 3.53 
(1.59-7.82) 

Cumulative hours mobile 
phone > 1640 hours up to 5 
years before reference date; 
ipsilateral use 

37 OR 1.93 
(1.10-3.38) 

Cumulative hours mobile 
phone > 1640 hours in the 
past start >10 years before 
reference date 

28 OR 3.74 
(1.58-8.83) 

Cumulative hours mobile 
phone > 1640 hours in the 
past start >10 years before 
reference date, ipsilateral 

225 OR 1.41 
(0.82-2.40) 

Restricted to ever regular 

use time since start 2-4 
years; 1-1.9 years as 
reference entity 

209 OR 1.38 
(0.80-2.39) 

Restricted to ever regular 

use time since start 5-9 
years; 1-1.9 years as 
reference entity 

64 OR 1.08 
(0.58-2.04) 

Restricted to ever regular 

use time since start 10+ 
years; 1-1.9 years as 
reference entity 

72 OR 1.74 
(0.90-3.36) 

Restricted to ever regular 

use >1640 hours, <5 hours 
as reference entity 



   

Table 4. Odds ratio (OR) and 95 % confidence interval (CI) for glioma, meningioma and 

acoustic neuroma in different age groups for first use of the wireless phone (Hardell et al 

2006b,c, 2010, 2011a). Numbers of exposed cases (Ca) and controls (Co) are given. 

Adjustment was made for age, gender, SEI-code, year of diagnosis. For glioma adjustment 

was also made for vital status.  

 

 Glioma  

(n=1148) 

Meningioma (n=916) Acoustic neuroma 

(n=243) 

 Ca/Co OR, CI Ca/Co OR, CI Ca/Co OR, CI 
Mobile phone 529/963 1.3 

(1.1-1.6) 
347/900 1.1 

(0.9-1.3) 
130/900 1.7 

(1.2-2.3) 
 < 20 years old 17/14 

 
3.1 

(1.4-6.7) 
5/14 

 
1.9 
(0.6-5.6) 

5/14 
 

5.0 

(1.5-16) 
 20-49 years old 315/581 

 
1.4 

(1.1-1.7) 
210/555 

 
1.3 
(0.99-1.6) 

86/555 
 

2.0 

(1.3-2.9) 
 ≥ 50 years old 197/368 

 
1.3 

(1.01-1.6) 
132/331 

 
1.0 
(0.8-1.3) 

39/331 
 

1.4 
(0.9-2.2) 

Cordless phone 402/762 1.3 

(1.1-1.6) 
294/701 1.1 

(0.9-1.4) 
96/701 1.5 

(1.04-2.0) 
 < 20 years old 16/16 

 
2.6 

(1.2-5.5) 
2/16 

 
0.5 
(0.1-2.2) 

1/16 
 

0.7 
(0.1-5.9) 

 20-49 years old 206/437 
 

1.2 
(0.9-1.5) 

167/416 
 

1.3 
(0.98-1.6) 

65/416 
 

1.7 

(1.1-2.5) 
 ≥ 50 years old 180/309 

 
1.4 

(1.1-1.7) 
125/269 

 
1.1 
(0.8-1.4) 

30/269 
 

1.3 
(0.8-2.1) 

  
   



   

Table 5. Gender and age distribution for use of mobile phones among cases aged 20-80 

years in the Hardell group studies. Glioma (n=1148). 

 

 Men Women Total 

Age, 
diagnosis 

No use/1 
year latency, 

mobile 
phones 

Use >1 year 
latency, 
mobile 
phones 

No use/1 
year latency, 

mobile 
phones 

Use >1 year 
latency, 
mobile 
phones 

No use/1 
year latency, 

mobile 
phones 

Use >1 year 
latency, 
mobile 
phones 

20-24 8 7 (47 %)   3 8 (73 %) 11 15 (58 %) 
25-29 10 15 (60 %)  5 10 (67 %) 15 25 (63 %) 
30-34 11 26 (70 %)  19 8 (30 %) 30 34 (53 %) 
35-39 9 23 (72 %)  8 13 (62 %) 17 36 (68 %) 
40-44 10 26 (72 %) 16 11 (41 %) 26 37 (59 %) 
45-49 14 37 (73 %) 12 16 (57 %) 26 53 (67 %) 
50-54 22 61 (73 %) 26 27 (51 %) 48 88 (65 %) 
55-59 35 65 (65 %) 59 20 (25 %) 94 85 (47 %) 
60-64 41 51 (55 %) 53 15 (22 %) 94 66 (41 %) 
65-69 55 46 (46 %) 57 13 (19 %) 112 59 (35 %) 
70-74 43 16 (27 %) 41 5 (11 %) 84 21 (20 %) 
75-80 27 8 (23 %) 35 2 (5 %) 62 10 (14 %) 

All 285 381 (57 %) 334 148 (31 %) 619 529 (46 %) 
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I. INTRODUCTION 

 

Primary central nervous system (CNS) tumors are a heterogeneous group of benign and 

malignant neoplasms localized in the brain, the spinal cord and their coverings. They differ in 

histological type, tissue of origin, anatomic site, growth pattern, age distribution, sex ratio, 

clinical appearance and many other features including molecular neuropathological markers. 

These features are not independent but little is known about the etiology of these tumors and 

the reason for the observed epidemiological patterns. The rapidly developing field of 

molecular neuropathology may provide clues to solve these problems in the future. 

Annually about 57,000 new cases of CNS tumors are diagnosed in the US. The age 

distribution has two peaks: incidence is about 4.7 cases per 100,000 per year below 10 years 

of age (which is mainly due to astrocytoma of the juvenile pilocytic type, malignant glioma, 

medulloblastoma and tumors originating from mesodermal and embryonic tissues), and after 

age 15 there is a steady increase of incidence with increasing age reaching its second peak of 

about 68 cases per 100,000 per year at an age around 75 to 80 years (CBTRUS, 2011). The 

burden of CNS cancers is distinctly higher in children making up around 20% of all childhood 

malignancies, while in adults less than 2% of all cancers are primary brain cancers.  

There are some rare cases of inherited cancer syndromes (e.g. von Hippel-Lindau disease, Li-

Fraumeni syndrome) that are related to brain tumor risk, accounting for a small fraction of 

cases. Except for therapeutic x-rays no environmental or lifestyle factor has unequivocally 

been established as risk factor for brain tumors. Non-whites seem to have lower risk, and 

incidence tends to be higher with increasing socio-economic status. However, because of the 

rather advanced age of 75-80 years of peak incidence, such differences may partly be due to 

differences in life-expectancy. During the last decades of the 20
th

 century some types of brain 

tumors show a steady increase of a few percent per year, which might to some extent be 

related to the introduction of computed tomography and other high-resolution neuroimaging 

methods. For most CNS tumors except meningioma and pituitary tumors the incidence is 

higher in males than females. 

Since the report of Wertheimer and Leeper in 1979 of an increased incidence of brain tumors 

in children living in homes with an expected higher exposure to power-frequency electric and 

magnetic fields, exposure to electromagnetic fields have become an area of interest in the 

study of factors affecting brain tumor risk.  
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This review focuses on the radio frequency (RF) part of the electromagnetic spectrum (3 kHz 

to 300 GHz). However, because the epidemiology of mobile phone use is covered in another 

section, it will be restricted to RF exposure conditions other than microwaves from mobile 

phone use. Exposure to ELF magnetic fields and childhood brain tumors is covered in the 

chapter about childhood cancers.  

 

II. MATERIAL AND METHODS 

 

Published articles of relevant studies restricted to the years 1987 to 2012 were obtained by 

searching PubMed using the following terms: 

(“radio frequency” OR electromagnetic* OR microwaves) AND (“brain cancer” OR brain 

tumor* OR “CNS cancer” OR CNS tumor* OR glioma* OR meningioma* OR neuroma*) 

NOT (“power frequency” OR “low frequency”) AND epidemiolog* 

The search resulted in 137 hits. After removing reviews and animal or in vitro studies as well 

as studies of mobile phone use, 10 articles remained. A hand search in review papers 

(Krewski et al. 2001; Elwood 2003; Ahlbom et al. 2004; Kundi et al. 2004) and reference lists 

of the articles found in PubMed revealed another 9 papers; hence the final body of evidence 

consists of 19 studies of exposure to various types of RF fields. 

Of the 19 studies 8 were cohort studies, 5 case-control studies and 6 of an ecological type. 

The majority of studies (11) were occupational studies, four studies investigated children, and 

one ecological study investigated both, adults and children. 

 

III. EPIDEMIOLOGICAL STUDIES OF RF FIELDS AND BRAIN 

TUMORS 

 

Table 10A-1 gives an overview of the 17 studies obtained by the literature search with respect 

to study type, assessment of exposure and outcome, confounders considered and matching 

variables used, number of cases included and selection method of study participants. Results 

are summarized in Table 10A-2. 
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Table 10A- 1: Synopsis of epidemiologic studies of or including brain tumors (1987 – 2007) 

 

Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Thomas et al. 

1987 

Northern New Jersey, 

Philadelphia, gulf coast 

of Lousiana/1979-

1981/Case-control  

Interviews with 

next-of-kin about 

occupational 

history – response 

rates: cases 74%, 

controls 63%; 

JEM (2 methods)  

Death certificates 

verified through 

review of hospital 

records 

age(m), (only 

males), year of 

death(m), area 

of residence(m), 

educational 

level, (lead, 

soldering 

fumes) 

435/386 Cases: deaths of brain 

tumor or CNS tumors 

of white males 

(age>30) from death 

certificates 

Controls: deaths from 

other causes than 

brain tumors, 

epilepsy, etc. 

Milham 1988 Washington, 

California/1979-

1984/Cohort  

Amateur radio 

operator license 

within 1/1979 to 

6/1984 

Mortality records age, (only 

males), race, 

year of death 

29 67829 operators, 

search of deaths in 

state registry through 

1984 

Selvin et al. 1992 San Francisco/1973-

1988/Spatial cluster  

Distance of center 

of census tract to 

microwave tower 

(Sutro tower) 

SEER records - 35 Search of cancer 

deaths of white 

individuals (age<21) 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Tynes et al. 1992 Norway/1961-1985 

/Occupational cohort  

Job title in 1960 

and 1970 

censuses and 

expert 

categorization 

Cancer registry age, (only 

males) 

119 overall, 6 

in subgroup 

with possible 

RF exposure 

Cohort of 37945 male 

workers identified 

that had jobs in 1960 

with possible EMF 

exposure. among 

these 3017 with 

possible RF exposure 

Grayson 1996 US Air Force/1970-

1989/Nested case-

control  

Detailed job 

history and 

classification 

based on JEM 

(RF/MW 

exposure from 

frequent 

measurements) 

Screening of 

hospital discharge 

records 

age(m), 

race(m), 

military rank, 

(ELF and 

ionizing 

radiation 

exposure) 

230/920 Cohort of ~880000 

US Air Force 

members with at least 

one completed year 

of service within the 

study period, no 

follow up after 

subjects left service 

Szmigielski 1996 Poland (military)/1971 

-1985/Occupational 

cohort 

Allocation to 

RF/MW exposure 

group based on 

service records, 

documented 

measurements of 

military safety 

groups 

Incident cases 

from central and 

regional military 

hospitals and 

military health 

departments 

age, (only 

males) 

~46 Annual number of 

~127800 military 

career personnel, 

~3720 RF/MW 

exposed per year 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Hocking et al. 

1996 

Sydney (Australia)/ 

1972-1990/Ecological 

Municipalities 

within ~4 km of 3 

TV broadcasting 

towers considered 

higher exposed as 

compared to 6 

further away 

Incident and death 

cases from cancer 

registry 

age, sex, 

calendar period 

740 (incident) 

606 (mortality) 

64 age<15 

(incident) 

30 age<15 

(mortality) 

Study population: 

inner area ~135000, 

outer area ~450000 

  

Tynes et al. 1996 Norway/1961-1991/ 

Occupational cohort  

Certified radio 

and telegraph 

operators 1920-

1980 (98% 

worked on 

merchant ships); 

spot 

measurements on 

ships with old-

fashioned 

equipment 

Cancer registry age, (only 

females) 

5 2619 women certified 

as radio or telegraph 

operators by 

Norwegian Telecom 

Dolk et al. 1997a Birmingham (GB)/ 

1974-1986/Ecological 

Living near a 

TV/FM radio 

transmitter 

(Sutton Coldfield) 

Cancer registry age, sex, 

calendar year, 

SES 

332 Population (age≥15) 

~408000 within 10 

km of the transmitter 

Dolk et al. 1997b GB/1974-1986/ Living near a Cancer registry age, sex, 244 Population (age<15) 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Ecological high power (≥500 

kW erp) 

transmitter 

(overall 21) 

calendar year, 

SES 

within 10 km of one 

of 20 high power 

transmitters 

Lagorio et al. 

1997 

Italy/1962-1992/ 

Occupational cohort 

Working as RF 

heat-sealer 

operator 

Cancer deaths 

from registry 

age, (only 

females), 

calendar period, 

region 

1 302 women 

employed 1962-1992 

in a plastic-ware 

manufacturing plant 

as RF sealers 

Finkelstein 1998 Ontario (Canada)/ 

1964-1995/ 

Occupational cohort 

Working as a 

police officer 

(possible 

handheld radar 

exposure) 

Cancer registry age, (only 

males), calendar 

year 

16 20601 male officers 

of Ontario Police 

Morgan et al. 

2000 

USA/1976-1996/ 

Occupational cohort 

Jobs classified 

according to work 

with RF emitting 

devices with 

different output 

power 

Death certificates 

from states’ 

statistics offices 

age, sex, period 

of hire 

51 All U.S. Motorola 

employees with at 

least 1 day 

employment 1976-

1996 (195775 

workers, 2,7 million 

person-years) 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Groves et al. 

2002 

USA/1950-1997/ 

Occupational cohort 

6 occupational 

groups 3 with 

assumed low 

radar exposure 

(radar-, radio 

operator, aviation 

electrician’s 

mate) and 3 with 

assumed high 

exposure 

(aviation 

electronics -, 

electronics -, fire 

control 

technician) 

Death certificate 

from a state vital 

statistics office or 

National Death 

Index Plus 

age at entry, 

(only males), 

attained age 

88 40581 Navy Korean 

War veterans 

graduated 1950-54 

from Navy technical 

schools; follow-up 

from graduation 

through 1997 

Ha et al. 2003 South Korea/1993-

1996/Ecological 

Area <2 km 

around 11 high 

power and 31 low 

power AM radio 

transmitter and 

control areas >2 

km from any 

transmitter 

Cancer cases from 

insurance records 

age, sex (direct 

and indirect 

standardization) 

45/not 

specified 

Census and residents 

registration data 1995 

(population size 

between 3152 and 

126523 at the 

different sites) 

Park et al. 2004 South Korea/1994-

1995/Ecological 

10 areas with a 

AM radio 

transmitter 

≥100kW 

Cancer deaths 

from death 

certificates 

age, sex (direct 

standardization) 

30/100 Census data from 

1990 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

Berg et al. 2006 Germany/2000-2003/ 

Case-control 

JEM from 

occupational 

history collected 

in interview 

Histological 

verified cases of 

glioma and 

meningioma 

age(m), sex(m), 

region(m), SES, 

urban/rural, 

smoking, 

ionizing rad. 

exposure 

Glioma 

366/732 

Meningioma 

381/762 

All histological 

confirmed cases of 

glioma and 

meningioma from 4 

neurosurgical clinics 

(age: 30-69) (part.rate 

84%); frequency 

matched controls 

from population 

registry (part.rate 

63%)  

Schüz et al. 2006 Germany/2000-2003/ 

Case-control 

Questionnaire 

about DECT 

cordless phone 

base station near 

the bed 

Histological 

verified cases of 

glioma and 

meningioma 

age(m), sex(m), 

region(m), SES, 

urban/rural, 

smoking, 

ionizing rad. 

exposure 

Glioma 

366/732 

Meningioma 

381/762 

All histological 

confirmed cases of 

glioma and 

meningioma from 4 

neurosurgical clinics 

(age: 30-69) (part.rate 

84%); frequency 

matched controls 

from population 

registry (part.rate 

63%)  

Ha et al. 2007 South Korea/1993-

1999/Case-control 

Distance from 31 

AM radio 

transmitters and 

49 radio antennas, 

measurements 

and calculation of 

Cases of brain 

cancer from 

verified by entry 

into cancer 

registry 

age(m), sex(m), 

year of 

diagnosis(m), 

SES, population 

density 

956/1020 All cases of brain 

cancer (age<15) from 

14 hospitals and 

matched hospital 

controls with 

respiratory diseases 
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Study Country/Period/Study 

Type 

Exposure 

assessment 

Outcome 

assessment 

Confounders 

considered & 

matching 

variables(m) 

Number of 

cases/controls 

or cases 

(cohort studies) 

Selection of 

participants 

total RF electric 

field strength 

SES…socio-economic status, JEM…job exposure matrix, erp…equivalent radiation power,  RF/MW…radio frequency/microwaves, CNS…central 

nervous system, ELF…extremely low frequency   
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Table 10A- 2: Synopsis of main results of brain tumor studies (1987 – 2007) 

 

Study Endpoint Exposure category Meas. Outcome [95% CI] 

Thomas et al. 1987 Brain tumor deaths (ICD not specified) Ever exposed to RF OR 1.6 [1.0 – 2.4] 

  Electrical/electronics job OR 2.3 [1.3 – 4.2] 

  Unexposed*   

  Ever exposed < 5 y OR 1.0 

                         5-19 y OR 2.3 

                         20+ y OR 2.0 

Milham 1988
 

Brain cancer deaths (ICD-8: 191) All  SMR 1.39 [0.93 – 2.00] 

  Novice
a 

SMR 0.34 

  Technician SMR 1.12 

  General SMR 1.75 

  Advanced SMR 1.74 

  Extra SMR 1.14 

Selvin et al. 1992 Brain cancer deaths (ICD-O: 191.2) > 3.5 km distance from tower*   

   3.5 km
b RR 1.16 [0.60 – 2.26] 

Tynes et al. 1992 Incident brain cancer (ICD-7: 193) All with possible EMF exposure SIR 1.09 [0.90 – 1.41] 

  Subgroup possible RF exposure
c 

SIR 0.49 [0.18 – 1.06] 

Grayson 1996 Incident brain cancer (ICD-9: 191) Never RF/MW exposed*   

  Ever exposed OR 1.39 [1.01 – 1.90] 

Szmigielski 1996 Incident nervous system & brain tumors RF/MW exposed OER 1.91 [1.08 – 3.47] 

Hocking et al. 1996 Brain cancer (ICD-9: 191) Outer area*   

  Inner area (incident, overall) RR 0.89 [0.71 – 1.11] 

  Inner area (mortality, overall) RR 0.82 [0.63 – 1.07] 

  Inner area (incident, age<15) RR 1.10 [0.59 – 2.06] 

  Inner area (mortality, age<15) RR 0.73 [0.26 – 2.10] 

Tynes et al. 1996 Incident brain cancer (ICD-7: 193) All SIR 1.0 [0.3 – 2.3] 

Dolk et al. 1997a Incident brain tumors (ICD-8/9: 191, 192) 0-2 km from transmitter OER 1.29 [0.80 – 2.06] 

  0-10 km from transmitter OER 1.04 [0.94 – 1.16] 

Dolk et al. 1997b Incident brain tumors (ICD-8/9: 191, 192) 0-2 km from transmitter OER 0.62 [0.17 – 1.59] 

  0-10 km from transmitter OER 1.06 [0.93 – 1.20] 
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Study Endpoint Exposure category Meas. Outcome [95% CI] 

Lagorio et al. 1997 Brain cancer deaths (ICD-9: 191) RF sealer operator OER 1 : 0.1 

Finkelstein 1998 Incident brain cancer (ICD-9: 191) All police officers SIR 0.84 [0.48 – 1.36] 

Morgan et al. 2000 Incident brain cancer (ICD-9: 191) No RF exposure*   

  Low
d 

RR 0.92 [0.43 – 1.77] 

  Moderate RR 1.18 [0.36 – 2.92] 

  High RR 1.07 [0.32 – 2.66] 

Groves et al. 2002 Brain cancer deaths (ICD-9: 191) Low radar exposure*   

  High radar exposure RR 0.65 [0.43 – 1.01] 

Ha et al. 2003 Brain cancer (ICD-10:C70-C72) Low power transmitters* 

High power transmitters 

 

SIR 

 

1.8 [0.8 – 11.1] 

  Control sites (>2 km)* 

100 kW transmitter  

250 kW 

500 kW 

1500 kW 

 

OER 

OER 

OER 

OER 

 

2.27 [1.30 – 3.67] 

0.86 [0.41 – 1.59] 

1.47 [0.84 – 2.38] 

2.19 [0.45 – 6.39] 

Park et al. 2004 Brain cancer deaths (ICD-10:C69-C72) Control area* 

≥100 kW transmitter 

 

SMR 

 

1.52 [0.61 – 3.75] 

Berg et al. 2006 Incident glioma (ICD-O3: C71) No occup. RF/MW exposure*   

  Probably no exposure OR 0.84 [0.48 – 1.46] 

  Probable exposure OR 0.84 [0.46 – 1.56] 

  High exposure OR 1.22 [0.69 – 2.15] 

  No high exposure*   

  High exposure <10 y OR 1.11 [0.48 – 2.56] 

  High exposure ≥ 10 y OR 1.39 [0.67 – 2.88] 

  

Incident meningioma (ICD-O3: C70.0) 

 

No occup. RF/MW exposure* 

 

 

  Probably no exposure OR 1.11 [0.57 – 2.15] 

  Probable exposure OR 1.01 [0.52 – 1.93] 

  High exposure OR 1.34 [0.61 – 2.96] 

  No high exposure*   

  High exposure <10 y OR 1.15 [0.37 – 3.48] 
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Study Endpoint Exposure category Meas. Outcome [95% CI] 

  High exposure ≥ 10 y OR 1.55 [0.52 – 4.62] 

Schüz et al. 2006 Incident glioma (ICD-O3: C71) DECT near bed OR  0.82 [0.29 – 2.33] 

 Incident meningioma (ICD-O3: C70.0) DECT near bed OR 0.83 [0.29 – 2.36] 

Ha et al. 2007 All brain cancers (ICD-10: C70-C72) ≤2 km 

2-4 km 

4-6 km 

6-8 km 

8-10 km 

10-20 km 

>20 km* 

OR 

OR 

OR 

OR 

OR 

OR 

 

1.42 [0.38 – 5.28] 

1.40 [0.77 – 2.56] 

1.02 [0.66 – 1.57] 

1.08 [0.73 – 1.59] 

0.94 [0.67 – 1.33] 

1.01 [0.77 – 1.34] 

* 
Reference 

a
 From Milham 1988b, license classes as proxy for exposure duration 

b
 Based on the assumption that exposure is higher near the microwave tower 

c
 Computed based on Table 5 in Tynes et al. 1992 

d
 Classification according to power output of equipment used for longest period of employment 

 

OR…odds-ratio, SIR…standardized incidence ratio, SMR…standardized mortality ratio, RR…relative risk (rate ratio), OER…observed/expected 

ratio 

 

 

 

 

 

 

 

 

 



 

In the following paragraphs each study is briefly discussed with respect to its strengths and 

weaknesses.  

 

A.  Thomas et al. 1987 

 

This case-control study included 435 deaths from brain or CNS tumors and 386 deaths from 

other causes as controls. Only adult males were included. Basis of data collection on 

occupational history were interviews with next-of-kin. Two methods of classification were 

used: one method assigned subjects to one of three categories (never exposed to RF/ever 

exposed to RF in an electrical or electronics job/ever exposed to RF but not in an electrical or 

electronics job), the other method consisted of a classification of each job by an industrial 

hygienist for presumed exposure to RF, soldering fumes, and lead. Both methods revealed 

significantly increased brain tumor risks of presumed occupational exposure to RF fields. 

This increase was due to an association in electronics and electrical jobs with astrocytic 

tumors as the predominant outcome associated with employment in these categories. In 

addition a significant increase of brain tumor risk was found for increasing duration of 

exposure.  

Although relying on information of next-of-kin could be a source of misclassification, one 

strength of this study is it’s relying on occupational history only that could be assumed to be 

more accurate than recall of exposure to various agents. The two methods of classification led 

to almost the same results, which lends support to the hypothesis that indeed exposure in 

electrical and electronics jobs is associated with an increased brain tumor risk. Due to the 

relationship between RF exposure and exposure to lead, solvents or soldering fumes in these 

jobs, it is not possible to separate effects of these exposures. Soldering fumes were never 

investigates with respect to brain tumors, and the hypothesis of an association with sinonasal 

cancer could not be corroborated so far. However, analysis of exposure to lead did not show a 

consistent relationship with brain tumor risk, indicating that it may not confound the 

relationship to RF exposure.  

Because this study is of dead cases only it is likely over-representing high grade brain tumors 

that may not all be associated with exposure leading to an effect dilution. Exposure 

misclassification, if it is non-differential in cases and controls, also reduces effect estimates.  
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A weakness of this study is obviously its lack of an exposure indicator other than the 

occupational category. While there is no doubt that in these jobs some exposure to RF fields 

occur quite regularly, specific characteristics including frequency ranges, modulation, 

intensity, duration and distance from the source vary considerably. Overall the study (as well 

as two earlier ones outside the search window: Lin et al. 1985 and Milham 1985) are 

sufficient to formulate a research hypothesis that can be tested in appropriately designed 

subsequent investigations. Unfortunately such studies have never been conducted. 

 

B. Milham 1988 

 

In this cohort study of 67,829 amateur radio operators holding a license within 1/1979 to 

6/1984 in Washington and California 29 brain tumor deaths occurred during the follow up 

period with 21 expected.  

It should be noted that there was a substantial and statistically significant lower number of 

overall deaths of less than three quarters of deaths expected from country mortality rates. This 

could be due to both a ‘healthy-worker’ effect as well as an effect of socio-economic status. In 

lieu of computing standardized mortality ratios (SMR) it may be instructive to look at the 

proportional mortality rates in the reference population and the amateur radio operators: 0.6% 

of all deaths are expected to be due to brain tumors in the reference population while in 

amateur radio operators twice as many occurred (1.2%). Whether or not this is an indication 

of an increased brain tumor risk due to RF exposure is difficult to assess. First of all, this 

study is a register only investigation and no information on intensity, frequency and duration 

of engagement in amateur radio operations were available. In a later analysis the author 

reported about results using a proxy of intensity and duration of exposure: the license class. In 

this analysis indications of an increase of risk with increasing license class were obtained. 

This study could and should have started off a thorough follow up of amateur radio operators 

and nested case-control studies to address the problem of potential confounders and to narrow 

down the conditions that may be responsible for the increased mortality from some cancers. It 

is another loose end that leaves us without a clear message.  

Although no risk factor for brain cancer except therapeutic ionizing radiation is known, there 

are some indications that risk increases with social class. The reason for this association is 

unknown but life-style factors may play a role as well as concomitant causes of death that 
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could lead to a spurious reduction of risk in lower class populations because brain tumors 

have their peak close to life-expectancy. 

 

C. Selvin et al. 1992 

 

The objective of this investigation was not primarily to study the relationship between RF 

exposure and childhood cancer but to address the general problem of how to assess disease 

incidence or mortality in relation to a point source. As the point source the Sutro Tower in 

San Francisco, the only microwaves emitting tower in this county, was chosen. A total of 35 

brain tumor deaths occurred among 50,686 white individuals at risk aged less than 21 in the 

years 1973-88 in an area of approximately 6 km around the tower. The exact location of 

residence could not be obtained; therefore each case was located in the center of the census 

tract. Different methods of analysis were applied to assess a potential relationship between 

distance from the tower and brain tumor risk. Relative risk for brain tumors for a distance less 

than 3.5 km from Sutro Tower compared to more than 3.5 km was 1.162 and not significant. 

The study explored different methodological procedures and has its merits from a 

methodological point of view. However, it starts from the wrong assumption: that distance to 

a point source is a valid proxy for intensity of exposure. Under ideal conditions of spherical 

symmetry of an emission this assumption holds, however, there are almost no real life 

situations where this assumption is sufficiently close to actual exposure levels. And it is 

definitely not true for the Sutro Tower. Radiations from the antennae are directed towards the 

horizon and the complex pattern of emission with main and side lobes results in a complex 

pattern of RF exposure at ground level. Furthermore, the area is topographically structured 

with hills and valleys such that areas of high exposure at the vertices are in close proximity to 

areas of low exposure at the shadowed side downhill.  

Studying the relationship between a point source and disease is not only difficult due to the 

complex relationship between distance and exposure but also because of the fact that humans 

are not stable at a certain location. This is of greater importance for adults who may commute 

from and to work places and have generally a greater radius of activity as compared to 

children. Nevertheless, there is at least a high chance of one long-lasting stable location that is 

when people sleep in their beds. Therefore, studies in relation to a point source should attempt 

to assess exposure at the location of the bed. Because the objective of this study was not the 
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assessment of a potential brain tumor risk but the application of methods for the analysis of 

spatial data, no attempts were made to measure actual exposure. 

 

 

D.  Tynes et al. 1992 

 

In this study information on occupations obtained for all Norwegians every 10 years was used 

to assess cancer incidence in relation to job titles. In 1960 37,945 male workers were 

identified that had jobs with possible exposure to EMFs and among these 3,017 with possible 

RF exposure. Overall 119 brain tumor cases were found in the cancer registry between 1961 

and 1985. Of these cases 6 occurred in the subgroup of workers possibly exposed to RF fields. 

The overall expected number of brain tumor cases was 109 and 12 for the subgroup with 

possible RF exposure. Hence no increased brain tumor risk could be detected.  

Despite the long follow-up period of 25 years with an accumulated number of 65,500 person-

years the expected number of brain tumors diagnosed during that period is too low to detect a 

moderately elevated risk of 1.3 to 1.5. Furthermore, the follow up period just reaches the 

median induction period for brain tumors as delineated from studies on ionizing radiation.  

As mentioned above, all studies solely relying on job titles lead to exposure misclassification 

and, therefore, to a dilution of risk. For dichotomous exposure variables (exposed/not 

exposed) and assuming a negligibly small proportion of exposed in the reference population 

standardized incidence ratios (SIR) are biased by a factor (1+f*(SIR-1))/SIR, if f denotes the 

fraction of true exposed and SIR is the true incidence ratio. Hence a true SIR of 2.0 is reduced 

to 1.5 if only 50% in the cohort are actually exposed. The observed SIR is further reduced if 

the assumption of a negligible fraction of exposed in the reference population is wrong. In this 

case the bias factor given above is further divided by (1+g*(SIR-1)), where g is the fraction of 

exposed in the general population. 

While a cohort study that is based on registry data has the advantage of independence from 

recall errors and selection bias due to possible differential participation, it has the 

disadvantage that registry data are generally insufficient to provide reliable exposure 

indicators. While no association with brain tumors could be detected in this study it revealed 

an increased number of leukemia cases in occupations with possible RF exposure. This could 
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be due to the higher incidence of leukemia or to a stronger association or to the shorter 

latency and various other reasons including chance. 

 

 

E.  Grayson 1996 

 

In this case-control study nested within approx. 880,000 US Air Force personnel with at least 

one years of service during the study period of 1970-89, primary malignant brain tumor cases 

were ascertained by screening hospital discharge records. The study included only males and 

only as long as they were on Air Force records. From 246 cases detected 16 were dropped due 

to incomplete or ambiguous data. For each case four controls were randomly selected from 

the case’s risk set matching it exactly on year of birth and race. Controls that were diagnosed 

with diseases possibly associated with EMF exposure (leukemia, breast cancer, malignant 

melanoma) were excluded from the risk set. 

A strength of this study is the detailed job history filed for each cohort member that could be 

used for retrospective exposure assessment. Furthermore, Air Force files contained detailed 

data from personal dosímetry on ionizing radiation for the different posts and jobs. 

Classification of RF field exposure was based on a detailed job exposure matrix with over 

1,950 entries, indexing 552 different job titles. One source of classification was recorded 

events of exposure to RF fields above 100 W/m
2
. By this method probable exposure was 

assigned if for a job such events were recorded in the past as well as for closely related jobs. 

Possible exposure was assigned for jobs that required operation of RF emitters but without 

recorded overexposure. 

A further strength is the thorough consideration of possible confounders. Because of the 

possible relationship of brain tumor risk with socio-economic status (SES), military rank was 

used as a surrogate for SES and included in the analysis as well as ionizing radiation exposure 

that has previously been shown to increase brain tumor risk. 

Exposure to RF fields was associated with a moderate but statistically significant increased 

risk of OR=1.39. Investigation of duration of exposure was compromised by an ambiguity 

introduced due to the calculation of an exposure score as the product of exposure and months. 

Nevertheless, for those ever exposed there were indications of an increasing risk with 

increasing exposure duration. 
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A weakness of this investigation is its incomplete follow-up of cohort members. This could 

have resulted in an underestimation of the true risk. Leaving the Air Force could have been 

more likely in those exposed to RF fields and developing a brain tumor. Some malignant 

brain tumors have early signs that could be incompatible with the Air Force job especially if 

involving operation of RF equipment (like seizures, severe headaches, somnolence, and 

absences). Because the study did not involve personal contact it is free of other selection 

biases.  

 

F. Szmigielski 1996 

 

In this military cohort study of cancer morbidity Polish military career personnel was assessed 

for occupational exposure to RF fields based on service records. The study covered 15 years 

(1971-85) including approx. 128,000 persons per year. Expected rates for 12 cancer types 

were calculated based on the age specific morbidity in those classified as unexposed. 

For brain and nervous system tumors a significantly increased ratio of observed to expected 

(OER=1.91) was found. Other malignancies with significantly increased incidence in exposed 

were: esophageal and stomach cancers, colorectal cancers, melanoma, and 

leukemia/lymphoma. 

A strength of this study is its substantial size with almost 2 million person-years of follow-up. 

Furthermore, accurate military records on job assignment and on exposure from military 

safety groups gives a unique opportunity to assess long-term exposure effects based on 

already filed data.  

Some important data are missing because they were military classified information that could 

not be provided in the paper. This includes the exact number of cases of the different 

neoplasms. However, from the data presented an observed number of brain tumors of about 

46 can be calculated.  

The study has been criticized for an alleged bias because more information on risk factors was 

available for cancer cases. It is true that military medical boards collected data for cases such 

as life style factors and exposure to possible carcinogens during service, however, at no stage 

this information entered the analysis. Therefore, this criticism is unfounded. Such information 

could have been utilized within a nested case-control study applying the same methods of 

assessment of risk factors for controls as has been done for cases. Because some findings, 
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such as the increased risk for esophagus/stomach cancer, that are rarely reported in relation to 

RF exposure warrant further study, such a nested case-control approach is recommended. It 

could, albeit with some difficulties, even be successfully conducted retrospectively. 

 

G.  Hocking et al. 1996 

 

In an ecological study cancer incidence and mortality in nine municipalities of northern 

Sydney during 1972-90 three of which surround three TV towers were assessed. Population 

size in the three municipalities located within a radius of approx. 4 km around the TV towers 

amounts to 135,000, while population size in the six municipalities further away was 450,000. 

High-power transmission commenced in 1956, an additional 100 kW transmission started in 

1965 and another 300 kV broadcast in 1980. Carrier frequencies varied between 63 and 533 

MHz for TV broadcasting and were around 100 MHz for FM radio broadcast.  

During the study period 740 primary malignant brain tumors were diagnosed in adults and 64 

in children, 606 deaths due to brain cancer occurred in adults and 30 in children. While 

incidence of lymphatic leukemia was significantly higher in adults as well as in children 

inhabiting the three municipalities surrounding the transmission towers compared to the six 

districts further away, brain tumor incidence was not significantly elevated (RR=0.89 in 

adults and 1.10 in children).  

As has been stated above, distance from a transmitter is a poor proxy for exposure. Some 

measurements done in the study area obtained levels much lower than those calculated from 

the power emitted and antenna gain. Several factors are responsible for this effect: multiple 

reflections, attenuation by buildings and vegetation, ground undulations, non-coincidence of 

maxima for the different signals as well as complex radiation characteristics of the broadcast 

antennae.  

The exact location of the residence of cases could not be provided which reduces the potential 

of the study to relate incidences to measurements or calculations of RF fields. Authors 

discussed some potential sources of bias such as migration and other exposures in the 

different regions. However, the most important disadvantage in such studies is that individual 

risk factors cannot be adjusted for. Both spurious positive as well as false negative results can 

be obtained by disregarding such individual variables. 
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H.  Tynes et al. 1996 

 

In a historical cohort study 2,619 Norwegian female radio and telegraph operators certified 

between 1920 and 1980 were followed from 1961 through 1991 for entries in the cancer 

registry. During this period a total of 140 cases of cancer occurred which are about 20% more 

than expected from the Norwegian population. Among these were 5 brain tumor cases closely 

matching the number expected.  

An excess for breast cancer was found in this study that may be related to a combination of 

RF field exposure and night work. For other cancers including brain cancer numbers of cases 

were too low to address exposure risk.  

In this very thoroughly conducted study including a nested case-control approach for breast 

cancer, measurements at historical transmitters on ships, comparison with women at other 

jobs on sea, brain tumors were not distinctly higher than expected from the reference 

population. However, because of the limited cohort size a moderately increased risk cannot be 

excluded. 

 

I.  Dolk et al. 1997a 

 

This ecological small area study of cancer incidence 1974-86 near the Sutton Coldfield 

TV/radio transmitter at the northern edge of the city of Birmingham (England) was initiated 

by an unconfirmed report of a ‘cluster’ of leukemias and lymphomas. The transmitter came 

into service in 1949. Transmission at 1 megawatt (effective radiated power erp) began in 

1964, at 3 MW in 1969, and at 4 MW in 1982. The tower has a height of 240 m with no big 

hills in the surrounding area. The study area was defined by a circle of 10 km radius centered 

at the transmitter. The population within this area was about 408,000. All cancers, excluding 

non-melanoma skin cancer, were considered focusing on hematopoietic and lymphatic 

cancers, brain and nervous system cancers, eye cancer, and male breast cancer. Childhood 

cancers were restricted to all cancers and all leukemias. 

In the study area a small but significant excess of all cancers was observed in adults. All 

leukemias and non-Hodgkin’s lymphoma were particularly elevated and incidence within 2 to 

4 km from the tower was about 30% higher than expected. Brain tumors were only analyzed 

for distances of within 2 km and the whole study area. Within 2 km an increased OER of 1.29 
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for all brain tumors and 1.31 for malignant brain tumors was calculated based on 17 and 12 

cases, respectively.  

 

Also this investigation suffers from using distance from the tower as proxy for intensity of 

exposure. The wrong assumption that exposure decreases with increasing distance invalidates 

the statistical trend test applied. Measurements conducted in the study area revealed the poor 

relationship with distance but without consequences on the evaluation of the data. Overall the 

study is consistent with a moderately increased risk of hematopoietic and lymphatic cancers 

as well as some other cancers including brain cancer in the vicinity of high-power transmitters 

that, if related to RF fields, must be substantially higher for actual exposure. 

The Sutton Coldfield study was later continued (Cooper & Saunders 2001) to cover the period 

1987-94. The study revealed, compared to the earlier period, an almost unchanged increase of 

leukemias and non-Hodgkin’s lymphoma in adults and a slight increase in children. 

 

J.  Dolk et al. 1997b 

 

Because the Sutton Coldfield study was triggered by a cluster report and to provide 

independent test of hypotheses arising from that study, similar methods as applied in the 

previous study were used to study all high-power TV/radio transmitters (≥ 500 kW ERP) in 

Great Britain. In adults leukemias, bladder cancer, and skin melanoma, and in children, 

leukemias and brain tumors were studied. The study period was 1974-86 for England and 

somewhat shorter in Wales and Scotland.  

Although population density around transmitters was not always as high as in the case of the 

Sutton Coldfield tower, with an average population density of only about one third of that 

around Sutton Coldfield tower within 2 km from the towers, in the most important range of 2 

to 4 km from the transmitters, where in many cases the maximum of radiated RF at ground 

level is reached, population density was similar. The study of all high-power transmitters 

essentially corroborated the findings for adult leukemias with an increase of incidence 

between 10 and 50% in the distance band of 2 to 4 km from the transmitters for the different 

transmitter types. Most of these increased incidences were statistically significant. 

For children only the incidence in the whole study area and within a distance of 2 km was 

calculated, which is unfortunate because the area close to the towers is sparsely populated and 
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exposure is low. Number of brain tumors in children was slightly above expectation (244 

observed and 231 expected). 

 

In contrast to the interpretation by the authors, the study of all high power transmitters 

essentially replicated and supported the findings of an excess incidence of leukemias in 

relation to RF emission from TV/radio towers. Because the different heights and radiation 

characteristics of the transmitters result in different exposure patterns at ground level, the 

consistent increase in an area that is likely close to the maximum of exposure supports the 

hypothesis of an association. 

 

K.  Lagorio et al. 1997 

 

A mortality study of a cohort of 481 female plastic-ware workers employed between 1962 and 

1992 in an Italian plant, 302 of which were engaged in the sealing department with exposure 

to RF fields, was reported by Lagorio et al. (1997). For RF-sealers 6,772 person-years of 

follow-up were accumulated and overall 9 deaths occurred, 6 of which were from malignant 

neoplasms (which are twice as many as expected from comparison with the local reference 

population). In the 31 years only one brain cancer occurred but only 0.1 were expected. 

Although the small size of the cohort and the potential exposure to other agents except RF 

fields such as solvents and vinyl chloride prohibit far reaching conclusion, much more of such 

thorough follow-up studies of exposed cohorts are needed to accumulate a body of evidence 

that can provide a useful basis for analysis. 

 

L. Finkelstein 1998 

 

A preliminary study intended to form the basis for an assessment of cancer risks associated 

with handheld radar devices was conducted among a cohort of 20,601 male Ontario police 

officers. The retrospective follow up covered the period of 1964-95. By linkage with the 

cancer registry and mortality database 650 cases of cancer were detected.  
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Testicular cancer and melanoma showed an excess incidence while overall cancer incidence 

was reduced as expected from a working cohort. Overall 16 cases of primary malignant brain 

tumors occurred which is slightly less than expected. 

The author had difficulties to build up a proper cohort because some departments refused to 

participate and others couldn’t spare the time to provide lists of all officers employed during 

the target period. Furthermore, while cancer sites of primary interest showed actually an 

increased incidence calling for a nested case-control approach, this study was never conducted 

due to lack of interest and support of the authorities.  

 

M. Morgan et al. 2000 

 

In an occupational cohort study all US Motorola employees with at least 6 months cumulative 

employment and at least 1 day of employment in the period 1976-96 were included. A total of 

195,775 workers contributing about 2.7 million person-years were available for the study. The 

cohort was compared to the SSA Master Mortality File and the National Death Index to 

obtain vital status. Death certificates were obtained by states’ vital statistics offices and 

company records. Exposure was assessed by expert opinion. Four RF exposure groups were 

defined with increasing level of estimated RF exposure. Only about 5% of the total cohort 

was classified as highly exposed and more than 70% with only background exposure. Neither 

private nor occupational mobile phone use was included. 

Overall 6,296 deaths occurred in the cohort in 21 years, which were only two thirds of deaths 

expected from mortality data of the four countries where most Motorola facilities are located. 

This reduction is too pronounced to be solely due to a healthy worker effect, other factors 

such as higher SES must have contributed, an interpretation supported by the substantial 

reduction of mortality from all life-style associated causes of death. Internal comparisons 

were done for mortality from brain cancer and hematopoietic and lymphatic cancers. Brain 

tumor mortality was slightly but insignificantly elevated in high and moderately high exposed 

workers as compared to those with no or low RF exposure.  

This study of a huge cohort demonstrates the limitations of such a study design. The majority 

of the cohort (58%) consisted of retired or terminated workers that may or may not have 

accumulated further RF exposure at other companies. Furthermore, it can be assumed that 

Motorola employees were among the first that used mobile phones at the workplace and 
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privately. Neglecting mobile phone use may diminish the gradient of exposures between 

occupational groups studied. It would have been better to conduct nested case-control studies 

instead of using internal comparison that may be compromised by mobility bias, exposure 

misclassification and use of mobile phones.  

 

N. Groves et al. 2002 

 

In this military cohort study of 40,581 men followed from the year of graduation (1950-1954) 

from Navy technical schools through 1997, known as the Korean War Veterans study, groups 

of sailors with imputed difference in likelihood and amount of exposure to radar waves were 

compared with respect to mortality. The original study, with a follow up through 1974, 

(Robinette et al. 1980) reported increased risks of cancer of the hematopoietic and lymphatic 

system, of the lung and digestive system for the high exposure group but was handicapped by 

the lack of information on date of birth of the cohort members. For the extended follow up 

study many missing birth dates were found in the Veterans Administration Master Index. 

Nevertheless, birth date remained unknown for over 8% of the cohort. Based on expert 

opinion low RF exposure was assigned to job classifications of radioman, radarman, and 

aviation electrician’s mate, high exposure stratum included men with job classifications of 

electronics technician, aviation electronics technician, and fire control technician.  

By matching against the Social Security Administration’s Death Master File and the National 

Death Index 8,393 deceased subjects were identified through 1997. This number is 

substantially and significantly lower as expected from the male white US population. A 

healthy soldier effect may have been responsible for a lower mortality rate in the 1950ies but 

cannot explain the reduced mortality after 40 years. It has not been reported how long the 

cohort members stayed in service nor were life-style factors investigated; however, of more 

than 40% of the cohort no social security number could be obtained suggesting possible 

under-estimation of deaths.  

Comparison of high- with low-exposure groups revealed significantly lower mortality from 

life-style associated causes of death (lung cancer, vascular diseases, diabetes mellitus, chronic 

obstructive pulmonary disease, and liver cirrhosis) and significantly higher mortality from all 

leukemias and external causes of death. Increased mortality from leukemias was found in all 

high exposure groups but the most pronounced increase was observed in aviation electronics 
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technicians. Brain cancer was less frequent in all high exposure groups compared to the low 

exposure category.  

The long period of follow up of this large cohort with start of follow up almost at the same 

time (1950-54) and at a time when exposure commenced is a great advantage of this 

investigation. However, there are a number of shortcomings: follow up was possibly 

incomplete by unknown social security number of a substantial proportion of the cohort; 

almost half of all deaths in the first 20 years were from external causes which could have 

obscured an effect of exposure; duration and intensity of exposure is unknown as well as 

potential exposure after leaving the Navy; classification into low and high exposure groups 

may introduce substantial misclassification. In the earlier report, inspection of Navy records 

for a sample from the high exposure group revealed that 24% had no exposure to radar waves 

at all.  

Concerning brain tumors, assuming an effect of radar exposure on tumor growth rate, 

exposure during the Korean War and no exposure afterwards would be expected to result in 

only a slightly increased risk during a period of about 10 years after the war. Sailors were 

about 20 to 25 years at that time. The fraction with an already initiated brain tumor during this 

age range is estimated to be less than 3 in 100,000 per year. Increase of growth rate even if 

substantial cannot result in an effect observable in a cohort of that size. If radar exposure 

increases the likelihood of malignant transformation this could increase the incidence during a 

time window of 10 to 30 years after the exposure period. Results of the Israeli study of x-ray 

treated tinea capitis (Sadetzki et al. 2005) suggests an average latency of about 20-25 years, 

however, risk decreased with increasing age at first exposure to x-rays. Taking the data on 

ionizing radiation as a guiding principle for brain tumor initiation, radar exposure of sailors 

during their twenties might result in an increase of brain tumor mortality of about 10 to 15%, 

i.e. a maximum of 8 additional cases among 20,000. Considering the biases of the study such 

a low risk is easily obscured. Hence neither tumor promotion nor initiation may be detected in 

this study even if there is an increased risk. Because of the mentioned limitation to a certain 

time window with possibly increased incidence due to exposures during service in the Korean 

War, it would have been instructive to compute Kaplan-Meier estimates for cumulative brain 

tumor mortality.  

 

O. Ha et al. 2002 
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An ecological study around 11 high-power AM transmitter study sites (i.e., 100–1,500-kW 

transmission power) and 31 low-power study sites (i.e., 50-kW transmission power) used for 

comparison was conducted in South Korea. For each high-power site four control areas 

located in the same or nearest adjacent province as the high-power site, but were at least 2 km 

from any of the transmitters were chosen. The incidence of cancer within a 2-km radius of 

each transmitter and within control districts was obtained from Korean medical-insurance 

records for the years 1993 through 1996. Standardized incidence ratios (SIR) of high- against 

low-power transmitter areas were reported and additionally observed-to-expected ratios for 

each type of transmitter. SIRs were elevated for all cancers and for female brain cancer. 

Concerning transmitter types, for all types except 250 kW elevated OER for brain cancer were 

obtained (statistically significant for 100 kW). 

Due to the complex relationship between distance and field strength, depending on antenna 

type and characteristics, height above ground level, orographic conditions, electrical 

properties of the terrain, etc., choice of a 2-km radius for all transmitters might not have been 

the best option to select the highest exposure group. 

 

P. Park et al. 2004 

 

A similar design as in the study of Ha et al. (2003) was applied in this ecological investigation 

of cancer deaths. Ten high-power (i.e., 100–1,500-kW transmission power) sites were chosen 

and compared to four control districts as in the previous study. Standardized mortality ratios 

were elevated for all single cancer sites but significant only for total cancer deaths. For brain 

cancer the ratio was 1.52 and statistically not significant.   

The same criticism as for the study of Ha et al. (2003) applies to this study. Both studies share 

the limitations inherent in the ecological study design. 

. 

Q.  Berg et al. 2006 

 

In the German part of the Interphone study special attention was paid to occupational history 

and exposure to RF fields at workplaces. Incident meningioma (n=381, response rate 88%) 

and glioma cases (n=366, response rate 80%) aged 30-69 years were selected from four 
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neurological clinics. Overall 1,535 (participation rate 63%) were randomly selected from 

population registries matched to the cases by sex, age, and region. Most cases were 

interviewed during their stay in hospitals, controls were interviewed at home. The interview 

contained several screening questions about occupations that are probably associated with RF 

exposure. If any of these screening questions were marked additional questions were asked 

about the job. Based on the literature and the evaluation by two industrial hygienists a 

classification into the following categories was performed: no RF exposure/not probably RF 

exposed/probably RF exposed/highly RF exposed. In total about 13% (299 cases and 

controls) were classified with at least possible RF exposure at the workplace. Analyses were 

adjusted for region, sex, age, SES, urban/rural residence, ionizing radiation exposure in the 

head/neck region. Mobile phone use was not considered as a confounder. 

While overall RF exposure at workplaces showed no increased odds-ratios, high exposure and 

especially for durations of 10 years or more resulted in elevated risk estimates that were, 

however, not significant. This result was similar for meningioma (OR=1.55 for high exposure 

for 10 years or more) and glioma (OR=1.39). 

The study tried to assess potential workplace exposure as precisely as possible in a personal 

interview, but still misclassification may have occurred especially in the probable and not 

probable categories while the high exposure group is likely to have had at least occasionally 

above average RF exposure. Odds ratios are in the range expected if exposure results in a 

substantial increase of growth rate. The small number of highly and long-term exposed cases 

(13 glioma and 6 meningioma) prohibit, however, far reaching conclusions. 

 

R. Schüz et al. 2006 

 

In the same study as mentioned above also exposure to emissions from DECT (Digital 

Enhanced Cordless Telecommunications) base stations near the bed were analyzed. Both, for 

glioma and meningioma, not significantly decreased odds ratio were reported. There was also 

no increasing risk observed with duration of exposure to DECT cordless phone base stations. 

The study was limited due to the small number of exposed subjects and the short exposure 

duration. It is unlikely that after these short exposures periods an increased risk can be 

observed. 
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S. Hu et al. 2007 

 

The study from South Korea that was a major improvement in investigating the possible 

association between RF EMF exposure and cancer risk applied not only instead of an 

ecological approach the case-control paradigm but also used an interesting method to estimate 

individual exposure. This method seems a reasonable compromise between effort and 

precision. The study included leukemia and brain cancer patients under age 15 years and 

controls with respiratory illnesses matched to cases on age, sex, and year of diagnosis (1993–

1999). All were selected from 14 South Korean hospitals using the South Korean Medical 

Insurance Data System. Residential addresses were obtained from medical records so that no 

direct contact with the participants was necessary. Authors developed an exposure prediction 

program incorporating a geographic information system that was modified by the results of 

actual measurements carried out systematically at defined locations and during driving along 

specific trajectories. Furthermore, electrical characteristics of the environment were 

considered. This method was used to estimate RF EMF exposure from 31 AM radio 

transmitters with a power of 20 kW or more. A total of 1,928 leukemia patients, 956 brain 

cancer patients, and 3,082 controls were included.  

A significantly increased odds ratio was obtained for childhood leukemia at a distance of 2 

km or less from the transmitters relative to a distance of >20 km. In response to a critical 

comment by Schüz et al. (2008) authors recalculated the risk estimates for total and peak RF 

EMF exposure (Hu et al. 2008) and reported for the highest quartile of peak RF EMF 

exposure a significantly increased risk of ALL. For childhood brain cancers insignificantly 

increased risks of about 1.4 for ≤2 km and 2-4 km from the transmitter were obtained.  

It seems that there were problems with the RF EMF estimates since peak and total field 

strengths had quite different results and also the correlation with peak exposure and distance 

was much higher than with total exposure suggesting that more distant transmitters led to a 

decrease in the gradient of exposures. The measurements are not reported for the different 

transmitter types and therefore it is difficult to assess their validity. For very high power 

transmitters (1,500 kW) the relationship is known to be not monotonous which cannot be 

discriminated in the figure shown in the article. Overall the study has an improved 

methodology due to the case-control and registry approach. However, the methods to assess 

actual exposure need to be further improved. 
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IV. EVALUATION OF THE EVIDENCE 

 

Due to the varying endpoints, methods used and populations included the meta-analysis 

shown in fig.1 applied the random effects model and DerSimonian-Laird estimate of the 

overall risk and confidence interval. Only few studies found clear indications of an 

association between RF exposure and brain tumors: one cohort study (Szmigielski 1996) and 

two case-control studies (Thomas et al. 1987, Grayson 1996). None of the ecological studies 

except for Ha et al. (2003) for one of the AM transmitter types demonstrated a significantly 

increased risk in the vicinity of RF antennas.  

 

 

Fig. 1: Forest plot of risk estimates for RF exposure with respect to brain tumors and 

DerSimonian-Laird overall estimate 

 

The meta-analytical estimate of the risk was 1.08 (95% confidence interval: 0.97 – 1.20). The 

discussion of the 19 published investigations revealed shortcomings in all studies. The 
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greatest problem was encountered in the difficulties to reliably assess actual exposure. Even if 

we don’t know the relevant aspect of the exposure, if any, that is responsible for an increased 

risk, the type, duration and amount of exposure must be determined in order to use the studies 

in derivations of exposure standards. None of the studies included a useful quantitative 

indicator of intensity of exposure and even duration of exposure was rarely addressed. 

Concerning type of exposure only quite crude and broad categories were used. 

In ecological studies, although for the studied population the exposure - despite considerable 

variations in time - is similar with respect to carrier frequency, modulation etc. it is quite 

different between various types of transmitters and hence results are not easily generalized. 

The ecological studies are not conclusive with respect to brain tumors but provide some 

evidence for hematopoietic malignancies that need to be further pursued. Investigating 

residential exposure to RF EMFs from broadcasting stations poses severe methodological 

problems mainly due to the small size of the exposed population because high exposure levels 

occur only in a small band around the radiation sources. Due to the transition to digital 

television many TV broadcasting antennas with high power are or will be disconnected 

leaving us with changing exposure conditions. Because brain tumors have long latencies it is 

hardly possible to produce conclusive evidence in the near future. 

Considering the discussion of the different investigations and the fact that most biases 

encountered tend to dilute a potential risk, the compiled evidence from occupational cohorts is 

compatible with a moderately increased risk of RF exposure. Because of the lack of actual 

measurements but observing that exposure above guideline levels must have been a rare event 

a precautionary approach must result in a reduction of occupational exposure levels and 

organizational measures to avoid over-exposure and also environmental exposure levels 

should be given greater attention. Although brain tumors are rare and the population 

attributable risk is low (assuming 13% of adults being occupationally exposed to RF fields as 

inferred from Berg et al. 2006, and assuming a relative risk of 1.3, about 4% of brain tumors 

can be attributed to RF exposure, i.e. 2,200 cases per years in the US). 
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CONCLUSIONS 

 

 

• Only few studies of long-term exposure to low levels of RF fields and brain tumors 

exist, all of which have methodological shortcomings including lack of quantitative exposure 

assessment. Given the crude exposure categories and the likelihood of a bias towards the null 

hypothesis of no association the body of evidence is consistent with a moderately elevated 

risk. 

 

• Occupational studies indicate that long term exposure at workplaces may be associated 

with an elevated brain tumor risk. 

 

• Although in some occupations and especially in military jobs current exposure 

guidelines may have sometimes been reached or exceeded, overall the evidence suggest that 

long-term exposure to levels generally lying below current guideline levels still carry the risk 

of increasing the incidence of brain tumors. 

 

• Although the population attributable risk is low (likely below 4%), still more than 

2,000 cases per year in the US can be attributed to RF exposure at workplaces alone. Due to 

the lack of conclusive studies of environmental RF exposure and brain tumors the potential of 

these exposures to increase the risk cannot be estimated. However, these figures are 

theoretical as long as the evidence is as weak as it is for the time being. 
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V. ASSESSMENT OF EPIDEMIOLOGICAL EVIDENCE BY IEEE (C95.1 

REVISION) 

 

Introduction 

Before 1988 C95 standards were developed by Accredited Standards Committee C95, 

between 1988 and 1990, the committee was converted to Standards Coordinating Committee 

28 (SCC 28) under the sponsorship of the IEEE Standards Board. In 2001 IEEE approved the 

name “International Committee on Electromagnetic Safety (ICES)” for SCC 28. 

Subcommittee 4 of ICES Technical Committee 95 is responsible for the revision of standard 

C95.1 “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio 

Frequency Electromagnetic Fields, 3 kHz to 300 GHz”. There are five TC95 subcommittees: 

1) Techniques, Procedures, and Instrumentation; 2) Terminology, Units of Measurements and 

Hazard Communication; 3) Safety Levels with Respect to Human Exposure, 0-3 kHz; 4) 

Safety Levels with Respect to Human Exposure, 3 kHz-300 GHz; 5) Safety Levels with 

Respect to Electro-Explosive Devices. 

The recommendations in standard C95.1 are intended to protect against scientifically 

established adverse health effects in human beings resulting from exposure to radio frequency 

electromagnetic fields in the frequency range of 3 kHz to 300 GHz. A “scientifically 

established adverse health effects” is defined as: “A biological effect characterized by a 

harmful change in health that is supported by consistent findings of that effect in studies 

published in the peer-reviewed scientific literature, with evidence of the effect being 

demonstrated by independent laboratories, and where there is consensus in the scientific 

community that the effect occurs for the specified exposure conditions.” It is interesting that 

this definition does not only demand the effect being demonstrated by independent 

laboratories but also that a consensus must be reached in the scientific community. This is a 

strange definition. When is a consensus reached? If more than 50% of scientists in the 

scientific community agree? Or must all agree? Usually this term is used to describe a 

situation where there is no open or covert dissent. In decisions theory demanding consent is 

criticized as a policy that results in the preservation of the status-quo. 

It might be instructive to contrast this definition with IARCs (International Agency for 

Research on Cancer) characterization of sufficient evidence for carcinogenicity in 

experimental animals: “The Working Group considers that a causal relationship has been 

established between the agent or mixture and an increased incidence of malignant neoplasms 
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or of an appropriate combination of benign and malignant neoplasms in (a) two or more 

species of animals or (b) in two or more independent studies in one species carried out at 

different times or in different laboratories or under different protocols”, and the 

characterization of sufficient evidence in humans: “The Working Group considers that a 

causal relationship has been established between exposure to the agent, mixture or exposure 

circumstance and human cancer. That is, a positive relationship has been observed between 

the exposure and cancer in studies in which chance, bias and confounding could be ruled out 

with reasonable confidence.” Clearly these definitions are incompatible with the definition by 

IEEE.  

The scientific rationale for the derivation of the exposure standard of IEEE is presented in 

Annex C and Annex B “Identification of levels of RF exposure responsible for adverse 

effects: summary of the literature” which is based on “critical reviews of studies within the 

IEEE/WHO RF literature database”. In this commentary I will address chapter 9) 

Epidemiological Studies of RF Exposures and Human Cancer. 

 

 

Evaluation of Cancer-Related Endpoints (RF Exposure) 

  

In their 2006 revision of the standard C95.1 IEEE has assessed the evidence from 

epidemiology for cancer related endpoints in chapter B.7.3. The assessment relies mainly on 

the reviews of Bergqvist (1997), Moulder et al. (1999) and Elwood (2003). These reviews and 

the IEEE overview share the same deficiencies. The main lines of argumentation would be 

impossible in any other field of environmental health and closely resemble the strategy used 

to dismiss a power frequency exposure/childhood leukemia association. In the following 

paragraphs the assessment by IEEE will be discussed. The text of IEEE C95.1 is presented in 

italics as blocked citation. References within the text of the citations are found by the Rnnn 

and Bnnn numbers in the Annexes F and G of the standard document, but are also included in 

the reference section of this overview. 

Cluster studies, such as the one performed in Sutton Coldfield in the U.K. in response 

to a cluster of leukemia and lymphoma in adults living close to an RF broadcasting 

transmitter (Dolk et al. [R624]), are inherently difficult to interpret because of the 

impossibility of assessing all of the effects that chance variation might have 

contributed to the cluster. In the initial Sutton Coldfield study, the authors correctly 

concluded that no causal association could be drawn between the presence of the 

cluster and RF exposure from broadcasting towers (Dolk et al. [R625]) (Cooper et al. 

[R760]). (IEEE C 95.1 – 2005, p.75) 
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First of all the Sutton Coldfield study was no cluster study but an ecological investigation. It 

only was initiated by an unconfirmed report of a cluster of leukemia and lymphoma in the 

vicinity of this broadcasting transmitter but it proceeded independently of this initial report 

and used registry data of the population living within a radius of 10 km around the 

transmitter. The statement that such studies are “inherently difficult to interpret because of the 

impossibility of assessing all of the effects that chance variation might have contributed to the 

cluster” is ridiculous not only because the study is no cluster study but because it is 

impossible for any study to “assess all effects that chance variation might have contributed” to 

the endpoint under investigation. It is not mentioned that the study was supplemented by a 

larger investigation of another 20 high-power transmitters in Great Britain. The difficulties of 

interpreting ecological studies is related to the fact that potential confounders can only be 

related to a segment of the population but not to individuals and that in general duration and 

intensity of exposure are not known for individual members of the different strata. While 

evidence for an effect on brain tumor incidence from both studies (Dolk et al. 1997a, 1997b) 

is weak, there is consistent evidence for a relation to hematopoietic cancers. This evidence has 

been overlooked by the authors due to their wrong assumption about the relation between 

proximity to the transmitter and exposure.  

Inconsistent effects have been reported between residential proximity to other RF 

broadcast towers and adverse health endpoints (Bielski [R267]) (Maskarinec et al. 

[R579]) (Selvin and Merrill [R823]) (Michelozzi et al. [R858]) (Altpeter et al. [R977]) 

(Hallberg and Johansson [R995], [R996]) (Boscolo [R1012]), although many of these 

studies have significant flaws in their study design (making them difficult to interpret). 

(IEEE C 95.1 – 2005, p.75) 

 

Although it is not stated what these “inconsistent effects” might be, the statement is flawed in 

more than this respect. First of all the study by Bielski (1994) is an occupational investigation 

and not about residential proximity to RF broadcast towers, second three of these 

investigations (Selvin et al. 1992; Maskarinec et al. 1994; Michelozzi et al. 2002) included 

leukemia as an endpoint with indications of an increased incidence consistent with the studies 

from Great Britain (Dolk et al. 1997a, 1997b) and Australia (Hocking et al. 1996). Note that 

the study by Selvin et al. (1992), as stated in section 10, intended to compare different 

methods to assess the relationship between a point source and diseases and did erroneously 

assume a monotonous relationship between exposure and distance from a transmitter. 

Correcting this error there seems to be an increased probability of childhood leukemia in areas 

receiving the highest exposure from the Sutro tower. The other three investigations (Altpeter 
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et al. 1995; Boscolo 2001; Hallberg & Johansson 2002) have nothing in common and hence 

cannot be inconsistent.    

 

An increased incidence and mortality rate of childhood leukemia was reported in 

Australia with residential proximity to a specific RF broadcasting tower (Hocking et 

al. [R633]), although subsequent reanalysis of the data showed the results may have 

been influenced by other confounding variables within the study location (McKenzie et 

al. [R669]). (IEEE C 95.1 – 2005, p.75) 

 

This is another example how carelessly and sloppy the evidence is dealt with by the IEEE 

committee. The study of Hocking et al. (1996) was not about “proximity to a specific RF 

broadcasting tower” but about an area where three broadcasting towers are located. While 

there is always the possibility of confounders influencing results of an epidemiologic 

investigation, the ‘reanalysis’ of McKenzie et al. (1998) is seriously flawed and cannot 

support the cited statement. Hocking et al. (1996) combined the districts near the broadcasting 

area and those further away based on homogeneity analyses, while McKenzie et al. (1998) 

omitted one area with high incidence (and highest exposure) based on inspection of data. Any 

statistical analysis subsequent to such data picking is useless.  

While scattered reports of adverse health effects associated with occupational 

exposure to RF do exist (Demers et al. [R36]) (Kurt and Milham [R68]) (Pearce 

[R110]) (Speers et al. [R125]) (Thomas et al. [R128]) (Pearce et al. [R199], [R211]) 

(Hayes et al. [R207]) (Cantor et al. [R268]) (Davis and Mostofi [R563]) (Tynes et al. 

[R570], [R605]) (Grayson [R592]) (Richter et al. [R747]) (Holly et al. [R838]) these 

studies are largely inconsistent with each other in terms of the adverse health 

endpoints affected, and often show no clear dose response with RF exposure. Many 

have serious flaws in their study design, contain limited or insufficient RF exposure 

assessment, and are generally inconsistent with the absence of findings of an 

association from other occupational studies (Tornqvist et al. [R131]) (Coleman 

[R142]) (Lilienfeld et al. [R146]) (Robinette and Silverman [R147], [R148]) 

(Siekierzynski et al. [R151], [R152]) (Wright et al. [R213]) (Coleman et al. [R214]) 

(Muhm [R506]) (Czerski et al. [R542]) (Hill [R568]) (Lagorio et al. [R616]) (Kaplan 

et al. [R647]) (Morgan et al. [R701]) (Gallagher et al. [R822]) (Groves et al. [R853]) 

(Wiklund [R1013]) (Armstrong et al. [R1014]). (IEEE C 95.1 – 2005, p.75) 

 

Even allowing for restrictions of space for a discussion of the evidence, greater nonsense has 

not been produced so far in this field as condensed in these two sentences. Putting higgledy-

piggledy all sorts of studies together and then wondering about endpoints being inconsistent is 

an intellectual masterpiece. Of the occupational studies mentioned, three (Thomas et al. 1987; 

Speers et al. 1988; Grayson 1996) were about brain cancer, three about hematopoietic cancers 
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(Pearce et al. 1985; Kurt & Milham 1988; Pearce 1988), two about testicular cancer (Hayes et 

al. 1990; Davis & Mostofi 1993), one about male (Demers et al. 1991) and two about female 

breast cancer (Cantor et al. 1995, Tynes et al. 1996) the latter including other cancers as well, 

and one about intraocular melanoma (Holly et al. 1996). Three further studies (Pearce et al. 

1989; Tynes et al. 1992; Richter et al. 2000) investigated several or all malignancies. These 

studies differ not only in endpoints, study type (cohort, case-control, and cluster) but also in 

the methods of exposure assessment. Ignorance of the IEEE reviewers is underlined by the 

compilation of studies characterized by an “absence of findings of an association”. Not  only 

did several of these studies indeed indicate an association of cancer risk with EMF exposure 

(Lilienfeld et al. 1978; Robinette et al. 1980; Tornqvist et al. 1991; Armstrong et al. 1994; 

Lagorio et al. 1997; Groves et al. 2002) but two were no epidemiologic studies at all 

(Siekierzynski et al. 1974; Czerski et al. 1974) and several were rather addressing ELF 

exposure (Tornqvist et al. 1991; Wright et al. 1982; Coleman et al. 1983; Gallagher et al. 

1991) and one (Wiklund 1981) was a cluster study in the telecommunication administration 

with uncertain type of exposure. Simply confronting studies finding an effect with others that 

were ‘negative’ is scientifically flawed and permits neither the conclusion that there is nor 

that there is no association between exposure and cancer risk. Even if all studies would have 

applied the same method, assessed the same endpoint and used the same exposure metric, 

studies reporting a significantly increased cancer risk are not outweighed by others that did 

not.        

While micronuclei formation in workers occupationally exposed from broadcast 

antennas has been reported (Garaj-Vrhovac [R757]) (Lalic et al. [R791]), these 

findings were not verified in a larger study of more than 40 Australian linemen 

exposed under similar conditions (Garson et al. [R186]). (IEEE C 95.1 – 2005, pp.75-

76) 

 

It goes without saying that also this statement is wrong. Garson et al. (1991) did not 

investigate micronuclei formation, their workers were considerably shorter exposed and it 

were not more than 40 linemen but 38 radio-lineman.  

No clear association could be established between occupational exposures of parents 

to a number of agents, including RF, and effects (neuroblastoma) in their offspring 

(Spitz and Johnson [R289]) (De Roos et al. [R798]). (IEEE C 95.1 – 2005, p.76) 

 

What is meant by ‘no clear association’ is obscure. Spitz and Johnson (1985) found a 

significantly increased risk after paternal occupational exposure to electromagnetic fields, and 

also De Roos et al. (2001) found several jobs with paternal as well as maternal exposure to 
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EMFs associated with an elevated risk for neuroblastoma in their children. However, broad 

groupings of occupations with ELF, RF EMF, as well as ionizing radiation (!) exposure did 

not reveal an increased risk. 

One study reported a slight excess in brain tumors associated with combined exposure 

to RF and other exposures associated with electrical or electronic jobs, but not with 

RF alone (Thomas et al. [R128]). A study of a Polish military cohort reported a 

substantial excess of total cancer and several cancer sub-types with jobs associated 

with RF exposure (Szmigielski [R578]), (Szmigielski and Kubacki [R982]), although 

questions have been raised about severe bias in the exposure assessment of this study 

(Elwood [R665]) (Bergqvist [R1015]) (Stewart [R1133]). Studies by Milham of U.S. 

amateur radio operators reported an excess in one of nine types of leukemia assessed 

(see [R101], [R102], [R209], [R215], and [R569]), but not for total tumors, total 

leukemia, or brain tumors, and potential confounding factors might have included 

exposure to soldering fumes, degreasing agents and over-representation of a 

particular social class. (IEEE C 95.1 – 2005, p.76) 

 

Again the evidence is incorrectly summarized for all cited investigations. Thomas et al. 

(1987) found a significantly elevated risk for brain tumors among all men exposed to RF 

fields and in particular in those exposed for 20 or more years. There were indications that this 

elevated risk is due to a subgroup with electrical or electronics jobs. The group of those 

exposed in other jobs is heterogeneous and may contain subjects with low or no exposure 

(e.g. some groups of welders) and therefore lack of an association could be due to a dilution 

effect from exposure misclassification. 

As mentioned in section 10 criticism of the Polish military cohort study about exposure 

assessment is unfounded. Bergqvist (1997), Elwood (1999) and Stewart (2000) criticized that 

the military health board assessed a number of potential risk factors only for cancer cases. 

However, they overlooked that the study was a cohort and not a case-control study and that at 

no stage information about these factors entered the analysis and therefore couldn’t affect the 

results in any way.  

The study by Milham (1988a, 1988b) of radio amateur operators revealed a significantly 

increased standardized mortality ratio (SMR) for acute myeloid leukemia while the overall 

mortality and cancer mortality was significantly reduced relative to the country mortality 

rates. As mentioned in section 10 this points to a ‘healthy worker’ effect as well as to an 

influence of life-style factors (mortality related to smoking and overweight were reduced). 

From the mentioned nine types of leukemia three with expectancies below one and no case 

observed couldn’t be assessed, from the six remaining types five had elevated SMRs with 

AML, the most frequent type in adults, being significantly elevated. 
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The last portion of the IEEE review of epidemiology studies is dedicated to mobile phone 

investigations that are discussed in another contribution. 

The following citation presents the IEEE summary in its full length: 

The epidemiological evidence to date does not show clear or consistent evidence to 

indicate a causal role of RF exposures in connection with human cancer or other 

disease endpoints. Many of the relevant studies, however, are weak in terms of their 

design, their lack of detailed exposure assessment, and have potential biases in the 

data. While the available results do not indicate a strong causal association, they 

cannot establish the absence of a hazard. They do indicate that for commonly 

encountered RF exposures, any health effects, if they exist, must be small. Even though 

epidemiological evidence cannot rule out a causal relationship, the overall weight-of-

evidence is consistent with the results of the long term animal studies showing no 

evidence of physiological, pathological or disease-specific effects. (IEEE C95.1 - 

2005; pp.76-77) 

 

As already pointed out earlier (Kundi 2006) there is an intolerable tendency in the past years 

that confronted with an undeniable epidemiologic evidence of an association between an 

agent and adverse health effects such as cancer, interested parties take their resort to the 

concept of causality based on the wrong assumption evidence to “indicate a causal role” is a 

lot more difficult to provide. Unprecedented, however, is the notion of “a strong causal 

association”. Whatever the meaning of this exceptional statement, the conclusion that, if 

health effects of commonly encountered RF exposures exist, they must be small, is wrong. To 

the contrary: considering the “lack of detailed exposure assessment” and other potential biases 

that predominantly lead to an underestimation of the risk, the evidence points to a quite 

substantial risk. While the animal studies reviewed in another section of the IEEE standard 

document cannot be discussed here it should be underlined that they are generally insufficient 

to support either an increased risk or the lack of health relevant effects. Therefore they cannot 

be used in a weight-of-evidence statement as has been made by IEEE, that there is no 

evidence for adverse health effects of RF exposure.   

 

 

  



40 
 

REFERENCES FOR SECTIONS I – V                                              

EVIDENCE FOR BRAIN TUMORS (EPIDEMIOLOGICAL) 
 

Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A. 2004. Epidemiology of health effects 

of radiofrequency exposure. Environ Health Perspect 112: 1741–1754. 

Berg G, Spallek J, Schüz J, Schlehofer B, Böhler E, Schlaefer K, Hettinger I, Kunna-Grass K, 

Wahrendorf J, Blettner M. 2006. Occupational exposure to radio frequency/microwave 

radiation and the risk of brain tumors: Interphone Study Group, Germany. Am J 

Epidemiol. 

CBTRUS (Central Brain Tumor Registry of the United States). 2011. CBTRUS Statistical 

Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United 

States in 2004-2007. Source: Central Brain Tumor Registry of the United States, 

Hinsdale, IL. 

Cooper DK, Hemmings K, Saunders P 2001. Cancer incidence near radio and television 

transmitters in Great Britain. I. Sutton Coldfield transmitter; II. All high power 

transmitters.  Am J Epidemiol 153: 202 – 204 

Dolk H, Shaddick G, Walls P, Grundy C, Thakrar B, Kleinschmidt I, Elliott P. 1997a. Cancer 

incidence near radio and television transmitters in Great Britain, Part I. Sutton 

Coldfield Transmitter. Am J Epidemiol 145: 1-9. 

Dolk H, Elliot P, Shaddick G, Walls P, Thakrar B. 1997b. Cancer incidence near radio   

television and transmitters in Great Britain, Part II. All high-power transmitters. Am J 

Epidemiol 145: 10-17. 

Elwood MJ. 2003. Epidemiological studies of radiofrequency exposures and human cancer.  

Bioelectromagnetics  Suppl 6: S63 - S73. 

Finkelstein MM. 1998. Cancer incidence among Ontario police officers. Am J Ind Med 34: 

157-162. 

Grayson JK. 1996. Radiation exposure socioeconomic status and brain tumor risk in the US 

Air Force: a nested case-control study. Am J Epidemiol 143: 480-486. 

Groves FD, Page WF, Gridley G, Lisimaque L, Stewart PA, Tarone RE et al. 2002. Cancer in 

Korean war navy technicians: mortality survey after 40 years. Am J Epidemiol  155: 

810-818. 

Ha M, Im H, Lee M, Kim BC, Gimm YM, Pack JK. 2007. Radio-frequency radiation 

exposure from AM radio transmitters and childhood leukemia and brain cancer. Am J 

Epidemiol 166(3):270-279. 

Ha M, Im H, Lee M, Kim HJ, Kim BC, Gimm YM, Pack JK. 2008. Five authors reply. Am J 

Epidemiol 167(7):884-885 

Hocking B, Gordon IR, Grain ML, Hatfield GE. 1996. Cancer incidence and mortality   and 

proximity to TV towers. Med J Aust 165: 601-605 

Krewski D, Byus CV, Glickman BW, Lotz WG, Mandeville R, McBride ML, Prato FS, 

Weaver DF. 2001. Potential health risks of radiofrequency fields from wireless 

telecommunication devices. J Tox Env Health Part B 4: 1-143. 

Kundi M, Hansen Mild K, Hardell L, Mattsson MO. 2004. Mobile telephones and cancer - a 

review of epidemiological evidence. J Toxicol Envrion Health Part B 7: 351-384. 



41 
 

Kundi M. 2006. Causality and the interpretation of epidemiologic evidence. Environ Health 

Perspect 114: 969 – 974 

Lagorio S, Rossi S, Vecchia P, De Santis M, Bastianini L, Fusilli M, Ferrucci A, Desideri E,   

Comba P. 1997. Mortality of plastic-ware workers exposed to radiofrequencies. 

Bioelectromagnetics 18: 418-421 

Milham S. 1985. Mortality in workers exposed to electromagnetic fields. Environ Health 

Perspect 62: 297 – 300 

Milham S. 1988a. Increased mortality in amateur radio operators due to lymphatic and 

hematopoietic malignancies. Am J Epidemiol 127: 50-54 

Milham S. 1988b. Mortality by license class in amateur radio operators. Am J Epidemiol 128: 

1175 – 1176 

Morgan RW, Kelsh MA, Zhao K, Exuzides KA, Heringer S, Negrete W. 2000. 

Radiofrequency exposure and mortality from cancer of the brain and 

lymphatic/hematopoietic systems. Epidemiology 11: 118-127 

Robinette CD, Silverman C, Jablon S. 1980. Effects upon health of occupational exposure to 

microwave radiation radar. Am J Epidemiol 112: 39 – 53 

Schüz J, Böhler E, Schlehofer B, Berg G, Schlaefer K, Hettinger I, Kunna-Grass K, 

Wahrendorf J, Blettner M. 2006. Radiofrequency electromagnetic fields emitted from 

base stations of DECT cordless phones and the risk of glioma and meningioma 

(Interphone Study Group, Germany). Radiat Res 166(1 Pt 1):116-119. 

Schüz J, Philipp J, Merzenich H, Schmiedel S, Brüggemeyer H. 2008. Re:"Radio-frequency 

radiation exposure from AM radio transmitters and childhood leukemia and brain 

cancer". Am J Epidemiol 167(7):883-884. 

Selvin S, Schulman J, Merrill DW. 1992. Distance and risk measures for the analysis of 

spatial data: a study of childhood cancers. Soc Sci Med 34: 769-777 

Szmigielski S. 1996. Cancer morbidity in subjects occupationally exposed to high frequency 

(radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 180: 9-

17. 

Tynes T, Andersen A, Langmark F. 1992. Incidence of cancer in Norwegian workers 

potentially exposed to electromagnetic fields. Am J Epidemiol 136: 81-88 

Tynes T, Hannevik M,  Andersen A, Vistnes AI, Haldorsen T. 1996. Incidence of breast 

cancer in Norwegian female radio and telegraph operators. Cancer Causes Control 7: 

197-204 

 

 

 

  



42 
 

REFERENCES FOR SECTION VI  

ASSESSMENT OF EPIDEMIOLOGICAL EVIDENCE BY IEEE (C95.1 REVISION) 

 

Altpeter ES, Krebs TT, Pfluger DH, von Kanel J, Blattmann R. 1995. Study on health effects 

of the short-wave transmitter station at Schwarzenburg, Berne, Switzerland,” BEW 

Publication Series No. 55, University of Berne, Inst. for Social & Preventive 

Medicine. 

Armstrong B, Theriault G, Guenel P, Deadman J, Goldberg M, Heroux P. 1994. Association 

between exposure to pulsed electromagnetic fields and cancer in electric utility 

workers in Quebec, Canada, and France. Am J Epidemiol 140: 805 – 820. 

Bergqvist U. 1997. Review of epidemiological studies.  In: Kuster N, Balzano Q, Lin JC 

(eds.), Mobile Communications Safety, London: Chapman & Hall, pp. 147 – 170 

Bielski J. 1994. Bioelectrical brain activity in workers exposed to electromagnetic fields,” 

Ann N Y Acad Sci 724: 435 – 437 

Boscolo P. 2001. Effects of electromagnetic fields produced by radiotelevision broadcasting 

stations on the immune system of women. Sci Total Environ 273: 1 – 10 

Cantor K, Stewart P, Brinton L, Dosemeci M. 1995. Occupational exposure and female breast 

cancer mortality in the United States. J Occup Environ Med 37: 336-348 

Coleman M, Bell J, Skeet R. 1983. Leukaemia incidence in electrical workers. Lancet 1:982 – 

983 

Coleman M. 1985. Leukaemia mortality in amateur radio operators.  Lancet 2: 106 – 107 

Cooper DK, Hemmings K, Saunders P 2001. Cancer incidence near radio and television 

transmitters in Great Britain. I. Sutton Coldfield transmitter; II. All high power 

transmitters.  Am J Epidemiol 153: 202 – 204 

Czerski P, Siekierzynski M, Gidynski A. 1974. Health surveillance of personnel 

occupationally exposed to microwaves. I. Theoretical considerations and practical 

aspects. Aerospace Med 45: 1137 – 1142 

Davis RL, Mostofi FK. 1993. Cluster of testicular cancer in police officers exposed to hand -

held radar. Am J Ind Med 24: 231-233 

De Roos AJ, Teschke K, Savitz DA, Poole C, Grufferman BH, Pollock BH. 2001. Parental 

occupational exposures to electromagnetic fields and radiation and the incidence of 

neuroblastoma in offsping. Epidemiol 12: 508 – 517 

Demers PA, Thomas DB, Rosenblatt KA, Jimenez LM, McTiernan A, et al. 1991. 

Occupational exposure to electromagnetic fields and breast cancer in men. Am J 

Epidemiol 134: 340 – 347 

Dolk H, Shaddick G, Walls P, Grundy C, Thakrar B, Kleinschmidt I, Elliott P. 1997a. Cancer 

incidence near radio and television transmitters in Great Britain, Part I. Sutton 

Coldfield Transmitter. Am J Epidemiol 145: 1-9. 

Dolk H, Elliot P, Shaddick G, Walls P, Thakrar B. 1997b. Cancer incidence near radio   

television and transmitters in Great Britain, Part II. All high-power transmitters. Am J 

Epidemiol 145: 10-17. 

Elwood MJ. 2003. Epidemiological studies of radiofrequency exposures and human cancer.  

Bioelectromagnetics  Suppl 6: S63 - S73. 



43 
 

Gallagher RP, Band PR, Spinelli JJ, Threlfall WJ, Tamaro S. 1991. Brain cancer and exposure 

to electromagnetic fields.  J Occup Med 33: 944 – 945 

Garaj-Vrhovac V. 1999. Micronucleus assay and lymphocyte mitotic activity in risk 

assessment of occupational exposure to microwave radiation. Chemosphere 39: 2301 – 

2312 

Garson OM, McRobert TL, Campbell LJ, Hocking BA, Gordon I. 1991. A chromosomal 

study of workers with long-term exposure to radio-frequency radiation. Med J 

Australia 155: 289 – 292. 

Grayson JK. 1996. Radiation exposure socioeconomic status and brain tumor risk in the US 

Air Force: a nested case-control study. Am J Epidemiol 143: 480-486. 

Groves FD, Page WF, Gridley G, Lisimaque L, Stewart PA, Tarone RE et al. 2002. Cancer in 

Korean war navy technicians: mortality survey after 40 years. Am J Epidemiol  155: 

810-818. 

Hallberg O, Johansson O. 2002a. Melanoma incidence and frequency modulation (FM) 

broadcasting. Arch Environ Health 57: 32 - 40 

Hallberg O, Johansson O. 2002b. Cancer trends during the 20th century. J Australian College 

Nutrtr Environ Med. 21: 3 – 8 

Hayes RB, Brown LM, Pottern LM, Gomez M, Kardaun JWPF, Hoover RN, O’Connell KJ, 

Sutzman RE, Javadpour N. 1990. Occupation and risk of testicular cancer: a case-

control study. Int J Epidemiol 19: 825-831 

Hill DG. 1988. A longitudinal study of a cohort with past exposure to radar: the MIT 

Radiation Laboratory follow-up study. [Dissertation Manuscript], Johns Hopkins 

University, Baltimore, MD, UMI Dissertation Services, Ann Arbor, MI 

Hocking B, Gordon IR, Grain ML, Hatfield GE. 1996. Cancer incidence and mortality   and 

proximity to TV towers. Med J Aust 165: 601-605 

Holly EA, Aston DA, Ahn DK, Smith AH. 1996. Intraocular melanoma linked to occupations   

and chemical exposures. Epidemiology 7: 55-61 

Kaplan S, Etlin S, Novikov I, Modan B. 1997. Occupational risks for the development of 

brain tumors. Am J Ind Med 31: 15 – 20. 

Kundi M. 2006. Causality and the interpretation of epidemiologic evidence. Environ Health 

Perspect 114: 969 – 974 

Kurt TL, Milham S. 1988. Re: Increased mortality in amateur radio operators due to 

lymphatic and hematopoietic malignancies. [Letter and Reply] Am  J. Epidemiol 128: 

1384–1385 

Lagorio S, Rossi S, Vecchia P, De Santis M, Bastianini L, Fusilli M, Ferrucci A, Desideri E,   

Comba P. 1997. Mortality of plastic-ware workers exposed to radiofrequencies. 

Bioelectromagnetics 18: 418-421 

Lalic H, Lekic A, Radosevic-Stasic B. 2001. Comparison of chromosome aberrations in 

peripheral blood lymphocytes from people occupationally exposed to ionizing and 

radiofrequency radiation. Acta Medica Okayama 55: 117 – 127 

Lilienfeld AM, Tonascia J, Tonascia S, Libauer CH, Cauthen GM, et al. 1978. Foreign 

Service Health Status Study: Evaluation of Status of Foreign Service and other 

Employees From Selected Eastern European Posts. NTIS Document No. PB-28B 



44 
 

163/9GA Dept. of State, Washington DC, Final Report, Dept. of Epidemiology, 

School of Hygiene Public Health, Johns Hopkins University, Baltimore, MD 

Maskarinec G, Cooper J, Swygert L. 1994. Investigation of increased incidence in childhood 

leukemia near radio towers in Hawaii: preliminary observations. J Environ Pathol 

Toxicol Oncol 13: 33-37 

McKenzie DR, Yin Y, Morrell S. 1998. Childhood incidence and acute lymphoblastic 

leukaemia and exposure to broadcast radiation in Sydney – a second look. Aust NZ J 

Public Health 22: 360-367 

Michelozzi P, Capon A, Kirchmayer U, Forastiere F, Biggeri A, Barca A, Perucci CA. 2002. 

Adult and childhood leukemia near a high-power radio station in Rome, Italy. Am J 

Epidmiol 155: 1096-1103 

Milham S. 1982. Mortality from leukemia in workers exposed to electrical and magnetic 

fields. [Letter] New England J Med 307: 249 – 249 

Milham S. 1983. Occupational mortality in Washington State: 1950-1979. DHHS (NIOSH) 

Publication 83-116, October 1983, Contract No. 210-80-0088, U.S. Depart. of Health 

and Human Services, National Institute for Occupational Safety and Health, 

Cincinnati, OH 

Milham S. 1985. Mortality in workers exposed to electromagnetic fields. Environ Health 

Perspect 62: 297 – 300 

Milham S. 1988a. Increased mortality in amateur radio operators due to lymphatic and 

hematopoietic malignancies. Am J Epidemiol 127: 50-54 

Milham S. 1988b. Mortality by license class in amateur radio operators. Am J Epidemiol 128: 

1175 – 1176 

Morgan RW, Kelsh MA, Zhao K, Exuzides KA, Heringer S, Negrete W. 2000. 

Radiofrequency exposure and mortality from cancer of the brain and 

lymphatic/hematopoietic systems. Epidemiology 11: 118-127 

Moulder JE, Erdreich LS, Malyapa RS, Merritt JH, Pickard WF, Vijayalaxmi. 1999. Cell 

phones and cancer: what is the evidence for a connection?  Radiat Res 151: 513 – 531 

Muhm JM. 1992. Mortality investigation of workers in an electromagnetic pulse test program. 

J Occup Med 34: 287-292 

Pearce N, Reif J, Fraser J. 1989. Case-control studies of cancer in New Zealand electrical 

workers. Int  J Epidemiol 18: 55 – 59 

Pearce NE, Sheppard RA, Howard JK, Fraser J, Lilley BM. 1985. Leukaemia in electrical 

workers in New Zealand. [Letter] Lancet 1: 811 – 812 

Pearce NE. 1988. Leukemia in electrical workers in new Zealand: a correction. [Letter] 

Lancet  2: 48 

Richter ED, Berman T, Ben-Michael E, Laster R, Westin JB. 2000. Cancer in radar 

technicians exposed to radiofrequency/microwave radiation: Sentinel episodes. Int J 

Occup Environ Health 6: 187 – 193 

Robinette CD, Silverman C, Jablon S. 1980. Effects upon health of occupational exposure to 

microwave radiation radar. Am J Epidemiol 112: 39 – 53 

Robinette CD, Silverman C. 1977. Causes of death following occupational exposure to 

microwave radiation (radar) 1950-1974. In Hazzard (ed), Symposium on Biological 



45 
 

Effects and Measurement of radiofrequency Microwaves, Dept. of Health, Education, 

and Welfare, Washington, DC, HEW Publication No. (FDA) 77-8026: 338 – 344 

Selvin S, Schulman J, Merrill DW. 1992. Distance and risk measures for the analysis of 

spatial data: a study of childhood cancers. Soc Sci Med 34: 769-777 

Siekierzynski M, Czerski P, Milczarek H, Gidynski A, Czarnecki C, Dziuk E, Jedrzejczak W. 

1974a. Health surveillance of personnel occupationally exposed to microwaves. II. 

Functional disturbances. Aerospace Med 45: 1143 - 1145 

Siekierzynski M, Czerski P, Milczarek H, Gidynski A, Czarnecki C, Dziuk E, Jedrzejczak W. 

1974b. Health surveillance of personnel occupationally exposed to microwaves. III. 

Lens translucency. Aerospace Med 45: 1146 – 1148 

Speers MA, Dobbins JG, Miller VS. 1988. Occupational exposures and brain cancer 

mortality: a preliminary study of East Texas residents. Am J Ind Med 13: 629 – 638 

Spitz MR, Johnson CC. 1985. Neuroblastoma and paternal occupation. A case-control 

analysis. Am J Epidemiol  121: 924 – 929 

Stewart, Sir W. 2000. Mobile Phones and Health.  Report by the UK Independent Expert 

Group on Mobile Phones. c/o UK National Radiological Protection Board, Chilton, 

Didcot, Oxon OX11 0RQ pp. 1 – 160. 

Szmigielski S, Kubacki R. 1999. Analysis of cancer morbidity in Polish career military 

personnel exposed occupationally to RF and MW radiation. In: F. Bersani (ed.), 

Electricity and Magnetism in Biology and Medicine, Kluwer Academic/ Plenium, pp. 

809 – 812. 

Szmigielski S. 1996. Cancer morbidity in subjects occupationally exposed to high frequency 

(radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 180: 9-

17. 

Thomas TL, Stolley PD, Stemhagen A, Fontham ETH, Bleeker ML, Stewart PA et al. 1987. 

Brain tumour mortality risk among men with electrical and electronic jobs: a case-

control study. J Natl Cancer Inst 79: 233-238 

Tornqvist S, Knave B, Ahlbom A, Persson T. 1991. Incidence of leukaemia and brain 

tumours in some 'electrical occupations'.  Brit J Indust Med 48: 597 – 603 

Tynes T, Andersen A, Langmark F. 1992. Incidence of cancer in Norwegian workers 

potentially exposed to electromagnetic fields. Am J Epidemiol 136: 81-88 

Tynes T, Hannevik M,  Andersen A, Vistnes AI, Haldorsen T. 1996. Incidence of breast 

cancer in Norwegian female radio and telegraph operators. Cancer Causes Control 7: 

197-204 

Wiklund K. 1981. An application of the Swedish cancer-environment registry: leukaemia 

among Telefone operators at the telecommunications administration in Sweden. Int J 

Epidemiol 10: 373 – 376 

Wright WE, Peters JM, Mack TM. 1982. Leukaemia in workers exposed to electrical and 

magnetic fields. Lancet 307: 1160 – 1161 

 



 

           SECTION 12 

_____________________________________________ 

Evidence for Childhood Cancers 

(Leukemia) 

2012 Supplement 

(Replaces 2007 Chapter) 

 

 

 

Prof. Michael Kundi, PhD med habil                                                                                  

Head: Institute of Environmental Health                                                                    

Medical University of Vienna 

 Vienna, Austria 

 

 

 

 

 
 

Prepared for the BioInitiative Working Group 

September 2012 



 

  

I. INTRODUCTION 

The International Agency for Research on Cancer (IARC) concluded in 2001 that power-

frequency magnetic fields are a possible human carcinogen (Group 2B). This classification 

was based on the evidence from epidemiological studies of childhood leukemia. The panel 

rated the evidence from all other types of cancer, from long-term animal experiments and 

mechanistic studies as inadequate. The IARC working group decided that the association 

between power frequency magnetic fields and childhood leukemia can be interpreted as only 

limited evidence because bias and confounding cannot be ruled out.  

Since the seminal work of Wertheimer and Leeper (1979) many epidemiological studies of 

childhood cancer and residential exposure to power-frequency EMFs were published, not 

counting some studies about electrical appliances and cluster observations. Although these 

studies make up an impressive body of evidence, there is an ongoing discussion whether the 

observed relationships between exposure to power-frequency EMFs and childhood cancer (in 

particular leukemia) can be causally interpreted. Based on the comparatively few empirical 

studies virtually hundreds of commentaries, reviews and meta-analyses have been produced, 

more often than not increasing confusion instead of clarifying the issue. In 2000 two pooled 

analyses of childhood leukemia, the endpoint most often studied, have been published, one 

(Ahlbom et al., 2000) that was restricted to 9 studies that fulfilled a number of strict inclusion 

criteria (a defined population base for case ascertainment and control selection and using 

measurements or historical magnetic field calculations for exposure assessment), and another 

(Greenland et al., 2000) including also wire-code studies. Both pooled analyses got 

essentially the same result: a monotonously increasing risk with increasing power-frequency 

(50Hz/60Hz) magnetic field levels. These pooled analyses were the bases for the IARC 

working group decision.  

Typically, if an agent is classified as a Group 2B carcinogen, precautionary measures are 

taken at workplaces and special care is recommended if it is present in consumer products 

(e.g. lead, styrene, benzofuran, welding fumes). Concerning power-frequency EMFs the 

WHO International EMF Program made the following exceptional statement: “In spite of the 

large number data base, some uncertainty remains as to whether magnetic field exposure or 

some other factor(s) might have accounted for the increased leukaemia incidence.” (WHO 

Fact Sheet 263, 2001). This is the line of arguments that has been unswervingly followed by 

the electrical power industry since the early 1980’s. An endless chain of factors allegedly 



 

  

responsible for the ‘spurious’ positive association between power-frequency EMF exposure 

and cancer has been put forward, leading to nothing except waste of energy and money. The 

statement of WHO is scientifically flawed because there is no finite number of empirical tests 

to refute it. It is always possible that some factor not yet tested could be responsible, however 

low the probability that it remained obscure for such a long time. In the last years, due to the 

fact that no confounding factor has been found that explains the increased leukemia risk, a 

slight change of arguments can be discerned that consists of pointing out the very low 

proportion of children (less than 1%) exposed to power frequency fields associated with a 

significantly increased risk. In fact, both pooled analyses concluded that there is little 

indication of an increased risk below 3 to 4 mG magnetic flux density. 

Since the evaluation of IARC several other epidemiological studies have been published that 

corroborate the earlier findings and strengthen the evidence of an association. It becomes 

increasingly less likely that confounding factors exist that operate all over the world and still 

remained undetected. 

In the following chapters we will present the epidemiological evidence, discuss potential 

biases and demonstrate that from a worst-case scenario the evidence compiled so far is 

consistent with the assumption of a much greater proportion of leukemia cases attributable to 

power frequency field exposure than previously assumed. The key problem identified is the 

lack of a bio-physical model of interaction between very weak ELF EMFs and the organism, 

tissues, cells, and biomolecules.  

 

II. EPIDEMIOLOGICAL STUDIES OF POWER-FREQUENCY EMF 

AND CHILDHOOD CANCER 

 

Table 11-4 gives a synopsis of studies on childhood cancer and exposure to power-frequency 

EMF, Table 11-5 presents the main findings of these investigations. Most often assessment of 

exposure was by measurements with 16 studies measuring for at least 24 hours up to 7 days, 

and 9 studies with spot measurements. Eleven studies used distance from power lines as a 

proxy (some in combination with spot measurements) and 11 studies used wire codes (solely 

or in addition to other methods) classified according to the Wertheimer-Leeper or Kaune-

Savitz methods or some modifications thereof accounting for specific power grid conditions. 

Several investigations covered more than one endpoint with hematopoietic cancers the most 



 

  

frequently included malignancies (overall 37 studies), followed by nervous system tumors 

(13 studies) and other cancers (10 studies). All childhood cancer cases were assessed by 9 

investigations. 

The most restrictive criteria for combining the evidence for an association between ELF 

magnetic fields (MF) exposure and childhood leukemia were applied by Ahlbom et al.,  

(2000) that included 9 investigations. Table 11-1 shows the results of these investigations for 

the exposure category ≥ 4 mG (against < 1 mG as reference category). The studies included 

3,203 children with leukemia, 44 of which were exposed to average flux densities of 4 mG or 

above. Thus only 1.4% of children with leukemia and less than 1% of all children in the 

studies were exposed that high in accordance with measurement samples from the general 

population in Europe, Asia and America (Brix et al., 2001; Decat et al., 2005; Yang et al., 

2004; Tomitsch et al. 2010; Zaffanella, 1993; Zaffanella & Kalton, 1998).   

Meta-analyses of wire-code studies (Greenland et al., 2000; Greenland 2003; Wartenberg, 

2001) revealed similar results for childhood leukemia with estimates of risks around 2 for 

very high current codes but with considerable heterogeneity across studies.  

 

Table 11- 1: Results from nine studies included in Ahlbom et al.  (2000) updated according 

to Schüz (2007) of residential MF exposure and risk of childhood leukemia 

 

Country Odds-Ratio
*)

 (95%-CI) Observed Cases 

Canada 1.55 (0.65−3.68) 13 

USA 3.44 (1.24−9.54) 17 

UK 1.00 (0.30−3.37) 4 

Norway 0 cases / 10 controls 0 

Germany 3.53 (1.01−12.3) 7 

Sweden 3.74 (1.23−11.4) 5 

Finland 6.21 (0.68−56.9) 1 

Denmark 2 cases / 0 controls 2 

New Zealand 0 cases / 0 controls 0 

Overall 2.08 (1.30 – 3.33) 49 

*)
 24-h geometric mean MF flux density of ≥ 4 mG against <1 mG 

 



 

  

In 2010 Kheifets et al. published a pooled analysis of studies that appeared after the analyses 

of Ahlbom et al. (2000) and Greenland et al. (2000). This analysis included data from Bianchi 

et al. (2000) , Kabuto et al. (2006), Kroll et al. (2010), Lowenthal et al. (2007), Malagoli et al. 

(2010), Schüz et al. (2001), and Wünsch-Filho et al. (2011). For this pooled analysis the data 

from Bianchi et al. (2000) were extended by 5 years. Table 11-2 gives an overview of the 

results of this pooled analysis. 

 

Table 11- 2: Results from the pooled analysis of 7 (6) studies of residential MF exposure and 

risk of childhood leukemia (Kheifets et al. 2010a) and of the earlier pooled analysis of 9 other 

studies (Ahlbom et al. 2000). Shown are odds ratios (95% confidence interval) adjusted for 

age, sex, SES and study. 

 

Exposure category Kheifets et al. 2010a 
Kheifets et al. 2010a 

without Brazil 
Ahlbom et al. 2000 

<1 mG (ref) 

1-2 mG 

2-4 mG 

≥4 mG 

 

1.07 (0.81 – 1.41) 

1.22 (0.78 – 1.89) 

1.46 (0.80 – 2.68) 

 

1.15 (0.83 – 1.61) 

1.20 (0.67 – 2.17) 

2.02 (0.87 – 4.69) 

 

1.08 (0.89 – 1.31) 

1.11 (0.84 – 1.47) 

2.00 (1.27 – 3.13) 

>200 m (ref) 

100-200 m 

50-100 m 

≤50 m 

 

1.20 (0.90, 1.59)  

1.30 (0.89, 1.91)  

1.59 (1.02, 2.50) 

  

 

In addition to studies investigating the risk of leukemia in relation to power frequency MF the 

hypothesis has been examined that effects on relapse and survival in newly diagnosed acute 

lymphoblastic leukemia occur (Foliart et al. 2006, 2007). There was a significantly increased 

hazard ratio for death at exposures ≥3 mG that was based on four deaths only. 

The only other endpoint except leukemia and other hematopoietic diseases that has been 

investigated in several studies is nervous system tumors. The number of cases studied is too 

low to allow a differentiation according to diagnostic subgroups. Several papers have 

investigated childhood CNS tumors amongst other endpoints, including leukemia 

(Wertheimer & Leeper, 1979; Tomenius, 1986; Savitz et al., 1988; Feychting & Ahlbom, 

1993; Olsen et al., 1993; Verkasalo et al., 1993; Tynes & Haldorsen, 1997; UKCCS, 1999; 

2000; Draper et al., 2005; Kroll et al., 2010), whereas others have solely investigated CNS 

tumors (Gurney et al., 1996; Preston-Martin et al., 1996; Schüz et al., 2001b; Saito et al., 

2010). In most cases the time window was restricted to the postnatal period. Exposure was 

assessed based on residential proximity to overhead power lines, measurements and wiring 



 

  

configurations of houses. In a meta-analysis of childhood brain tumor studies (Wartenberg et 

al., 1998) estimates of risk were similar whether based on calculated fields (OR 1.4, 95% CI: 

0.8 – 2.3), measured fields (OR 1.4, 95% CI: 0.8 – 2.4), wire codes (OR 1.2, 95% CI: 0.7 – 

2.2), or proximity to electrical installations (OR 1.1, 95% CI: 0.7 – 1.7). The few studies 

published after this review do not change these figures substantially. Kheifets et al. (2010) 

report a pooled analysis of 10 studies using measured or calculated fields. The results are 

summarized in Table 11-3.  

 

Table 11- 3: Summary of results from a pooled analysis of 10 studies of residential MF 

exposure and risk of childhood brain tumors (Kheifets et al. 2010b). Shown are odds ratios 

(95% confidence interval) adjusted for age and sex. 

 

 Type of measurement 

Exposure category Long-term Calculated fields Spot 

<1 mG (ref) 

1-2 mG 

2-4 mG 

≥4 mG 

 

1.13 (0.69 - 1.87) 

0.94 (0.43 - 2.06) 

1.35 (0.39 - 3.71) 

 

1.06 (0.53 - 2.11) 

0.56 (0.19 - 1.60) 

1.21 (0.53 - 2.78) 

 

1.16 (0.79 - 1.72) 

1.21 (0.67 - 2.18) 

0.68 (0.26 - 1.80) 

 Type of home exposure 

Exposure category Home at diagnosis Longest lived-in Birth home 

<1 mG (ref) 

1-2 mG 

2-4 mG 

≥4 mG 

 

0.89 (0.60 - 1.31) 

0.77 (0.44 - 1.36) 

1.08 (0.54 - 2.16) 

 

1.42 (0.79 - 2.56) 

0.86 (0.28 - 2.65) 

2.19 (0.57 - 8.44) 

 

1.03 (0.59 - 1.80) 

0.79 (0.34 - 1.80) 

1.14 (0.52 - 2.49) 



 

   

III. DISCUSSION 

 

With overall 42 epidemiological studies published to date power frequency EMFs are among 

the most comprehensively studied environmental factors. Except ionizing radiation no other 

environmental factor has been as firmly established to increase the risk of childhood 

leukemia, but for both there are ongoing controversies. Although data from atomic bomb 

survivors and radiotherapy of benign diseases (ringworm, ankylosing spondylitis, and thymus 

enlargement) clearly indicate a causal relationship between exposure and leukemia, for other 

conditions like living in the vicinity of nuclear power plants, diagnostic x-rays, exposure 

secondary to the Chernobyl incident evidence is less clear and therefore no agreement has 

been reached so far. Concerning power frequency EMFs few deny that the relationship is real 

and not due to chance, but still there is a discussion whether or not this association can be 

causally interpreted. Still the possibility that confounding, exposure misclassification, and 

selection and other biases are responsible for the observed relationship is mentioned as an 

argument against a causal interpretation. Furthermore, it is often claimed that even if the 

exposure is causally related, due to the low attributable fraction no expensive measures to 

reduce exposure are warranted.  

The Environmental Health Criteria 238 (WHO 2007) summarizes: 

Scientific evidence suggesting that everyday, chronic low-intensity (above 0.3–0.4 

µT) power-frequency magnetic field exposure poses a health risk is based on 

epidemiological studies demonstrating a consistent pattern of increased risk for 

childhood leukaemia. Uncertainties in the hazard assessment include the role that 

control selection bias and exposure misclassification might have on the observed 

relationship between magnetic fields and childhood leukaemia. In addition, virtually 

all of the laboratory evidence and the mechanistic evidence fail to support a 

relationship between low-level ELF magnetic fields and changes in biological 

function or disease status. Thus, on balance, the evidence is not strong enough to be 

considered causal, but sufficiently strong to remain a concern. 

Although a causal relationship between magnetic field exposure and childhood 

leukaemia has not been established, the possible public health impact has been 

calculated assuming causality in order to provide a potentially useful input into 

policy. However, these calculations are highly dependent on the exposure 

distributions and other assumptions, and are therefore very imprecise. Assuming that 

the association is causal, the number of cases of childhood leukaemia worldwide that 

might be attributable to exposure can be estimated to range from 100 to 2400 cases 

per year. However, this represents 0.2 to 4.9% of the total annual incidence of 

leukaemia cases, estimated to be 49 000 worldwide in 2000. Thus, in a global context, 

the impact on public health, if any, would be limited and uncertain. (pp.11-12) 

 



 

  

Concerning preventive measures with respect to long-term effects it is stated: 

Implementing other suitable precautionary procedures to reduce exposure is 

reasonable and warranted. However, electric power brings obvious health, social and 

economic benefits, and precautionary approaches should not compromise these 

benefits. Furthermore, given both the weakness of the evidence for a link between 

exposure to ELF magnetic fields and childhood leukaemia, and the limited impact on 

public health if there is a link, the benefits of exposure reduction on health are 

unclear. Thus the costs of precautionary measures should be very low. (p.13) 

The sequence of arguments is as follows: 

 There are possible biases, exposure misclassification and confounding that could lead 

to spuriously increased risks 

 There is no support from animal experiments and mechanistic studies for the 

association found in epidemiological investigations 

  Therefore the association cannot be causal interpreted 

  Even if the association is causal the number of attributable cases is low because of 

the small proportion of exposed children 

 Therefore only low-cost precautionary measures are warranted. 

 

In the following sections we will challenge these arguments.  

A. The association between power frequency MF and childhood leukemia 

After the pooled analyses of Ahlbom et al. (2000) and Greenland et al. (2000) were published 

several other epidemiological investigations were conducted that did not change the 

conclusions of an association between power frequency MF and childhood leukemia. Seven 

of these additional investigations were included in a pooled analysis by Kheifets et al. 

(2010a). Seven other studies were excluded for several reasons: because only distance to 

power lines was assessed, because data were not available in time etc. Overall the results of 

all studies taken together speak in favor of an association between exposure to power 

frequency MF and childhood leukemia (see Table 11-5).  

B. Confounding 

A confounder is a factor that is associated with the agent in question as well as with the 

disease. Hence a confounder must be a risk factor for the disease. Concerning childhood 

leukemia it was clear from the very beginning that any suggested confounder must be purely 



 

  

speculative since there is no established environmental risk factor except ionizing radiation. 

Even if a condition can be found that is strongly associated with exposure to power frequency 

fields, if it is not associated with childhood leukemia it cannot confound the relationship. In 

the homogenous case, i.e. the association between EMF exposure and the confounder does 

not depend on disease status, and the confounder - leukemia association is independent of 

exposure to power frequency EMFs, even a stronger assertion can be proven: power 

frequency EMF remains a risk factor if the risk associated with the confounder is smaller than 

that associated with power frequency EMFs. Equation (1) gives the bias-factor for the 

homogenous case and dichotomous exposure variables (that can, however, easily be extended 

to categorical or continuous exposure variables): 

  )()(

)(
B

DFFAFF
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         (1) 

 

(F is the prevalence of the confounder, DF is the odds ratio for the confounder with respect 

to the disease, and AF is the odds ratio of the agent in question with respect to the 

confounder). From this equation it is immediately clear that if either DF or AF or both are 1 

there is no bias (i.e. the confounder is no risk factor for the disease and/or the agent in 

question is not associated with the confounder). This equation can be used to obtain limiting 

conditions for the odds ratio of the confounder given specific associations with power 

frequency fields. This has been done by Langholz (2001). 

Langholz (2001) investigated factors that have been proposed as possible confounders based 

on data from Bracken et al. (1998). None of these factors on their own explain the power 

frequency EMF - leukemia relationship. It has been criticized (Greenland, 2003) that too far 

reaching conclusions have been drawn based on the failure to discover a single factor that 

may explain the relationship, because combinations of such factors have not been addressed. 

However, even considering combinations of confounders it is unlikely that confounding alone 

explains the relationship between power frequency EMFs and childhood leukemia.  

Because of the rather small relative risks of around two for average exposure to ≥ 3 to 4 mG 

magnetic flux density or very high current codes there is, however, a possibility that bias due 

to a combination of confounding and other errors account for the increased risk. It will be 

shown in the last section that the most important aspect is the exposure metric. A much 

higher risk may be associated with exposure to power frequency fields. If this is actually the 

case the problem of bias of other provenience disappears. 



 

  

Because the increased risk from high levels of exposure to power frequency EMFs is found 

all over the world a confounder explaining this increased risk must not be quite strong and 

associated with magnetic fields of various sources but must also be present everywhere in the 

world. It is virtually impossible that such a risk factor has not yet been detected. Therefore, 

confounding alone as an explanation for the relationship with leukemia can practically be 

ruled out. 

C. Exposure misclassification 

Disregarding chance variations, non-differential exposure misclassification (i.e. 

misclassification that does not depend on disease status) always leads to an underestimation 

of the risk. The methods applied to calculate or measure MF in the residences of children are 

unlikely producing a bias that depends on the disease status (they have usually been done 

blinded to the case or controls status). Hence, if exposure misclassification was present this 

will rather have reduced the overall risk estimate. Different effects must be considered 

whether sensitivity (the probability that a child that was exposed is correctly classified as 

exposed) or specificity (the probability that a child that was not exposed is correctly classified 

as not exposed) is affected by the assessment method. The bias depends on six parameters 

(the exposure prevalence, the true odds ratio, the sensitivity and specificity in cases and 

controls). A thorough analysis of the effect of different types of exposure misclassification 

reveals that the vast majority of cases result in a bias towards the zero hypothesis. For low 

exposure prevalence the impact of a lack of specificity is greater than that of a lack of 

sensitivity, while for large exposure prevalence the opposite is the case. Considering that high 

levels of magnetic fields have a low prevalence an increase of specificity (i.e. reducing the 

number of false positives) has a greater impact on the reduction of bias than of increasing 

sensitivity (i.e. reducing the number of false negatives). This could explain why odds ratios 

tend to increase if longer measurements are applied. 

Overall, exposure misclassification is a very unlikely cause of a bias in the direction of a 

higher odds ratio. 

 

D. Selection bias 

In studies that were relying on individual measurements selection bias may have played an 

important role. Participation rates were sometimes lower in controls and especially for 

families with lower SES. Schüz et al. (2001b) calculated in a simulation study that about two 



 

  

thirds of the increased risk could be due to selection bias. Although Wartenberg (2001) 

applying a meta-regression could not establish any aspect of study methodology that could 

account for the variation across studies, it is possible that the proportion of children exposed 

to high levels of MF has been underestimated in some studies.  

The biased odds ratio can be factored into the true odds ratio and a bias factor. The bias factor 

is often called the selection odds ratio. It can be estimated if there are some data on exposure 

for non-participants. In the study from Brazil (Wünsch-Filho et al. 2011) measurements of 

magnetic flux density at the front door of participating and non-participating cases and 

controls have been conducted that allow computation of the bias factor. It turned out to be 

1.08, which indicates a slight bias towards an increased risk. The specific conditions of the 

study in Brazil (e.g. restriction to cases and controls that did not move to a district outside 

Sao Paulo, inclusion of children less than 9 years, differences in age distribution of 

participants and non-participants) do not allow generalization to other studies. However, due 

to the fact that studies that were registry based obtained essentially the same results speak 

against a distorting selection bias.  

E. Exposure metric 

After measurements of MF over 24 hours or even longer periods were introduced lower risk 

estimates for measured fields as compared to estimates from wire codes were noted. This 

observation was termed the “wire code paradox”. Although much of the discrepancies 

disappeared after the pooled analyses (Ahlbom et al., 2000; Greenland et al., 2000), and also 

the comprehensive meta-analysis of Wartenberg (2001) could find no support for a 

systematic effect, still in some investigations there was indeed a stronger relationship to 

estimates from wire codes as compared to measurement. Bowman et al. (1999) and Thomas 

et al. (1999) published a thorough analysis of this aspect based on data of the Californian 

childhood leukemia study (London et al., 1991). They correctly noted the different error 

structure associated with measured fields and calculated fields from the wire codes that are 

more stable over time. They further pointed to the fact that the bias introduced by basing the 

risk estimate on exposure variables that are unbiased but prone to statistical variation will be 

towards the null. It can be shown that this bias is inversely related to the conditional variance 

of the exposure metric. Hence the higher the variance of the used exposure metric, 

conditional on the true one, the greater the bias of the risk estimate. 



 

  

Up to now most considerations put forward were directed towards identification of factors 

and methodological issues that would explain a spurious relationship between power 

frequency EMFs and childhood leukemia. Hardly anyone asked the question: “Why is the 

risk estimated so low?” This question should, however, been asked because there are a 

number of intriguing facts: First of all, in developing countries with low levels of 

electrification childhood leukemia incidence is manifold lower as compared to industrialized 

regions (Parkin et al., 1998). Although registry data in developing countries are less reliable 

and sparse the difference is too pronounced to be due to underreporting. The time trend of 

childhood leukemia in industrialized countries suggests that childhood leukemia in the age 

group below 4 to 5 years of age is essentially a new phenomenon that emerged in the 1920s. 

Milham and Ossiander (2001) suggest that the acute lymphoblastic leukemia peak is due to 

electrification. Given the evidence of the pooled analyses, risk increases as a function of 

average MF flux density reaching significance at the far end of the exposure distribution for 

children exposed to an average of 3 to 4 mG. This result is clearly not in line with the 

hypothesis that much if not all of childhood leukemia (at least for the most prevalent ALL 

type in the age group of 2 to 4 years) is due to power frequency EMFs. Obviously there are 

two conclusions possible: either the hypothesis is wrong or the data must be reinterpreted.  

Another difficulty arises due to the fact that animal studies and in vitro tissue culture 

investigations provided equivocal evidence for a causal relationship between power 

frequency EMFs and cancer. There is a fundamental problem in clarifying the etiological role 

of the exposure in the development of leukemia. According to present theory (Greaves 1999; 

2002; 2003; 2006; Wiemels et al., 1999) childhood leukemia is a consequence of several (at 

least two) genetic events one of which already occurred before birth. Factors affecting 

childhood leukemia may therefore be related to different critical exposure windows: the 

preconceptional, the prenatal, and the postnatal period. Preconceptional factors may affect the 

mother and the grandmother during pregnancy with the mother, as well as the father during 

spermatogenesis. During the prenatal period exposure of the mother during pregnancy and 

exposure of the fetus may differentially affect the first stage of the disease. In fact, there is 

evidence that at birth around 1% of children show genetic deviations in cord blood cells 

(Wiemels et al., 1999; Eguchi-Ishimae et al., 2001; Mori et al., 2002) that could lead to 

leukemia conditional on them surviving and on additional genetic or epigenetic events. While 

the frequency of these deviations at birth might have been overestimated it is still manifold 

higher than the cumulative probability of childhood leukemia. Given this higher incidence of 



 

  

early genetic events, a causal factor for childhood leukemia need not be directly genotoxic 

and not even mutagenic. A slight but continuous shift of the balance towards survival and 

proliferation of deviating clones will be sufficient to dramatically increase the incidence. 

Experimental investigations were generally insufficient to cover such effects.  

Assuming that there is an exposure metric, intimately connected to average magnetic flux 

densities, and actually related to that condition responsible for the increased incidence of 

childhood leukemia, how does such a metric look like? Actually it is easy to derive the 

necessary conditions for such an exposure metric from bias considerations. There are only 

two such conditions that must be met: 

a. The conditional expectancy E(x|z) = z (or equal to a linear function of z); 

where x is the unknown exposure metric and z is the logarithm of the true 

average magnetic flux density the child is exposed to. 

b. The conditional variance Vx|z must be inversely related to z. 

Based on the pooled analysis of Ahlbom et al. (2000) and assuming average magnetic flux 

density follows a log-normal distribution with mean 0.55 mG and a geometric standard 

deviation of 1, using the complete data set of cases and controls, the results of the pooled 

analysis can be reconstructed. However, by varying the magnitude of the variance and the 

slope of the logistic function relating the purported exposure metric to the probability of 

developing childhood leukemia up to 80% of all cases can be attributed to the exposure. 

Fig.1 shows one of such Monte Carlo analyses. It can be seen that the bias of the risk estimate 

related to average MF flux density decreases as the level increases, however, the bias with 

respect to the assumed exposure metric reaches a factor of about 25 at levels above the third 

quartile. Of course, the precision of the actual measurements is much lower than indicated in 

the figure that is constructed by sampling from a theoretical log-normal distribution. 

However, this does not affect the validity of the argument since imprecisions in the average 

flux density lead to a bias towards 1. Therefore, the argument even holds in the absence of a 

relevant imprecision in measurements. The simulation was performed in such a way that 

exactly the same number of cases and controls are allocated to the average flux density 

categories as reported in Ahlbom et al. (2000) while varying the relationship between the 

theoretical alternative exposure metric that has the features a. and b. outlined above. 

Assuming that this correct metric is causally related to childhood leukemia, attributable 



 

  

fractions between 1% and 80% are calculated dependent on the relationship between the 

average MF flux density and this assumed metric.   

While of course this analysis does not prove the assumption that most of childhood leukemia 

is due to electrification, it demonstrates that the data obtained so far do not contradict this 

assumption. It is of crucial importance to analyze existing measurement data for aspects of 

the exposure that are in line with conditions a. and b. stated above. These exposure conditions 

may be analyzed by in vitro studies to asses their potential the facilitate transformation of 

already genetically damaged cells.  

 

 

Fig. 1: Results of Monte Carlo simulation under the assumption of a log-normal distribution 

of average magnetic flux densities in the homes of children that are related to an assumed 

‚effective’ exposure metric that follows the conditions a. and b. mentioned in the text. Blue 

are controls and red children with leukemia. The purported ‚effective’ exposure metric is 

associated with an attributable fraction of 80% and the odds-ratio for the highest quartile is 

around 50. 

 



 

  

IV. CONCLUSIONS 

 

The only endpoint studied so far in sufficient detail is childhood leukemia. Brain and nervous 

system tumors were also studied in some detail but due to the diversity of these tumors no 

conclusions can be drawn. 

Childhood leukemia is the most frequent childhood malignancy that peaks in the age group of 

2 to about 5 years. This peak seems to have been newly evolved in the early quarter of the 

20
th

 century and may be due to electrification. This assumption is supported by the absence of 

this peak or it being much less pronounced in developing countries. 

An overview of existing evidence from epidemiological studies indicates that there is a 

continuous increase of risk with increasing levels of average magnetic field exposure. Risk 

estimates reach statistical significance at levels of 3 to 4 mG. A low number of children are 

exposed at these or higher levels.   

As an alternative interpretation of the association of leukemia with power frequency MF 

contact currents have been put forward (Kavet et al. 2000). Indeed, considering that a 

correlation between the magnitude of contact currents in the homes (e.g. in the bathtub) has 

been found and dosimetry indicates that high levels of internal fields could exist in the bone 

marrow of children touching metallic water fixtures, the hypothesis has some empirical 

support. However, a report from an epidemiological investigation in California (Does et al. 

2011) could find no indication that contact currents play a decisive role while results for MF 

flux densities are in line with the previous findings of an increased risk with increasing 

exposure to power frequency MF in the homes. 

I have pointed out (Kundi 2006) that under four conditions (temporal relation, association, 

environmental equivalence, and population equivalence) epidemiological evidence alone is 

sufficient to suggest disease causation. This is in line with the hazard assessment of IARC 

that specifies the default rule for assessing an agent as carcinogenic if there is sufficient 

evidence from epidemiological studies. Support from animal experiments or mechanistic 

studies is not necessary in these cases. Evidence from epidemiological studies is considered 

sufficient if a positive relationship has been observed between the exposure and cancer in 

studies in which chance, bias and confounding could be ruled out with reasonable confidence. 

In the studies of childhood leukemia and residential exposure to power frequency magnetic 

fields measurements have been conducted after diagnosis. This is a violation of the condition 



 

  

of temporal relation. However, these measurements can be considered an estimate of the 

exposure during the etiologically relevant period. But still it would result in some exposure 

misclassification. Because this type of misclassification is non-differential it can only reduce 

the observed association. Furthermore, support comes from studies with calculated fields that 

cover the relevant period. Therefore, the epidemiological evidence can be considered to fulfill 

the criterion. 

Due to the small fraction of homes with very high exposure levels single studies have often 

insufficient power to detect an effect of the assumed magnitude of a doubling of the risk at 

levels around 3-4 mG. Therefore, meta-analyses and pooled analyses are important to 

investigate whether the association is due to chance. These analyses show a statistically 

significant association. There is no indication of a threshold but some investigations found 

reduced risks at intermediate levels, which might be due to inconsistencies in the sources that 

account for these exposure levels. There is sufficient evidence of an association that is 

apparent based on measurements, calculations, wire codes and other proxies for exposure. 

Most studies used matching by at least sex and age, some added other potential confounders 

like region, SES, number of siblings etc. Care has been applied in most investigations to have 

the same population base for cases and controls. Studies investigating potential confounders 

did not reveal any factor other than exposure to power frequency MF that could be 

responsible for the observed association. There is only one cohort study (Verkasalo et al. 

1993). This study, although with only 140 childhood cancer cases, is in line with the 

assumption of an association. An important analysis using the case-specular method supports 

the assumption of population and environmental equivalence (Ebi et al. 1999). Because the 

etiology of childhood leukemia is still not clear it is difficult to directly test the features most 

relevant for assessing the ceteris paribus condition. One investigation (Yang et al. 2008) 

indicates that power frequency MF may interact with specific genetic conditions. These 

results can be interpreted in two ways: the risk of leukemia from exposure to MF may be 

increased only in individuals harboring some specific polymorphism, on the other hand it is 

possible that exposure increases the genetic instability independently of an already increased 

instability due to a genetic polymorphism leading to a greater probability of developing the 

disease. At present there is no evidence to discriminate between these possibilities. If the first 

interpretation is valid different fractions of children harboring the relevant genetic condition 

would result in differences in the observed risk and thus some studies could have violated the 

population equivalence principle. Only in this case, it would be failure to detect an effect and 



 

  

not a spuriously increased risk.  Overall, there is no reason to assume that the principles of 

population and environmental equivalence has been violated in such a way that spuriously 

increased risks could have resulted. 

For all these reasons it can be concluded that there is sufficient evidence from 

epidemiological studies of an increased risk from exposure to power frequency MF that 

cannot be attributed to chance, bias or confounding. Therefore, according to the rules of 

IARC such exposures can be classified as a group 1 carcinogen. 

It has to be stressed, however, that according to the rules of IARC the working groups may 

up- or down-grade the classification upon consideration of the overall evidence. The IARC 

working group considered the lack of supporting evidence from animal experiments and in 

vitro studies as sufficient to down-grade the classification to 2B. Although it is not possible to 

discuss this aspect in this context, there are several problems with this view: first, there is no 

animal model for ALL, the most frequent childhood leukemia type; second, animal studies 

are difficult due to the fact that procedures usually applied, i.e. exposure levels just below the 

acute toxicity level, cannot be followed for MFs due to muscle and nerve excitations 

accompanying such exposures; third, at levels relevant for human long-term exposure in vitro 

experiments would have to detect extremely rare cellular events to account for the increased 

risk observed in epidemiological investigations, which is impossible using methods available 

to date. Therefore, strong and consistent support from such studies can neither be expected 

nor demanded. Consequently, lack of support from such evidence cannot be used as an 

argument to down-grade the classification based in epidemiology.   

Considering the possibility that aspects of exposure to power frequency EMFs that have not 

yet been detected may account for a greater proportion of cases than assumed there are two 

necessary steps to be taken: Concerted efforts must be undertaken to scrutinize existing data 

and collect new ones that should reveal whether or not exposure metrics exist that show the 

necessary conditions for an effective exposure metric; and, second, precautionary measures 

must be delineated that result in a reduction of all aspects of exposure to power frequency 

EMFs. 

Exposure guidelines of IEEE and ICNIRP are solely derived from immediate effects such as 

nerve and muscle excitations. These guidelines are indeed sufficient to protect from such 

acute effects (although indirect effects from contact currents cannot be ruled out). Evidence 

for long-term chronic effects has been collected in the past decades and has reached a state 



 

  

that it cannot longer be denied that these effects are real. Only under very exceptional and 

remote conditions of a combination of several unknown confounders, selection bias and 

differential exposure misclassification the established relationship could be spurious. These 

combinations must have been present all over the world. There is no other risk factor 

identified so far for which such unlikely conditions have been put forward to postpone or 

deny the necessity to take steps towards exposure reduction. As one step in the direction of 

precaution, measures should be implemented to guarantee that exposure due to transmission 

and distribution lines is below an average of about 1 mG. This value is arbitrary at present 

and only supported by the fact that in many studies this level has been chosen as a reference. 

 The balance of evidence suggests that childhood leukemia is associated with exposure to 

power frequency EMFs either during early life or pregnancy 

 Considering only average MF flux densities the population attributable risk is low to 

moderate, however, there is a possibility that other exposure metrics are much stronger 

related to childhood leukemia and may account for a substantial proportion of cases. The 

population attributable fraction ranges between 1-4% (Kheifets et al., 2007) 2-4% 

(Greenland & Kheifets 2006), and 3.3% (Greenland 2001) assuming only exposures 

above 3 to 4 mG are relevant. However, if not average MF flux density is the metric 

causally related to childhood leukemia the attributable fraction can be much higher. 

Calculating a guideline level based on the unit-risk approach leads to a level close to 1 

mG. 

 Other childhood cancers except leukemia have not been studied in sufficient detail to 

allow conclusions about the existence and magnitude of the risk 

 IEEE guideline levels are designed to protect from short-term immediate effects, long-

term effects such as cancer seem to be evoked by levels several orders of magnitudes 

below current guideline levels 

 Precautionary measures are warranted that should reduce all aspects of exposure, because 

at present we have no clear understanding of the etiologically relevant aspect of the 

exposure  
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Table 11- 4: Synopsis of childhood cancer epidemiologic studies (1979 – 2012) 

Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Wertheimer & 

Leeper 1979 

Greater Denver area, 

Colorado/ 1950-1973/ 

Case-control  

wire-codes by 

inspection (not 

blinded) of 

surroundings of 

residences occupied 

at birth and time of 

death  

retrospective 

(1976-1977) 

assessment  

all 

assessments 

within 22 

days 

age (m), sex, 

urbanization, 

SES, family 

pattern, traffic  

344 cancer deaths 

(age<19) from files, 

matched controls from 

next entry in birth 

register or from 

alphabetical list 

Fulton et al. 

1980 

Rhode Island/1964-

1978/Case-control 

power lines 

(<45.72m from 

residences) assessed 

and MF calculated as 

combined weighted 

average (based on 

Wertheimer-Leeper 

measurements)  

retrospective 

(1979) 

assessment  

all 

assessments 

within same 

period 

age(m), SES 119 leukemia patients 

(age<20) from Rhode 

Island hospital files; 

240 control addresses 

from birth register 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Tomenius 1986 Stockholm county/ 

1958-1973/ Case-

control 

inspection of visible 

electrical 

constructions within 

150m of dwellings 

occupied at birth and 

diagnosis date; spot 

measurements at the 

door of the dwellings 

(blinded to case 

status) 

 

 

 

 

retrospective 

(~1981) 

assessment  

all 

assessments 

within same 

period 

age(m), sex(m), 

district(m) 

716 tumor cases (660 

malignant, 56 benign) 

from cancer registry 

(age<19), matched 

controls from entry into 

birth register just before 

or after index case from 

same church district 

Savitz et al. 

1988 

Five-county Denver 

area, Colorado/1976-

1983/Case-control 

wire-code of homes 

occupied prior to 

diagnosis (blinded to 

case status); spot 

measurements at the 

front door, in child’s 

and parent’s 

bedrooms and other 

rooms of frequent 

occupancy; 

interviews of mothers 

(in some cases 

fathers or adopted 

mothers) 

retrospective 

(~1985) 

assessment 

all 

assessments 

within same 

period 

age±3y (m), 

sex(m), area(m), 

SES, traffic 

density, 

maternal age, 

maternal 

smoking 

356 cancer cases 

(age<15) from cancer 

registry (71% 

interviewed, 36% 

measurements, 90% 

wire codes); 278 

controls (79% resp.rate) 

from RDD (80% 

interviewed, 75% 

measurements, 93% 

wire codes) 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Coleman et al. 

1989 

Four boroughs near 

London/1965-1980/ 

Case-control 

historical exposure 

by type and distance 

of electricity supply 

within 100 m of 

residences; distance 

to center of building 

assessed blinded to 

case status; 

calculations 

according to peak 

winter load of the 

power lines  

 

 

 

 

retrospective 

assessment 

all 

assessments 

within same 

period 

age(m), sex(m), 

year of 

diagnosis(m) 

84 leukemia cases 

(age<18) and 141 

cancer controls from 

cancer registry 

Myers et al. 

1990 

Yorkshire/1970-1979/ 

Case-control 

assessment of 

overhead power lines 

within a distance 

depending on type of 

power line (100-

500m) of home at 

birth; flux densities 

calculated from line 

load data and 

distance to center of 

dwelling 

retrospective 

(1981-1989) 

assessment 

all 

assessments 

within same 

period 

age(m), sex(m), 

district(m), 

house type 

374 cancer cases 

(age<15) from 

registries; 588 controls 

from nearest entry in 

birth register of the 

same district 

London et al. Los Angeles County, 24-h MF measurements all age±1 or 2 or 232 leukemia cases 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

1991 CA/1980-1987/Case-

control 

measurements 

(IREQ/ EMDEX) at 

location of child’s 

bed; EF, MF and 

static magnetic field 

spot measurements; 

Wertheimer-Leeper 

wire code (all 

facilities within 46m; 

blinded to case 

status); interviews 

with parents about 

use of appliances etc. 

1987-1989 assessments 

within same 

period 

3y(m), sex(m), 

ethnicity(m), 

indoor 

pesticides, hair 

dryers, 

black&white 

TV, fathers 

occupational 

exposure to 

chemicals 

(70% part.rate) from 

LA County Cancer 

Surveillance Program 

(age<11); 232 matched 

controls (90% part.rate) 

– 65 as friends of cases, 

others by RDD (5 digits 

cases, last 2 random) 

Verkasalo et al. 

1993 

Finland/ 1970-1989/ 

Retrospective Cohort 

estimated magnetic 

flux density from 

high-voltage power 

lines in the center of 

the building 

cumulative 

and max. flux 

density any 

time between 

birth and 

diagnosis 

n.a. age, sex, 

calendar period 

68300 boys and 66500 

girls (age<20) 

identified having lived 

any time after birth in a 

house with a distance < 

500m from a 110, 220, 

or 400 kV power line 

and an estimated flux 

density exceeding 

0.1mG; 140 cancer 

cases from follow-up in 

cancer registry through 

1990. 

Feychting & Sweden/1960- calculations (blinded) the year all age(m), sex(m), 142 cancer cases within 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Ahlbom 1993 1985/Nested Case-

control 

based on historical 

load data, wire 

configuration and 

distance from 220 

and 400kV power 

lines and spot 

measurements 

(several rooms, 5-

min measurements, 

main current turned 

on and off) 

closest to date 

of diagnosis 

assessments 

within same 

period 

parish(m), year 

of diagnosis, 

apartment/single 

house, traffic 

(NO2) 

the study base of 

children (age<16) 

living on a property 

<300m from any 220 or 

400kV power line; 558 

matched controls from 

the study base. 

Olsen et al. 1993 Denmark/1968-1986/ 

Case-control 

calculations based on 

estimated historical 

load of overhead 

transmission lines, 

transmission cables, 

and substations (50-

400 kV) 

retrospective 

up to 9 mo 

before birth 

all 

assessments 

within same 

period 

age(m), sex(m) 1707 cancer cases from 

registry (age<15) and 

4788 matched controls 

from population 

register 

Fajardo-

Gutierrez et al. 

1993 

Mexico City/not 

specified/Case-control 

interview with 

parents including 

assessment of 

distance and type of 

transmission and 

distribution lines, 

power substations 

etc. 

n.a. n.a. age±2y(m), SES 81 leukemia cases from 

two hospitals; 77 

controls from 

orthopedics or 

traumatology 

department 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Coghill et al. 

1996 

England/1986-1995/ 

Case-control 

E- and H-field probes 

designed for the 

study measured 24 h 

in the bedroom; data 

used only for the 

period 20:00 to 08:00 

 

 

 

 

 

 

 

 

 

retrospective parallel 

measurements 

in case and 

control homes 

age(m), sex(m) 56 leukemia cases 

(age<15) from various 

sources (media 

advertising, self-help 

groups, Wessex Health 

Authority) and 56 

controls  

Gurney et al. 

1996 

Seattle area, 

Washington/1984-

1990/Case-control 

wire-code by 

inspection of homes 

(blinded for case 

status) occupied 

within 3 y before 

diagnosis, electrical 

appliances by 

interview with 

mothers and mailed 

questionnaire 

retrospective 

(1989-1994) 

assessment  

all 

assessments 

within same 

period 

age±2y(m), 

sex(m), area of 

residence(m), 

race, mothers 

education, 

family history of 

brain tumors, 

ETS, living on a 

farm, head/neck 

x-ray, head 

injury, epilepsy, 

fits  

133 brain-tumor cases 

(age<20) (74% 

part.rate) by Cancer 

Surveillance System; 

270 controls by RDD 

(79% part.rate) 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Preston-Martin 

et al. 1996 

Los Angeles County, 

California/1984-1991/ 

Case-control 

wire-code and 

outside spot 

measurements of 

homes occupied from 

conception to 

diagnosis (blinded 

for case status); 24h 

measurements in 

child’s bedroom and 

another room for a 

subset; electrical 

appliances, 

occupation etc. by 

interviews with 

mothers 

 

 

 

retrospective 

(1990-1992) 

assessment 

all 

assessments 

within same 

period 

age±1y(m), 

sex(m), year of 

diagnosis, SES, 

parents 

occupation, 

building type 

298 brain tumor cases 

(age<20) (68% 

part.rate); 298 controls 

by RDD (70% 

part.rate) 

Tynes & 

Haldorsen 1997 

Norway/1965-

1989/Nested Case-

control 

cohort (age <15) 

living in a ward 

crossed by a high-

voltage power line 

(≥45kV in urban, 

≥100kV in rural 

areas) in at least one 

of the years 1960, 

1970, 1980, 1985, 

1987, 1989.  

Calculated 

historical 

fields 

n.a. age(m), sex(m), 

munici-

pality(m), 

SES, type of 

building, 

number of 

dwellings 

500 cancer cases (94%) 

from cancer registry; 

2004 controls (95%) 

randomly selected from 

cohort 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Petridou et al. 

1997 

Greece/1993-

1994/Case-control 

distance to 

transmission and 

distribution lines, 

field calculation 

n.a. n.a. age(m), sex(m), 

region(m), 

maternal age, 

education etc. 

117 childhood 

leukemia cases 

(age<15) (77% of 

eligible) and 202 

controls (68% of 

eligible) 

Michaelis et al. 

1997a 

Lower Saxony, 

Germany/1988-1993/ 

Case-control 

24h measurements 

(EMDEX II) in the 

child’s bedroom and 

living room in 

dwellings where the 

child lived longest 

(not blinded to case 

status); perimeter 

measurements 

(measurement wheel) 

with recordings every 

foot (~30cm) when 

walking through the 

rooms and outside 

the house where the 

child lived for at least 

1 y. 

measurements 

1992-1995 

all 

measurements 

within same 

period 

age±1y(m), 

sex(m), SES, 

urbanization 

129 leukemia cases 

(age<15) (59% 

part.rate) from register; 

328 controls (167 from 

same district, 161 from 

random district) (53% 

part.rate) from 

government registration 

files 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Michaelis et al. 

1997b 

Berlin/1991-1994/ 

Case-control 

(pooled with data from 

Michaelis et al. 1997a) 

as above not specified not specified age±1y(m), 

sex(m), SES, 

urbanization, 

age at diagnosis, 

West/East 

Germany 

 

 

 

 

 

 

47 leukemia cases 

(age<15) (59% 

part.rate) from register; 

86 controls (28% 

part.rate) from 

government registration 

files 

Linet et al. 1997 Illinois, Indiana, 

Iowa, Michigan, 

Minnesota, New 

Jersey, Ohio, 

Pennsylvania, 

and Wisconsin/1989-

1994/Case-control 

24h measurements 

(EMDEX C) in 

child’s bedroom 

(blinded to case 

status); spot 

measurements in the 

residences and at the 

front door; wire 

coding of residences 

of residentially stable 

case-control pairs 

~2 years all 

measurements 

within same 

period 

age(m), 

ethnicity(m), 8-

digits phone 

number(m),  

sex, SES, time 

of measurem., 

urbanization, 

type of 

residence, birth 

order, birth 

weight, 

mother’s age, 

medical x-ray 

638 ALL cases 

(age<15) from register 

of Children’s Cancer 

Group (78% part.rate); 

620 controls from RDD 

(63% part.rate). 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Li et al. 1998 Taipei Metropol.Area 

(3 districts), Taiwan/ 

1987-1992/ Ecological 

high voltage 

transmission lines 

(69 -345kV) were 

mapped to 124 

administrative 

regions; households 

with ≥50% 

intersecting a buffer 

zone of 100m around 

transmission lines  

 

 

 

 

 

 

 

n.a. n.a. age (5y groups), 

calendar year 

28 leukemia cases from 

registry in a study base 

of ~121.000 children 

(age<15); 7 cases 

within 21 cases outside 

a 100m corridor each 

side of a transmission 

line 

Dockerty et al. 

1998 

New Zealand/1990-

1993/Case-control 

24h measurements 

(Positron) in child’s 

bedroom and another 

room (only for 

leukemia cases); 

interview with 

mothers 

1-2 years all 

measurements 

within same 

period 

age(m), sex(m), 

SES, maternal 

smoking, living 

on a farm 

303 cancer cases 

(age<15) from 3 

registries (88% 

part.rate) – 121 

leukemia cases; 303 

controls from birth 

register (68% part.rate) 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

UKCCS 1999 England, Scotland & 

Wales/1991(92)-

1994(96)/Case-control 

spot measurements 

(EMDEX II) in 

child’s bedroom, 90 

min measurements in 

main family room, 

48h measurements 

(20% of case-control 

pairs) at child’s 

bedside;  school 

measurements; 

weighted averages 

from info obtained 

by questionnaire; 

adjustments from 

historical load data 

 

 

 

 

 

 

 

 

~2 years <4 months in 

98% of case-

control pairs 

(spot), within 

4 weeks (48h 

measurem.) 

age (m), sex(m), 

district(m), 

deprivation 

index 

2226 cancer cases 

(age<15) from registry 

(59% part.rate); 2226 

matched controls from 

registry  

McBride et al. 

1999 

Canada (5 provinces)/ 

1990-1994(95)/Case-

control 

48h personal 

measurements 

(Positron), 24h 

measurements in 

child’s bedroom 

9 months 

average 

2 months 

average 

age±3-6mo (m), 

sex(m), area(m), 

maternal age, 

maternal 

education, 

399 leukemia cases 

(age<15) (90% 

part.rate) from 

treatment centers and 

registry; 399 matched 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

(75% cases, 86% 

controls); wire codes 

(78% cases, 85% 

controls) and 

residence perimeter 

and front door 

measurements (64% 

cases, 74% controls) 

(blinded to case 

status) (EMDEX C); 

interviews with 

parents 

income, 

ethnicity, 

number of 

residences 

controls (76% part.rate) 

from health 

insurance/family 

allowance rolls  

Green et al. 

1999a 

Greater Toronto Area, 

Canada/1985-1993/ 

Case-control 

48h personal 

measurements 

(Positron); spot 

measurements in 

child’s bedroom and 

two other rooms; 

wire codes; 

interviews with 

parents 

 

 

 

 

2-3 y average ~5 mo 

average 

age±1y (m), 

sex(m), family 

income, 

siblingship, 

residential 

mobility, 

insecticides, 

mother’s 

medication and 

exp. prior or 

during pregn. 

201 leukemia cases 

(age<15) from hospital 

record (64% part.rate); 

406 controls from 

telephone marketing 

list (10,000 residences) 

(63% part.rate) 

Green et al. 

1999b 

Greater Toronto Area, 

Canada/1985-1993/ 

Case-control 

as above 2-3 y average ~5 mo 

average 

as above 88 leukemia cases 

(age<15) from hospital 

record; 133 controls 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

from telephone 

marketing list (10,000 

residences) 

Schüz et al. 

2001a 

West 

Germany/1993(90)-

1997(94)/Case-control 

24h measurements 

(FW2a) under 

mattress of child’s 

bed; 24h 

measurements 

(EMDEX II) in 

living room; 

perimeter 

measurements with 

recordings every foot 

(~30cm) when 

walking through the 

rooms 

  age(m), sex(m), 

community(m), 

SES, year of 

birth, 

urbanization, 

residential 

mobility, 

season, type of 

residence 

514 leukemia cases 

(age<15) from cancer 

registry (61% of 

eligible) and 1301 

controls from 

population registry 

(61% of eligible) 

Schüz et al. 

2001b 

 

 

Lower Saxony/1988 – 

1993 & Western 

Germany/1992-1994/ 

Case-control 

as above   age(m), sex(m), 

community(m), 

SES, 

urbanization 

64 cases of CNS 

tumors (age<15) from 

registry and 414 

controls from 

population registry 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Mizoue et al. 

2004 

Japan/1992-

2001/Ecological 

classification of  294 

districts according to 

their proximity to 

high voltage power 

lines (66 and 220V); 

proportion of area of 

district (0%, <50%, 

>50%) within ±300m 

of a power line 

n.a. n.a. age (5y groups) 14 cases (age<15) of  

hematopoietic 

malignancies identified 

from two hospitals (all 

that treated these 

malignancies) 

Draper et al. 

2005 

England & Wales/ 

1962-1995/Case-

control 

computed distance 

from nearest 

overhead power line 

(132kV, 275kV, 

400kV) of residence 

at birth 

n.a. n.a. age±6mo(m), 

sex(m), 

district(m), SES 

29081 cancer cases 

(age<15) identified 

from several registries 

(88% of total); 29081 

controls from birth 

registers  

Perez et al. 2005 Cuba (Habana)/1996-

2000/Case-control 

spot measurements 

inside and outside 

(Bell 4090), 

measurement of 

ionizing radiation 

not specified not specified age(m), sex(m), 

school(m) 

unknown number of  

leukemia cases 

(age<15) and controls 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

Kabuto et al. 

2006 

Tokyo, Nagoya, 

Kyoto, Osaka 

and Kitakyushu 

metropolitan areas 

(Japan)/1999-

2001/Case-control 

7 days continuous 

MF measurement 

(EMDEX Lite) in 

child’s bedroom; spot 

measurements in- 

and outside the house 

(EMDEX II) 

~13 mo ~3 days age±()1y(m), 

sex(m), 

region(m), 

population 

size(m), father’s 

and mother’s 

education 

321 ALL/AML cases 

(age<15) from several 

registries of childhood 

cancer study groups 

(49% part.rate); 634 

controls from 

residential registry 

(29% part.rate) 

Mejia-Arangure 

et al. 2007 

Mexico-City/1995-

2003/Case-control 

spot measurements 

(EMDEX II) at the 

front door; wire 

coding (blinded to 

case status) 

not specified not specified age, sex, SES, 

birth weight, 

maternal age, 

traffic, district, 

family history of 

cancer 

42 ALL/AML cases 

(age<16) with Down 

syndrome from 4 (all) 

treating hospitals; 124 

healthy controls with 

Down syndrome from 2 

centers 

Feizi & Arabi 

2007 

Iran (Tabriz)/1998-

2004/Case-control 

distance and 

calculated fields 

n.a. n.a. age(m), sex(m), 

SES(m), 

race(m), 

district(m) 

60 AL cases (83% of 

eligible) (age<15) and 

59 hospital controls 

(79% of eligible) 

Lowenthal et al. 

2007 

Tasmania/1972-

1980/Case-control 

distance from power 

line 

 

 

 

 

 

 

 

n.a. n.a. age(m), sex(m) 783 adult and 71 

childhood cases of 

MPD or LPD and 

matched controls 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

 

Yang et al. 2008 Shanghai/2006-

2007/Case-only 

distance from 

transformer or power 

lines  

n.a. n.a. age, gender, 

parental 

education, 

pesticides, 

television set 

etc. in children’s 

room, chemical 

factory, telecom 

transmitter <500 

m 

123 AML cases 

(age<15) with or 

without XRCCI 

Ex9p16A  

Abdul-Rahman 

et al. 2008 

Malaysia/2001-

2007/Case-control 

distance from power 

lines and substations 

(GPS) 

n.a. n.a. not specified 128 AL cases (age<15) 

and 128 hospital 

controls 

Malagoli et al. 

2010 

Italy (Modena, Reggio 

Emilia)/1986-2007/ 

calculated fields from 

power lines ≥132 kV 

n.a. n.a. age(m), sex(m), 

municipality(m), 

parent 

education, 

income 

64 cases (age<14) of 

hematological 

malignancies and 256 

controls 

Kroll et al. 2010 England, Wales/1962-

1995/Case-control 

calculated fields from 

overhead power line 

(132kV, 275kV, 

400kV) of residence 

at birth 

n.a. n.a. age(m), sex(m), 

district(m) 

28968 cancer cases 

(age<15) 

Sohrabi et al. 

2010 

Iran (Teheran)/2007-

2009/Case-control 

distance to power 

lines (123, 230, 400 

kV) using GPS 

 

n.a. n.a. age(m), sex(m) 300 ALL cases 

(age<18) and 300 

hospital controls 
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Study Country/Period/Study 

Type 

Exposure assessment Interval 

diagnosis -

measurement 

Interval 

measurement 

cases-controls 

Confounders 

considered & 

matching 

variables(m) 

Case/control selection 

 

 

 

Saito et al. 2010 Japan/1999-

2002/Case-control 

1-week measurement 

(EMDEX Lite) near 

bedside 

Not specified 12.4 days age(m), sex(m), 

region(m), 

population 

size(m), mother 

education 

55 childhood brain 

tumor cases (age<15) 

and 99 controls 

Does et al. 2011 California/2004-

2007/Case-control 

30 min measurement 

of contact current in 

the bathtub , indoor 

spot measurements 

(EMDEX Lite) 

28 months 8 months age, sex, race, 

income 

245 leukemia cases 

(95% of eligible) 

(age<8) and 269 

controls (92% of 

eligible) 

Wünsch-Filho et 

al. 2011 

Brazil (Sao 

Paulo)/2003-

2009/Case-control 

24 h measurements 

(EMDEX II) under 

the child’s bed, 

distance to power 

lines 

Not specified Not specified age(m), sex(m), 

city of 

birth(m),race, 

mobility,etc. 

179 ALL cases (age<9) 

(90% of contacted) and 

565 controls (88% of 

contacted) 

 

RDD…Random Digit Dialing, n.a…not applicable, MF…magnetic field, SES…socio-economic status, ALL…acute lymphoblastic leukemia, 

AML…acute myeloid leukemia, AL…acute leukemia, LPD…lymphoproliferative disorders, MPD…myeloproliferative disorders 
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Table 11- 5: Synopsis of main results of childhood cancer studies (1979 – 2012) 

Study Endpoint Exposure category Outcome [95% CI] 

Wertheimer & Leeper 

1979
a 

Leukemia LCC* (birth address) 

HCC 

 

OR 2.28 [1.34 – 3.91] 

 Lymphoma LCC* 

HCC 

 

OR 2.48 [0.73 – 8.37] 

 Nervous system tumors LCC* 

HCC 

 

OR 2.36 [1.03 – 5.41] 

 Others LCC* 

HCC 

 

OR 2.38 [0.93 – 6.06] 

 All hematopoietic LCC* 

HCC 

 

OR 2.31 [1.41 – 3.77] 

 All cancers LCC* 

HCC 

 

OR 2.33 [1.59 – 3.42] 

Fulton et al. 1980 Leukemia Very low*
c
 

Low 

High 

Very high 

 

OR 1.1 [0.5 – 2.4] 

OR 1.2 [0.6 – 2.6] 

OR 1.0 [0.5 – 2.3] 

Tomenius 1986 Leukemia no 200 kV-line* 

200 kV-line<150m 

 

OR 1.09 [0.29 – 4.12] 

 Lymphoma no 200 kV-line* 

200 kV-line<150m 

 

OR 1.48 [0.35 – 6.35] 

 Nervous system tumors no 200 kV-line* 

200 kV-line<150m 

 

OR 3.96 [0.85 – 18.52] 

 Others no 200 kV-line* 

200 kV-line<150m 

 

OR 2.59 [0.70 – 9.66] 

 All hematopoietic no 200 kV-line* 

200 kV-line<150m 

 

OR 1.26 [0.47 – 3.34] 

 All cancers no 200 kV-line* 

200 kV-line<150m 

 

OR 2.15 [1.12 – 4.11] 
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Study Endpoint Exposure category Outcome [95% CI] 

 All cancers <3mG birth dwelling* 

≥3mG  

 

OR 2.67 [1.18 – 6.08] 

 All cancers <3mG diagn. dwelling* 

≥3mG 

 

OR 2.60 [1.20 – 5.67] 

Savitz et al.1988 Leukemia <2mG low power use* 

2+ mG 

 

OR 1.93 [0.67 – 5.56] 

 Lymphoma <2mG low power use* 

2+ mG 

 

OR 2.17 [0.46 – 10.31] 

 Brain tumors <2mG low power use* 

2+ mG 

 

OR 1.04 [0.22 – 4.82] 

 Others <2mG low power use* 

2+ mG 

 

OR 0.96 [0.31 – 2.98] 

 All hematopoietic <2mG low power use* 

2+ mG 

 

OR 1.99 [0.57 – 5.14] 

 All cancers <2mG low power use* 

2+ mG 

 

OR 1.35 [0.63 – 2.90] 

 Leukemia <2mG high power use* 

2+ mG 

 

OR 1.41 [0.57 – 3.50] 

 Lymphoma <2mG high power use* 

2+ mG 

 

OR 1.81 [0.48 – 6.88] 

 Brain tumors <2mG high power use* 

2+ mG 

 

OR 0.82 [0.23 – 2.93] 

 Others <2mG high power use* 

2+ mG 

 

OR 0.75 [0.30 – 1.92] 

 All hematopoietic <2mG high power use* 

2+ mG 

 

OR 1.51 [0.68 – 3.35] 

 All cancers <2mG high power use* 

2+ mG 

 

OR 1.04 [0.56 – 1.95] 
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Study Endpoint Exposure category Outcome [95% CI] 

 All cancers 0-0.64 mG low power use* 

0.65-0.99 mG 

1.0-2.49 mG 

2.5+ mG 

 

OR 1.28 [0.67 – 2.42] 

OR 1.25 [0.68 – 2.28] 

OR 1.49 [0.62 – 3.60] 

 All cancers 0-0.64 mG high power use* 

0.65-0.99 mG 

1.0-2.49 mG 

2.5+ mG 

 

OR 1.13 [0.61 – 2.11] 

OR 0.96 [0.56 – 1.65] 

OR 1.17 [0.54 – 2.57] 

 Leukemia LCC* 

HCC 

 

OR 1.41 [0.57 – 3.50] 

 Lymphoma LCC* 

HCC 

 

OR 1.81 [0.48 – 6.88] 

 Brain tumors LCC* 

HCC 

 

OR 0.82 [0.23 – 2.93] 

 Others LCC* 

HCC 

 

OR 0.75 [0.30 – 1.92] 

 All hematopoietic LCC* 

HCC 

 

OR 1.51 [0.68 – 3.35] 

 All cancers LCC* 

HCC 

 

OR 1.04 [0.56 – 1.95] 

 All cancers UG 2y before diagnosis* 

VLCC 

OLCC 

OHCC 

VHCC 

 

OR 0.96 [0.39 – 2.34] 

OR 1.17 [0.65 – 2.08] 

OR 1.40 [0.71 – 2.75] 

OR 5.22 [1.18 – 23-09] 

 All cancers VLCC/OLCC*
b 

UG 

OHCC 

VHCC 

 

OR 0.89 [0.51 – 1.55] 

OR 1.25 [0.67 – 2.31] 

OR 4.66 [0.95 – 22.76] 
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Study Endpoint Exposure category Outcome [95% CI] 

Coleman et al. 1989 Leukemia ≥100 m nearest substation* 

50-99 m 

25-49 m 

0-24 m 

 

OR 0.75 [0.40 – 1.38] 

OR 1.49 [0.61 – 3.64] 

OR 1.63 [0.32 – 8.38] 

Myers et al. 1990 All cancers <0.1mG* 

0.1-0.3mG 

≥0.3mG 

 

OR 0.96 [0.37 – 2.51] 

OR 1.73 [0.59 – 5.07] 

London et al. 1991 Leukemia <0.68mG* (24h.measurem.) 

0.68-1.18mG 

1.19-2.67mG 

≥2.68mG 

 

OR 0.68 [0.39 – 1.17] 

OR 0.89 [0.46 – 1.71] 

OR 1.48 [0.66 – 3.29] 

  <0.32mG (spot bedroom)* 

0.32-0.67mG 

0.68-1.24mG 

≥1.25mG 

 

OR 1.01 [0.61 – 1.69] 

OR 1.37 [0.65 – 2.91] 

OR 1.22 [0.52 – 2.82] 

  UG/VLCC* 

OLCC 

OHCC 

VHCC 

 

OR 0.95 [0.53 – 1.69] 

OR 1.44 [0.81 – 2.56] 

OR 2.15 [1.08 – 4.26] 

Verkasalo et al. 1993 Leukemia ≥4mG any time SIR 1.55 [0.32 - 4.54] 

 Lymphoma ≥4mG any time SIR         [0.00 - 4.19] 

 Nervous system tumors ≥4mG any time SIR 2.31 [0.75 - 5.40] 

 Others ≥4mG any time SIR 1.24 [0.26 - 3.62] 

 All hematopoietic ≥4mG any time SIR 1.49 [0.74 - 2.66] 

 All cancers ≥4mG any time SIR 1.66 [0.34 - 4.84] 

Feychting & Ahlbom 

1993 

Leukemia <1mG* (calculated) 

1-2mG 

 

OR 2.1 [0.6 – 6.1] 
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Study Endpoint Exposure category Outcome [95% CI] 

≥2mG OR 2.7 [1.0 – 6.3] 

 Lymphoma <1mG* (calculated) 

1-2mG 

≥2mG 

 

OR 0.9 [0.0 – 5.2] 

OR 1.3 [0.2 – 5.1] 

 Nervous system tumors <1mG* (calculated) 

1-2mG 

≥2mG 

 

OR 1.0 [0.2 – 3.8] 

OR 0.7 [0.1 – 2.7] 

 Others <1mG* (calculated) 

1-2mG 

≥2mG 

 

OR 1.6 [0.6 – 4.3] 

OR 0.2 [0.0 – 1.7] 

 All hematopoietic <1mG* (calculated) 

1-2mG 

≥2mG 

 

OR 1.7 [0.6 – 4.5] 

OR 2.2 [1.0 – 4.7] 

 All cancers <1mG* (calculated) 

1-2mG 

≥2mG 

 

OR 1.5 [0.7 – 2.9] 

OR 1.1 [0.5 – 2.1] 

Olsen et al. 1993 Leukemia <1mG* (calculated) 

1-4mG 

≥4mG 

 

OR 0.3 [0 – 2.0] 

OR 6.0 [0.8 – 44] 

 Lymphoma <1mG* (calculated) 

1-4mG 

≥4mG 

 

OR 5.0 [0.7 – 36] 

OR 5.0 [0.3 – 82] 

 CNS tumors <1mG* (calculated) 

1-4mG 

≥4mG 

 

OR 0.4 [0.1 – 2.8] 

OR 6.0 [0.7 – 44] 

 All three combined <1mG* (calculated) 

1-4mG 

≥4mG 

 

OR 0.7 [0.2 – 2.0] 

OR 5.6 [1.6 – 19] 
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Study Endpoint Exposure category Outcome [95% CI] 

Fajardo-Gutierrez et 

al. 1993 

Leukemia Transformer station
d 

High voltage power line 

Electric substation 

Transmission line 

OR 1.56 [0.73 – 3.30] 

OR 2.63 [1.26 – 5.36] 

OR 1.67 [0.65 – 4.35] 

OR 2.50 [0.97 – 6.67] 

Coghill et al. 1996 Leukemia < 5 V/m E-field * 

5-9 V/m 

10-19 V/m 

≥20 V/m 

 

OR 1.49 [0.47 – 5.10] 

OR 2.40 [0.79 – 8.09] 

OR 4.69 [1.17 – 27.78] 

Gurney et al.1996 Brain tumors UG* 

VLCC 

OLCC 

OHCC 

VHCC 

 

OR 1.25 [0.74 – 2.13] 

OR 0.74 [0.34 – 1.61] 

OR 1.07 [0.55 – 2.06] 

OR 0.51 [0.16 – 1.60] 

  LCC* 

HCC 

 

OR 0.86 [0.50 – 1.48] 

Preston-Martin et al. 

1996 

Brain tumors 0.09-0.51 mG Md 24h * 

0.52-1.02 mG 

1.03-2.03 mG 

2.04-10.4 mG 

 

OR 1.5 [0.7 – 3.2] 

OR 1.8 [0.7 – 4.5] 

OR 1.2 [0.4 – 3.2] 

  VLCC/OLCC* 

UG 

OHCC 

VHCC 

 

OR 1.9 [1.0 – 3.6] 

OR 0.8 [0.6 – 1.2] 

OR 1.2 [0.6 – 2.1] 

Tynes & Haldorsen 

1997 

Leukemia <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 1.8 [0.7 – 4.2] 

OR 0.3 [0.0 – 2.1] 

 Lymphoma <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 1.0 [0.1 – 8.7] 

OR 2.5 [0.4 – 15.5] 
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Study Endpoint Exposure category Outcome [95% CI] 

 Nervous system tumors <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 1.9 [0.8 – 4.6] 

OR 0.7 [0.2 – 2.1] 

 Others <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 2.9 [1.0 – 8.4] 

OR 1.9 [0.6 – 6.0] 

 All hematopoietic <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 1.4 [0.7 – 3.1] 

OR 0.7 [0.2 – 2.4] 

 All cancers <0.5mG (TWA birth-diagn)* 

0.5-1.4mG 

≥1.4mG 

 

OR 1.9 [1.2 – 3.3] 

OR 1.0 [0.5 – 1.8] 

Petridou et al. 1997 Leukemia Very Low* 

Low 

Medium 

High 

Very high 

 

OR 0.99 [0.54–1.84] 

OR 1.84 [0.26–12.81] 

OR 4.26 [0.94–19.44] 

OR 1.56 [0.26–9.39] 

Michaelis et al. 1997a Leukemia <2mG (Median 24h)* 

≥2mG 

 

OR 3.2 [0.7 – 14.9] 

  <2mG (Median night)* 

≥2mG 

 

OR 3.9 [0.9 – 16.9] 

Michaelis et al. 1997b 

(pooled with 

previous) 

Leukemia <2mG (Median 24h)* 

≥2mG 

 

OR 2.3 [0.8 – 6.7] 

  <2mG (Median night)* 

≥2mG 

 

OR 3.8 [1.2 – 11.9] 
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Study Endpoint Exposure category Outcome [95% CI] 

Linet et al. 1997 ALL <0.65mG (TWA)* 

0.65-1mG 

1-2mG 

2-3mG 

3-4mG 

4-5mG 

≥5mG 

 

OR 0.96 [0.65 – 1.40] 

OR 1.15 [0.79 – 1.65] 

OR 1.31 [0.68 – 2.51] 

OR 1.46 [0.61 – 3.50] 

OR 6.41 [1.30 – 31.7] 

OR 1.01 [0.26 – 3.99] 

Li et al.1998 Leukemia ≥100m from transm.line 

<100m 

 

SIR 2.43 [0.98 – 5.01] 

  Total population<15y 

≥100m from transm.line 

<100m 

 

SIR 1.05 [0.64 – 1.58] 

SIR 2.69 [1.08 – 5.55] 

Dockerty et al. 1998 Leukemia <1mG (24h bedroom AM)* 

1-2mG 

≥2mG 

 

OR 1.4 [0.3 – 7.6] 

OR 15.5 [1.1 – 224] 

  <1mG (24h daytime room)* 

1-2mG 

≥2mG 

 

OR 3.7 [0.7 – 18.8] 

OR 5.2 [0.9 – 30.8] 

UKCCS 1999 Leukemia <1mG (estim.AM exp.)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.78 [0.55 – 1.12] 

OR 0.78 [0.40 – 1.52] 

OR 1.68 [0.40 – 7.10] 

 Central nervous system cancers <1mG (estim.AM exp.)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 2.44 [1.17 – 5.11] 

OR 0.70 [0.16 – 3.17] 

OR -- 

 Others <1mG (estim.AM exp.)*  
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Study Endpoint Exposure category Outcome [95% CI] 

1-2mG 

2-4mG 

≥4mG 

OR 0.81 [0.52 – 1.28] 

OR 1.08 [0.45 – 2.56] 

OR 0.71 [0.16 – 3.19] 

 All cancers <1mG (estim.AM exp.)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.93 [0.72 – 1.19] 

OR 0.87 [0.53 – 1.42] 

OR 0.89 [0.34 – 2.32] 

McBride et al. 1999 Leukemia <0.8mG (lifetime predicted)* 

0.8-1.5mG 

1.5-2.7mG 

≥2.7mG 

 

OR 0.74 [0.48 – 1.13] 

OR 1.15 [0.70 – 1.88] 

OR 1.02 [0.56 – 1.86] 

  Low (Kaune-Savitz)* 

Medium 

High 

 

OR 1.12 [0.77 – 1.64] 

OR 1.17 [0.74 – 1.86] 

Green et al. 1999a Leukemia <0.4mG (spot measurem.)* 

0.4-0.9mG 

0.9-1.5mG 

≥1.5mG 

 

OR 0.47 [0.12 – 1.89] 

OR 0.75 [0.19 – 3.02] 

OR 1.47 [0.44 – 4.85] 

Green et al. 1999b Leukemia <0.3mG (48h measurem.)* 

0.3-0.7mG 

0.7-1.4mG 

≥1.4mG 

 

OR 2.0 [0.6 – 6.8] 

OR 4.0 [1.1 – 14.4] 

OR 4.5 [1.3 – 15.9] 

  <0.4mG (spot measurem.)* 

0.4-0.8mG 

 

OR 1.8 [0.5 – 6.1] 
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Study Endpoint Exposure category Outcome [95% CI] 

0.8-1.6mG 

≥1.6mG 

OR 2.8 [0.8 – 10.4] 

OR 4.0 [1.2 – 13.6] 

Schüz et al. 2001a Leukemia <1mG (Md 24h)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 1.15 [0.73 – 1.81] 

OR 1.16 [0.43 – 3.11] 

OR 5.81 [0.78 – 43.2] 

  <1mG (Md night-time)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 1.42 [0.90 – 2.23] 

OR 2.53 [0.86 – 7.46] 

OR 5.53 [1.15 – 26.6] 

Schüz et al. 2001b CNS tumors <2mG (Md 24h)* 

≥2mG 

 

OR 1.67 [0.32 – 8.84] 

  <2mG (Md night-time)* 

≥2 mG 

 

OR 2.60 [0.45 – 14.9] 

Mizoue et al. 2004 All hematopoietic 0% area intersection* 

<50% 

>50% 

 

IRR 1.6 [0.5 – 5.1] 

IRR 2.2 [0.5 – 9.0] 

Draper et al.2005 Leukemia ≥600m (from power line)* 

200-600m 

<200m 

 

RR 1.22 [1.01 – 1.47] 

RR 1.68 [1.12 – 2.52] 

 Brain tumors ≥600m (from power line)* 

200-600m 

<200m 

 

RR 1.18 [0.95 – 1.48] 

RR 0.74 [0.47 – 1.15] 

 Others ≥600m (from power line)* 

200-600m 

<200m 

 

RR 0.96 [0.82 – 1.12] 

RR 0.88 [0.62 – 1.25] 

Perez et al. 2005 Leukemia <1mG* 

1 mG 

 

OR 1.46 
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Study Endpoint Exposure category Outcome [95% CI] 

5 mG 

10 mG 

OR 6.72 

OR 45.15 

Kabuto et al. 2006 ALL+AML <1mG (1wk TWA)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.93 [0.51 – 1.71] 

OR 1.08 [0.51 – 2.31] 

OR 2.77 [0.80 – 9.57] 

 ALL+AML <1mG (1wk night-time)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.97 [0.52 – 1.79] 

OR 1.08 [0.47 – 2.47] 

OR 2.87 [0.84 – 9.88] 

 ALL <1mG (1wk TWA)* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.87 [0.45 – 1.69] 

OR 1.03 [0.43 – 2.50] 

OR 4.67 [1.15 – 19.0] 

Mejia-Arangure et al. 

2007 

ALL+AML <1mG (spot)* 

1-4mG 

4-6mG 

≥6mG 

 

OR 0.94 [0.37 – 2.4] 

OR 0.88 [0.15 – 5.1] 

OR 3.7 [1.05 – 13] 

  Low (Kaune-Savitz)* 

Medium 

High 

 

OR 5.8 [0.92 – 37] 

OR 4.1 [0.66 – 25] 

Feizi & Arabi 2007 Leukemia ≤4.5mG* 

>4.5mG 

 

OR 3.60 [1.11 – 12.39] 

Lowenthal et al. 2007 LPD+MPD >300 m from power line* 

0-300 m (at age 0-15) 

 

OR 3.23 [1.26 – 8.29]                                          

Yang et al. 2008 AL with XRCC1 Ex9 + 16A allele >500 m from power line*  
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Study Endpoint Exposure category Outcome [95% CI] 

0-500 m 

>100 m from power line* 

0-100 m 

>50 m from power line* 

0-50 m 

OR 2.37 [0.94–5.97] 

 

OR 4.31 [1.54–12.08] 

 

OR 4.39 [1.42–13.54] 

Abdul-Rahman et al. 

2008 

Leukemia >200 m from power line* 

0-200 m 

 

OR 2.30 [1.18–4.49] 

Malagoli et al. 2010 All hematological malignancies <1mG* 

≥1mG 

 

OR 2.4 [0.4-15.0] 

 Leukemia <1mG* 

≥1mG 

 

OR 6.7 [0.6-78.3] 

 ALL <1mG* 

≥1mG 

 

OR 5.3 [0.7-43.5] 

Kroll et al. 2010 Leukemia <1mG* 

1-2mG 

2-4mG 

≥4mG 

 

OR 2.00 [0.50–7.99]  

0 case/ 2 controls  

OR 2.00 [0.18–22.04] 

 CNS/brain tumors <1mG* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.50 [0.09–2.73]  

1 case/ 0 control  

OR 0.33 [0.03–3.20] 

 Other cancers <1mG* 

1-2mG 

2-4mG 

≥4mG 

 

OR 0.33 [0.07–1.65]  

OR 1.00 [0.14–7.10]  

OR 5.00 [0.58–42.80] 

Sohrabi et al. 2010 ALL >400 m from power line* 

0-400 m 

 

OR 2.75 [1.59 – 4.76] 

Saito et al. 2010 Brain tumors <1mG bedroom* 

1-2mG 

2-4mG 

 

OR 0.74 [0.17–3.18] 

OR 1.58 [0.25–9.83] 
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Study Endpoint Exposure category Outcome [95% CI] 

≥4mG OR 10.9 [1.05–113] 

Does et al. 2011 Leukemia <0.25mV contact current 

0.25-1.5mV 

≥1.5mV 

 

OR 0.98 [0.63 – 1.53] 

OR 0.99 [0.65 – 1.52] 

  <0.1mG* 

0.1-0.2mG 

0.2-0.5mG 

≥0.5mG 

 

OR 0.96 [0.57 – 1.62] 

OR 1.23 [0.74 – 2.04] 

OR 1.18 [0.71 – 1.96] 

Wünsch-Filho et al. 

2011 

ALL ≥600 m from power line* 

200-600 m 

100-200 m 

<100 m 

 

OR 0.69 [0.28–1.71] 

OR 1.67 [0.49–5.75] 

OR 1.54 [0.26–9.12] 

  ≥600 m from power line* 

200-600 m    (never moved) 

100-200 m 

<100 m 

 

OR 0.91 [0.25–3.25] 

OR 3.68 [0.68–19.82] 

OR 1.52 [0.11–21.24] 
* 
Reference category 

a
 Computed from table 5 of  the original publication (could be biased due to not considering individual matching) 

b
 Computed from table 5 of the original publication 

c
 Quartiles of exposure distribution of controls (exposure calculated) 

d
 Reference categories: Without the respective appliance near the  residence 

OR…odds-ratio, SIR…standardized incidence ratio, RR…relative risk, IRR…incidence rate ratio, LCC…low-current code, HCC…high-current 

code, UG…underground cable, VLCC…very low current code, OLCC…ordinary low current code, OHCC…ordinary high current code, 

VHCC…very high current code, Md…median, TWA…time weighted average, AM…arithmetic mean, ALL…acute lymphoblastic leukemia, 

AML…acute myeloid leukemia, LPD…lymphoproliferative disorders, MPD…myeloproliferative disorders 
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SECTION 1: UPDATE INTRODUCTION 

It has been over 5 years since the publication of the initial BioInitiative in 2007.  During that time 
the BioInitiative web site has been accessed by a considerable number of individuals worldwide:   
(Provide viewing figures.)  Unfortunately, “pro-industry” representatives from industry itself, from 
government, and from academia have continued their campaign, despite all evidence to the 
contrary, against any possible serious ill effects of exposure to extremely low frequency (ELF) 
magnetic fields (MF) at levels experienced in occupational and residential settings.  These pro-
industry representatives simply argue that the evidence is insufficient because some epidemiologic 
studies are negative and some are positive and that there are no biologically confirmed causal 
pathways.  As we showed in the earlier 2007 original BioInitiative publications, the negative 
studies have serious flaws while the positive studies do not have such flaws.  In addition, we 
discussed two biological pathways related to Alzheimer’s disease and breast cancer, which have 
plausibility based on scientific studies.  A third suggested pathway is discussed in this update. 

In this chapter update, we provide the following: 

1. descriptions and evaluations of newly published epidemiologic studies relating occupational 
ELF MF exposure to the risk of (a) Alzheimer’s disease (AD) and/or dementia, (b) breast 
cancer; 

2. updates related to the three proposed or suggested pathways from ELF MF exposure to AD 
or dementia: 

a. increased peripheral and brain production of amyloid beta;  
b. decreased production of melatonin; and  
c. ELF MFs may cause chromosome instability, resulting in chromosome segregation 

errors and increased mutational loads; 
3. a discussion of the potential increase in cellular production of amyloid beta (associated with 

the risk of AD) due to low melatonin production; 
4. an update of the relationship between low melatonin production and the risk of breast 

cancer; 

STRUCTURE OF THE UPDATED REPORT 

New material is incorporated into the body of the Report.  New and revised text and table additions 
are presented with a red text color. 
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EXECUTIVE SUMMARY 

Melatonin Production 
 
Melatonin is a hormone produced primarily by the pineal gland, located in the center of the brain.  
Melatonin is evolutionarily conserved and is found in nearly all organisms.  It has numerous 
properties which indicate that it helps prevent both Alzheimer’s disease and breast cancer.  There is 
strong evidence from epidemiologic studies that high (≥ 10 milligauss or mG)* that long-term 
exposure to extremely low frequency (ELF, ≤ 60 Hz) magnetic fields (MF) is associated with a 
decrease in melatonin production(Section II.) 
 
Alzheimer’s Disease 
 
Amyloid beta (Aβ) protein is generally considered the primary neurotoxic agent causally 
associated with Alzheimer’s disease (AD).  Aβ is produced by both brain and peripheral cells 
and can pass through the blood brain barrier. 
 

1. There is longitudinal epidemiologic evidence that high peripheral blood levels of Aβ, 
particularly Aβ1-42, is a risk factor for Alzheimer’s disease (AD).  (Section III.A.) 

2. There is epidemiologic evidence that extremely low frequency (ELF, 50-60 Hz) 
magnetic field (MF) exposure up-regulates peripheral blood levels of Aβ. (Section 
III.A.) 

3. There is evidence that melatonin can inhibit the development of AD and, thus, low 
melatonin may increase the risk of AD (Section III.B.) 

4. There is strong epidemiologic evidence that significant (i.e., high),  occupational ELF 
MF exposure can lead to the down-regulation of melatonin production.  The precise 
components of the magnetic fields causing this down-regulation are unknown.  Other 
factors which may influence the relationship between ELF MF exposure and melatonin 
production are unknown, but certain medications may play a role.  (Section II.) 

5. There is strong epidemiologic evidence that high occupational ELF MF exposure is a 
risk factor for AD, based on case-control studies which used expert diagnoses and a 
restrictive classification of ELF MF exposure.  (Section III.C.) 

6. There are no epidemiologic studies of AD and radiofrequency MF exposure, only one 
epidemiology study of non-acute radiofrequency MF exposure and melatonin.  There 
are studies of “AD mice” and radiofrequency exposure (Sections III.D and II.)  So, no 
conclusions concerning health consequences due to exposure are currently possible. 

 
Breast Cancer 
 
The only biological hypothesis which has been epidemiologically investigated to explain the 
relationship between ELF MF exposure and breast cancer is that high* ELF MF exposure can 
lower melatonin production, which in turn can lead to changes in the various biological systems 
which melatonin influences, including increased estrogen production and subsequent deleterious 
interactions with DNA, decreased antiproliferative activities, increased oxidative DNA damage, 
and immune response capabilities.  Thus lowered melatonin production can be expected to lead to 
increased risk of breast cancer. 
 

1. In vitro and animal studies have demonstrated that (i) melatonin is a potent scavenger 
of oxygen and nitrogen radicals that cause DNA damage, (ii) melatonin interferes with 
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estrogen’s deleterious interactions with DNA, and (iii) melatonin inhibits the 
development of mammary tumors.  (Section IV.A.) 

2. A study published in 2009 (Davanipour et al.) evaluated guanine DNA/RNA damage 
in relation to melatonin production among 55 mother-father-adult daughter triples who 
were relatively healthy for their age.  The lower melatonin production among the 
mothers was associated with higher guanine DNA damage.  Lower melatonin 
production among the fathers was marginally associated with guanine damage in either 
DNA or RNA. 

3. Human studies indicate that ELF MF exposure can decrease melatonin production.  
(Section II.) 

3. Human studies have found that low melatonin production is a likely risk factor for 
breast cancer.  (Section IV.B.) 

4. Human studies have shown that light-at-night and night shift work reduce melatonin 
production and are both risk factors for breast cancer.  (Section IV.D.) 

5. Occupational studies indicate that high ELF MF exposure increases the risk of 
breast cancer.  This is particularly true for a recent, large, and well-designed 
study from Poland (funded by the NCI, administered for the NCI by Westat, and 
conducted by Polish scientists). 

6. A recent, large, and well-designed, Swedish case-control study used a new ELF MF job 
exposure matrix, developed by the same group, which is nearly completely at odds with 
earlier exposure classifications.  The female occupation generally thought to be the one 
with the highest ELF MF exposure (seamstress) was considered to have medium-low 
exposure, while several lower ELF MF exposed occupations were considered high.  The 
case-control study consequently found no risk associated with high ELF MF occupations 
as rated by the new matrix, but did find that seamstresses had a statistically elevated risk 
of breast cancer.  This job exposure matrix is likely inappropriate in many important 
instances and needs to be thoroughly reviewed. (Section IV.E.) 

7. Studies of residential ELF MF exposure and breast cancer have been generally negative. 
Measured residential ELF MF exposure may not be related to actual individual 
exposure. Residential exposure is most often low, is usually not measured in residences 
that may be related to the latency period of breast cancer, does not take into 
consideration point sources of strong magnetic fields which may be related to real 
exposure, and thus often does not relate to actual exposure.  Residential exposure 
studies are therefore not considered to be of importance for the purposes of this report.  
(Section IV.F.) 

8. Quality radiofrequency studies are lacking. (Section IV.G.) 
 
Seamstresses 
 
As a group, seamstresses have proven to constitute an important occupation for the 
demonstration of a relationship between ELF MF exposure and both Alzheimer’s disease and 
breast cancer.  Seamstresses who use industrial sewing machines have very high and relatively 
constant ELF MF exposure, particularly those seamstresses working in the apparel industry.  
This is because the motors of older AC machines are large and produce high levels of ELF MFs, 
and are on and producing such fields even when no sewing is being done. The AC/DC 
transformers of DC industrial machines always produce a high field even when the machine is 
turned off (but not unplugged).  In addition, rooms, in which a large number of such machines 
are used, even have relatively high ambient ELF MF levels.  Home sewing machines generally 
produce smaller ELF MFs, but even these weaker ELF MFs are substantial. 



ELF MF: Melatonin, Alzheimer’s Disease & Breast Cancer     Davanipour & Sobel 
 

7 
 

 
RECOMMENDATION  Using the Precautionary Principal, mitigating exposure is a proper goal. 
Mean occupational exposures over 10 mG or intermittent exposures above 100 mG should be 
lowered to the extent possible.  In situations where this is not feasible, the daily length of exposure 
should curtailed.  Lowering ELF MF exposure can be done by improved placement of the 
source(s) of magnetic fields (e.g., electric motors in sewing machines, AC/DC converters), 
shielding, and redesign. It is clear that re-engineering products can greatly lessen ELF MF 
exposure, and possibly result in important innovations.  It is noted that certain automotive models 
produce medium to high ELF MFs, as do steel-belted radial tires (Milham et al., 1999). 
 
I. INTRODUCTION 
 
All of the studies discussed have based exposure classifications using magnetic field (MF) 
measurements, not electric field (EF) measurements.  We separately discuss extremely low 
frequency (ELF, ≤ 60 Hz) MFs and radiofrequency (RF) MFs.  Furthermore, the discussion is 
primarily limited to investigations related to ELF MF exposure as a possible risk factor for 
Alzheimer’s disease (AD), female breast cancer (BC), and the possible biological pathways 
linking ELF MF exposure to AD and BC incidence, e.g., reduction in the production of 
melatonin. 
 
Exposure Concerns 
 
Epidemiologic investigations are sensitive to errors in exposure assessment and errors in case- 
control designation.  This is particularly true for ELF MF exposure and for AD classification.  
With respect to occupational exposures, all job exposure matrices (JEM) are based on the 
measurement of a relatively small number of subjects in each job type.  However, extensive 
measurements have been performed for workers in the electric utility industry and for 
seamstresses.  Note, however, that the Swedish breast cancer study by Forssén et al. (2005) used 
only 5 essentially part-time seamstresses to determine exposure classification (Forssén et al. 
(2004). 
 
The geometric mean ELF MF exposure over the time period of observation is generally used for 
classification.  For ordinal classifications, individual subjects in jobs with mean ELF MF exposure 
measured close to a boundary value, e.g., between low and medium or between medium and high 
ELF MF exposure, will frequently be incorrectly classified. This misclassification will generally 
lead to bias in the estimated risk towards 1, i.e., no risk. 
 
For residential exposures, which do not include living near high power lines, measurements of 
necessity need to be taken at the current residence.  Measurements are usually taken in several 
rooms at various locations, sometimes with and without electrical equipment turned on, but 
rarely (if ever) with water lines turned on.  Thus, individualized exposures, e.g., sitting near a 
fuse box, being near one or more AC/DC transformers, use of specific brands and models of 
home sewing machines, being near a microwave oven in operation, and a myriad of other point 
sources are missed.  Previous residences are usually not available for measurements.  
Consequently, exposure classification is problematic for studies interested in risk associated with 
residential ELF MF exposure. 
 

*  Unless otherwise specified, “high” ELF MF exposure as used in this report means an 
exposure of at least 10 mG or (relatively frequent) intermittent exposure above 100 mG, 
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while "medium" exposure is an average exposure of between 2 and 10 mG or (relatively 
frequent) intermittent exposure above 10 mG.  "Long-term exposure" means exposure 
over a period of years.  Often, other researchers use a cut-point of around 2-3 mG, or 
sometimes even less, as a "high" average.  The reviews of each study presented here 
detail the specific cut-point(s) used. 

 
** Also, unless otherwise specified, “high” ELF MF exposure as used in this report means an 

exposure of at least 10 mG, while  exposure means exposure over a period of years. ** 
 
Diagnostic Concerns 
 
AD is difficult to correctly diagnose. Non-specialists frequently incorrectly diagnose a patient as 
having AD.  Exposure assessment and case-control classification errors bias the odds ratio (OR) 
estimator, when based on dichotomous exposure classification, towards the null hypothesis. When 
based on three (3) or more classification groups, exposure assessment and case-control 
classification errors in the types of analyses used most likely also lead to bias towards the null 
hypothesis. 
 

With respect to AD, unless the diagnosis is made by experts, there is a very large 
false positive rate.  That is, community-based physicians often incorrectly diagnose 
dementia (versus depression, for example) and are particularly poor at determining 
the correct differential diagnosis of dementia.  Most subjects with a diagnosis of 
dementia are simply assumed to have AD.  This means that around 40% of all AD 
diagnoses by physicians who are not experts are incorrect. Diagnostic information 
on death certificates is even worse.  Such a large error in caseness clearly biases the 
OR estimator towards the null hypothesis.  (Many cases of AD go undiagnosed, 
especially early stage AD.  However, this likely does not lead to a significant error 
rate in classification of controls.) 

 
With respect to breast cancer, the sub-type of breast cancer is generally recorded, e.g., 
estrogen receptor positive (ER+) or negative (ER-), which may very well be important 
with respect to ELF MF exposure.  However, sub-group analyses have not usually 
been performed. 

 
Therefore, in reviewing published studies, particular emphasis is placed on these errors or 
caveats.  Studies which assessed occupational exposures and those which assessed residential 
exposures are both discussed.  Various algorithms for “ELF MF exposure” have been used, and 
these will also be discussed.  Not all studies, exposure data, and exposure algorithms are of equal 
value. 
 
For both AD and BC, a possible biological pathway of particular importance is down-regulation 
of melatonin production as a result of long-term ELF MF exposure.  This is discussed in detail in 
this review. 
 
A second possible biological pathway relates specifically to Alzheimer’s disease.  Long-term ELF 
MF exposure may increase the production of amyloid beta (Aβ), both in the brain and 
peripherally. Aβ, particularly the form with 42 amino acids (Aβ1-42), is considered the primary 
neurotoxic compound causing AD.  This pathway was proposed by Sobel and Davanipour 
(1996a).  Recent epidemiologic studies have provided some degree of confirmation.  A third 
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pathway has been proposed: genomic instability.   Thus, ELF MF exposure may be a risk factor 
for AD through possibly three complementary biological pathways.  (See Sections III.A. and 
III.B.) 
 
There may certainly be other potential biological pathways that will be identified.  For example, 
melatonin interacts with certain cytokines which appear to affect immune responses.  This may 
be relevant to the early elimination of cells which are either pre-malignant or malignant, thus 
preventing the development of overt breast or other cancers.  However, the two primary pathways 
outlined above can most easily be evaluated in human studies, both population-based studies and 
clinical trials. 
 
There are also several epidemiologic studies of melatonin production among workers with long-
term occupational exposure to magnetic fields and a single study of women with high (vs low) 
residential ELF MF exposure.  These studies generally indicate that long-term ELF MF exposure 
can lead to lowered melatonin production. 
 
II. ELF Magnetic Field EXPOSURE and MELATONIN ACTIVITY AND PRODUCTION  
 

A. Melatonin Production 
 

Conclusion: Eleven (11) of the 13 published epidemiologic residential and 
occupational studies are considered to provide (positive) evidence that high ELF 
MF exposure can result in decreased melatonin production.  The two negative 
studies had important deficiencies that may certainly have biased the results.  There 
is sufficient evidence to conclude that long-term relatively high ELF MF exposure 
can result in a decrease in melatonin production. It has not been determined to 
what extent personal characteristics, e.g., medications, interact with ELF MF 
exposure in decreasing melatonin production.   

 
Eightly-five percent (85%) to 90% of pineal melatonin production is at night. Laboratory-based 
studies, using pure sinusoidal magnetic fields under experimental conditions have not found an 
effect on melatonin production (Graham et al., 1996, 1997; Brainard et al., 1999). However, 
several studies among subjects chronically exposed in occupational and residential environments 
have found an effect, while a few have not. The lack of an effect in laboratory settings may be 
because the ELF MF exposure was too "clean" or because the duration of exposure was not 
sufficiently long, e.g., days, weeks, months. 
 
The evidence indicates that high and ELF MF exposures may lead to a decrease in melatonin 
production. Whether this decrease is reversible with a cessation of exposure is unknown. The 
extent of the decrease is hard to evaluate. It is also not yet possible to identify individual 
susceptibility to such a decrease in melatonin production. 
 
Melatonin production is generally measured using its primary urinary metabolite, 6- 
sulphatoxymelatonin (aMT6s). Total overnight melatonin production is best estimated using 
complete overnight urine samples. Creatinine-adjusted aMT6s is slightly more correlated with 
cumulative melatonin estimates obtained from sequential overnight blood samples than is 
unadjusted aMT6s (Cook et al., 2000; Graham et al., 1998). 
 
The human studies in occupational or residential environments which identified an effect are 
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summarized below. 
 

Positive Studies 
 

 Assessment in the Finnish Garment Industry As a follow-up component to a Finnish 
study of ELF MF exposures among garment factory workers, a small study of nighttime 
melatonin production was carried out (Juutilainen et al., 1999). aMT6s excretion and 
creatinine were measured using complete overnight urine samples. Seamstresses (n=31), 
other garment workers (n=8), and non-exposed outside workers (n=21) participated. 
Observations were taken using complete overnight urine collections beginning on a 
Thursday night through the first morning void on Friday and on the subsequent Sunday 
night through the first morning void on Monday. There was very little variation between 
the two time period observations within each group, indicating that if there is an effect of 
ELF MF exposure, it does not disappear over the weekend, at least among seamstresses 
using older industrial alternating current machines. The average Thursday-Friday non-
adjusted aMT6s excretion level and the average aMT6s excretion level adjusted for 
creatinine were both statistically significantly lower (p< 0.05) among the workers in the 
garment factory compared to the controls, even after controlling for other factors 
associated with a lowering of melatonin levels: creatinine-adjusted aMT6s - 16.4 vs 27.4 
ng/mg; unadjusted aMT6s - 5.1 vs 10.0 ng. There was no indication of a dose-response 
relationship among the garment factory workers. 

 
In a follow-up study, Juutilainen and Kumlin analyzed the same data in conjunction with 
a dichotomization of a measure of light-at-night (LAN), obtained from items in the 
original study questionnaire concerning use of a bedroom light at night, street lights 
outside the bedroom windows, and use of curtains which do or do not let light filter 
through. There was a significant interaction between the dichotomized ELF MF 
exposure (high/low, i.e., cases vs controls) and LAN (yes/no). aMT6s was significantly 
lower for subjects with high ELF MF with or without LAN. In addition, aMT6s was 
significantly lower among subjects with high ELF MF and LAN exposure versus subjects 
with high ELF MF and no LAN exposure. Alternatively, aMT6s was essentially identical 
for subjects with low ELF MF exposure, regardless of the LAN status. 

 
 Washington State Residential ELF MF Exposure and Melatonin Study Women, aged 20 

to 74, were selected for a study of the relationship of bedroom 60 Hz magnetic field levels 
and melatonin production (Kaune et al., 1997a,b; Davis et al., 2001a). Approximately 
200 women were recruited based on magnetic field exposure information from a case-
control study of breast cancer (PI: S Davis). About 100 women were sought whose 
bedrooms were at the high end of magnetic field level in the original study and about 100 
were sought who were at the low end. Concurrent measurements of light at night in the 
bedrooms of these women were also obtained using a specially modified EMDEX II 
system. Mean magnetic field levels in the two groups differed by less than 1 mG. Thus, 
compared to ELF MF exposures in many occupations, the women had quite low ELF MF 
exposures. However, there was an inverse association between bedroom magnetic field 
levels and urinary aMT6s adjusted for creatinine levels on the same night, after adjusting 
for time of year, age, alcohol consumption, and use of medications.  The association was 
strongest at those times of the year with the longest length of daylight and in women who 
were using medications that themselves were expected to attenuate melatonin production, 
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e.g., beta and calcium channel blockers and psychotropic drugs. 
 

 Crossover Trial of ELF MF Exposure at Night and Melatonin Production Davis et al. 
(2006) conducted a randomized crossover trial among 115 pre-menopausal women with 
regular periods between 25 and 35 days apart, a body mass index between 18 and 30 
kg/m2, not using hormonal contraceptives or other hormones for at least 30 days before 
the study period, no history of breast cancer, no history of chemotherapy or tamoxifen 
therapy, not having been pregnant or breast-feeding within the previous year, not working 
any night shifts, not taking supplemental melatonin, phytoestrogens or isoflavones, and 
not eating more than 5 servings of soy-based foods within any one week. ELF MF 
exposure or sham exposure was for 5 consecutive days. A random half of these women 
received ELF MF exposure and then sham exposure one month later. The other random 
half had the exposures reversed. Ovulation was determined in the first, second and third 
months. The initial exposure (ELF MF or sham) was in the second month during days 3-7 
post-ovulation. The second exposure (sham or ELF MF) was during the same days in the 
third month. The charging base of an electric toothbrush which produced a steady 
magnetic field was used. It was placed under the subject’s bed at the head level so that the 
subject’s head received 5-10 mG exposure above baseline. Complete overnight urine 
samples were collected on the night of the last exposure (ELF MF or sham) in each of the 
two exposure periods. There were 2 subjects who did not ovulate during either exposure 
month and 13 who did not ovulate in one of the two months. Statistical adjustment was 
made for age, hours of darkness, body mass index, medication use, any alcohol 
consumption, and number of alcoholic beverages consumed. Because each subject was 
her own control, these adjustments probably did not affect the point estimates much. A 
regression analysis was undertaken. The 95% confidence interval (CI) of the regression 
slope was [-3.0 – +0.7] for all subjects and [-4.1 – -0.2] when the 15 subjects with 
“minor” protocol violations were eliminated from the analysis. These violations were (a) 
more than 40 days between the two assessments, (b) urine collections not on the same 
post-ovulation day, and (c) menstrual period started early. Only (b) appears to be really 
relevant because these subjects could have had less ELF MF exposure. However, this 
information is not provided. Separate analyses were conducted for “medication users” 
(n=14) and non-users (n=101). The slope point estimate for the users was numerically 
smaller (-3.1) than for the non- users (-1.0). The authors state that the study “found that 
nocturnal exposure to 60-Hz magnetic fields 5 to 10 mG greater than ambient levels in the 
bedroom is associated with decreased urinary concentrations of (aMT6s)”. It should be 
noted that the p-value of the slope estimate in the primary analysis (all participants) was 
greater than 0.05. However, the 95% CI, [-3.0 – +0.7], was quite unbalanced, with 0 
being much closer to the upper end of the CI than the lower end. Also, the 95% CI, when 
the 15 subjects with minor protocol violations are eliminated is entirely below 0, and thus 
the point estimate is statistically significant at the 0.05 level. The authors also state the 
following: “(t)he more pronounced effect of magnetic field exposure on melatonin levels 
seen in medication users and in those with an anovulatory cycle suggest {sic} that 
individuals who have decreased melatonin levels already may be more susceptible to the 
effects of magnetic field exposure in further decreasing melatonin levels.” The 
justification for this statement is not based on statistical testing. 
 

 Residential High Power Lines, ELF MF Exposure and aMT6s in the Quebec City Study 
Levallois et al. (2001) evaluated aMT6s among 221 women living near 735-kV power lines 
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compared to 195 age matched women who live far away from such lines. The subjects 
wore magnetic field dosimeters for 36 consecutive hours to measure their actual ELF MF 
exposure. The geometric mean 24-hour ELF MF exposure was 3.3 mG among women 
living near a high power line and 1.3 mG among those who did not live near a high power 
line. Similarly, geometric mean exposure during sleep was 2.9 mG versus 0.8 mG for the 
two groups. No direct effect of ELF MF exposure on creatinine-adjusted aMT6s was 
identified. However, living near a high power line and ELF MF exposure interacted with 
age and body mass index (BMI; kg/m2). Living near a high power line was associated with 
a significant decline in creatinine-adjusted aMT6s among older subjects and subjects with 
higher BMI. There were similar significant decreases related to age and BMI for women in 
the lowest quartile versus highest quartile. All analyses were adjusted for age, BMI, 
alcohol consumption in the previous 24 hours, medication use in the previous 24 hours, 
light at night, and education. 

 
 Assessment in the Electric Utility Industry Burch et al. (1996, 1998, 1999, 2000, 2002) 

have reported on the association between levels of occupational daytime magnetic field 
exposure, non-work ELF MF exposure, and the excretion of total overnight and 
daytime aMT6s among electric utility workers in several studies. These studies are 
among the largest to evaluate the relationships between ELF MF exposure and 
melatonin production in humans, and are the only studies to use personal exposure 
monitoring of both ELF MF and ambient light with a repeated measures design. 

 
 In their 1996 abstract, analyses were conducted for 35 of 142 electric utility 

workers enrolled in a larger study. ELF MF exposure was assessed 
continuously at 15 second intervals for three 24-hour periods, with logs kept to 
identify work, sleep and other non-work time periods. Ambient light intensity 
was also individually measured. Complete overnight urine samples and post-
work spot urine samples were collected at the same times over the 3 days. 
There were statistically significant inverse relationships between nocturnal 
aMT6s levels and log- transformed worktime mean ELF MF exposure 
(p=0.013), geometric work-time mean ELF MF exposure (p=0.024), and 
cumulative work-time ELF MF exposure (p=0.008). There was no association, 
however, between sleep time and other time ELF MF exposure levels and 
aMT6s levels during the daytime or nighttime, even though average cumulative 
ELF MF levels were only somewhat higher during work: 18.3 mG-hours 
(work); 13.1 mG-hours (non-work); 12.6 mG-hours (sleep). 

 
 In their 1998 study, further results related to nocturnal aMT6s urinary excretion 

in relation to ELF MF exposure were presented, using all 142 electric utility 
workers. The ELF MF exposure metrics were geometric mean intensity, a rate-
of-change metric (RCM), and the standardized rate-of-change metric (RCMS).  
RC was used as a measure of intermittence, while RCMS was used as a 
measure of the temporal stability of the serially recorded personal ELF MF 
exposures. Statistical adjustments were made for age, month, and personal 
ambient light exposure.  24-hour mean ELF MF exposure intensity, RCM, and 
RCMS were not associated with either nocturnal aMT6s or creatinine-adjusted 
aMT6s. However, there was an inverse relationship between residential RCMS 
and nocturnal aMT6s. The interaction between residential intensity and RCMS 
was inversely associated with total overnight urinary aMT6s excretion and with 
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creatinine-adjusted nocturnal aMT6s excretion. There was a “modest” 
reduction in nocturnal aMT6s with more temporally stable ELF MF exposures 
at work. The effect on nocturnal aMT6s was greatest when residential and 
workplace RCMS exposures were combined. The authors concluded that their 
study provides evidence that temporally stable ELF MF exposure (i.e., lower 
RCMS) are associated with decreased nocturnal urinary aMT6s levels. Given 
the strong correlation between cumulative overnight serum melatonin levels 
and both total overnight urinary aMT6s and creatinine-adjusted aMT6s levels, 
these results indicate a reduction in overnight melatonin production. 
 

 In their 1999 study, data from the same 142 electric utility workers were 
further analyzed. Personal exposure to workplace geometric mean and RCMS 
were evaluated for their effect on post-work urinary aMT6s measurements. No 
association between creatinine-adjusted aMT6s and the geometric mean ELF 
MF exposure, before or after adjustment for age, calendar month and light 
exposure was found. However, ELF MF temporal stability was associated 
with a statistically significant reduction in adjusted mean post-work aMT6s 
concentrations on the second (p=0.02) and third (p=0.03) days of observation. 
Light exposure modified the ELF MF exposure effect. Overall, there was a 
significant (p=0.02) interaction between RCMS and ambient light exposure. 
Reductions in post-work aMT6s levels were associated with temporally stable 
ELF MF exposures among workers in the lowest quartile of ambient light 
exposure (mostly office workers), whereas there was no RCMS effect among 
workers with intermediate or elevated ambient light exposure. 
 

 In their 2000 study, Burch et al. examined aMT6s levels among a completely 
different population of 149 electrical workers, 60 in substations, 50 in 3-phase 
environments, and 39 in other jobs, using the same data collection strategy as 
was used in the previous study, but with the added characterization of specific 
work environments. The rationale for this study was based on previous 
observations in experimental animals suggesting that non-linear field 
polarization was critical in the reduction of melatonin production. These types 
of fields were expected to be present within substations and in the vicinity of 3-
phase electrical conductors.  Other conductors (1-phase, linear polarization) 
were selected as a control condition because they had not previously been 
associated with an alteration of melatonin production in laboratory animal 
studies. Thus, participating workers recorded the times they spent in these 
environments over the 3-day data collection period. Comparisons were made 
separately for subjects working in substation or 3-phase environments, or 
among those working in 1-phase environments. Adjusted mean aMT6s levels 
were compared statistically among workers in the lowest and highest tertiles of 
ELF MF exposure, using either the geometric mean or the RCMS 
measurements. Among workers in either a substation or 3-phase environment 
for more than 2 hours, nocturnal aMT6s decreased 43% (p=0.03) when tertiles 
were based on geometric mean exposure and decreased 42% (p=0.01) when 
tertiles were based on RCMS. With RCMS tertiles, total overnight aMT6s 
excretion also decreased 42% (p=0.03) and post-work creatinine-adjusted 
aMT6s decreased 49% (p=0.02). With geometric mean tertiles, total overnight 
aMT6s excretion decreased 39% and post-work creatinine-adjusted aMT6s 
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decrease 34%. However, neither of these decreases was statistically significant. 
No ELF MF-related effects were observed among workers with less than 2 
hours time spent in substation/3-phase environments. Similarly, no reduction in 
aMT6s levels were observed among workers in 1-phase environments. 

 
 In 2002, Burch et al. studied two consecutive cohorts of electric utility 

workers using the same data collection strategy to evaluate the effects of 
cellular telephone use and personal 60 Hz ELF MF exposure on aMT6s 
excretion.  The sample sizes were 149 for Cohort 1 (from the 2000 study) 
and 77 for Cohort 2.  Total overnight and post-work urine samples and self-
reported workplace cell phone use were obtained over three (3) consecutive 
workdays.  ELF MF and ambient light exposure were also measured with 
specially adapted personal dosimeters.  The outcome of interest was 
melatonin production as measured by aMT6s.  The cut- point for high versus 
low cell phone use was 25 minutes per day.  Only 5 worker- days of cell 
phone use more then 25 minutes were reported in Cohort 1 versus 13 worker-
days in Cohort 2.  No differences in aMT6s production were found in Cohort 
1.  However, for Cohort 2 there were significant linear trends of decreasing 
overnight aMT6s and creatinine-adjusted aMT6s levels with increasing cell 
phone use. There was also a marginally significant increasing trend in post-
work creatinine-adjusted aMT6s with increasing cell phone use. Finally, 
there was a combined effect of cell phone use and ELF MF exposure on 
aMT6s excretion: among workers in the highest tertile of ELF MF exposure, 
those who used a cell phone for more than 10 minutes had the lowest 
overnight aMT6s and creatinine-adjusted aMT6s levels compared to those 
with lower ELF MF exposure or cell phone use.  All analyses used a repeated 
measures method and were adjusted for age, month of participation, and light 
exposure.   

 
 Swiss Railway Worker Study Pfluger and Minder (1996) studied 66 railway engineers 

operating 16.7 Hz electric powered locomotives and 42 "controls". Mean ELF MF 
exposure at the thorax for the engineers was above 150 mG and approximately 10 mG 
for the controls. Thus most controls also had high ELF MF exposure, certainly 
compared to residential and most occupational ELF MF exposures. Morning and early 
evening (post-work) urine samples were used to measure aMT6s. Evening aMT6s 
values were significantly lower following work periods (early, normal or late shifts) 
compared to leisure periods for the engineers, but not for the controls. Also, morning 
samples did not differ between leisure and work mornings. This indicates that there 
was at least somewhat of a recovery from the work-time ELF MF exposures. Evening 
aMT6s values did not differ between work time and leisure time for either engineers or 
controls. However, there was a rebound in morning aMT6s between a work period and 
leisure period. Pfluger and Minder did not report the results of a comparison of 
nighttime aMT6s levels between engineers and controls. 

 
 Video Display Unit Studies Non-panel video display screens, e.g., computer monitors, 

produce significant ELF MF exposure despite improvements over the last decade or so. 
Arnetz and Berg (1996) studied 47 Swedish office workers who used video display 
units (VDU) in their work in the 1980s. Circulating melatonin levels significantly 
decreased during work, but not during a day of "leisure" in the same environment. 



ELF MF: Melatonin, Alzheimer’s Disease & Breast Cancer     Davanipour & Sobel 
 

15 
 

Nighttime melatonin production was not observed. In 2003, Santini et al. conducted a 
similar, but quite small, study of 13 young female office workers, 6 of whom worked 
for at least 4 hours per day in front of a video screen. Overnight urine samples were 
used to measure aMT6s. The aMT6s values of the exposed workers was 54% lower 
(p<0.01) compared to the non- exposed workers. 

 
Negative Studies 

 
 Italian Study of Workers Gobba et al. (2006) recruited 59 workers, 55.9% of whom 

were women, for a study of melatonin production and ELF MF exposure. Actually more 
workers were recruited, but urine samples for only those subjects who did not get up to 
urinate during sleep time were assayed. Creatinine-adjusted aMT6s was measured using 
a Friday morning urine sample and the following Monday morning urine sample. Mean 
age was 44.4 years (standard deviation, 9.2). Exposure during worktime was measured 
over a three-day period. The logarithm of the time weighted average (TWA) and the 
percent of time above 2 mG were used as the measures of exposure. 2 mG was the cut-
point between low and high exposure. 52.5% were in the low exposed group; a larger 
percentage of men than women were in the low exposed group. Occupations included 
clothing production (n=26), utility companies (14), teachers (6), engineering industry (5), 
and miscellaneous (8). There were no significant differences in creatinine-adjusted 
aMT6s values based on the logarithm of the TWA or percent of observations above 2 
mG. 

 
 Occupational ELF MF Exposures among 30 Males Subjects in France Touitou et al. 

(2003) studied 15 men exposed to occupational magnetic fields for between 1 and 20 years 
and age-matched15 controls. All subjects were free of acute or chronic diseases, had 
regular sleep habits, did not do night work, took no transmeridian airplane flights during 
the preceding 2 months, took no drugs, were nonsmokers, and used alcohol and coffee in 
moderate amounts. Furthermore, they did not use electric razors or hair dryers during the 
study or in the 24 hours prior to blood sampling. All of the 15 ELF MF exposed men 
worked in high voltage electrical substations. They also lived near substations. None of 
the controls had an occupation associated with ELF MF exposure. Exposed subjects had a 
mean exposure of 6.4 mG during work and 8.2 mG during other times. For the control 
subjects, the mean exposure was 0.04 mG, both during the day and at other times. Blood 
samples were taken hourly from 8:00 pm until 8:00 am in a standard manner. All urine 
between these times was collected. Melatonin concentration (pg/ml) was measured in 
each blood sample. The study was done in the autumn. The 12 hour melatonin blood 
concentration curves for the exposed and non-exposed subjects are almost identical. The 
creatinine-adjusted aMT6s levels are also nearly identical. No analyses were conducted 
based on length of time in the occupation. 

 
B. Melatonin Activity and ELF MF 

 
Conclusion: New research indicates that ELF MF exposure, in vitro, can significantly 
decrease melatonin activity through effects on MT1, an important melatonin receptor. 

 
Girgert et al. (2010) studied the effects of 12 mG 50 Hz ELF MF exposure on signal transduction 
of MT1 in parental MCF-7 cells and MCF-7 cells transfected with the MT1 gene.  MT1 is a high-
affinity melatonin receptor and is responsible for many of melatonin’s activities.  12 mG is an 
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exposure experienced by individuals in many occupations, e.g., seamstresses and welders.  
Melatonin, as discussed in this chapter, has many important properties related to cancer prevention 
and growth, particularly breast cancer, and to the delay or prevention of AD.  For proliferation 
tests, the MT1-negative and MT1-transfected cells were placed in a medium with and without an 
estradiol solution – estradiol concentrations ranged from 10-12 to 10-10 moles.  4x10-9 moles of 
melatonin were used in a parallel series of estradiol concentrations to evaluate the effect of 
melatonin.  Cell proliferation assays demonstrated that (i) melatonin inhibited cell growth and (ii) 
12 mG ELF MF exposure nearly eliminated the effect of melatonin on cell growth.  Furthermore, 
melatonin’s growth inhibitory effect was more prominent in the MCF cells transfected with the 
MT1 receptor than in the cells which were not transfected. 
 

Girgert et al. (2010) note that several studies designed to evaluate the effects of melatonin in breast 
cancer cells were negative.  They measured the ELF MF produced by various cell incubators and 
found several that generated approximately 12 mG.  They suggest that negative findings may be 
due to the use of incubators which produce these relatively high fields. 

 
 
III.  ALZHEIMER’S DISEASE 
 

A. Possible Biologic Pathways from ELF MF Exposure to Alzheimer’s Disease 
 

A.1. Over-Production of Peripheral Amyloid Beta Caused by ELF MF Exposure 
 

Conclusion: There is now evidence that (i) high levels of peripheral 
amyloid beta are a risk factor for AD and (ii) medium to high ELF MF 
exposure can increase peripheral amyloid beta. High brain levels of 
amyloid beta are also a risk factor for AD and medium to high ELF MF 
exposure to brain cells likely also increases these cells’ production of 
amyloid beta. 

 
Sobel and Davanipour (1996a) have published a biologically plausible hypothesis relating ELF MF 
exposure to AD, based on the unrelated work of many researchers in several different fields.  The 
hypothesized process involves increased peripheral or brain production of amyloid beta (Aβ) as a 
result of ELF MF exposure, and subsequent transportation of peripheral Aβ across the blood brain 
barrier.  Figure 1 provides a schematic outline of the hypothesis.  Each step in the proposed 
pathway is supported by in vitro studies. 
 
Two versions of the amyloid beta protein have been identified.  They are identical, except one is 
longer, 42 versus 40 amino acids.  These are specified, respectively, by Aβ1-42 and Aβ1-40. 
Aβ1-42 is considered the more neurotoxic of the two. 
 
This hypothesis has not yet been fully tested.  However, two recent studies of elderly subjects and 
electrical workers, respectively, have provided important initial support.  The Mayeux et al. 
(1999, 2003) papers demonstrate that higher levels peripheral Aβ1-42 are a risk factor for AD. 
The Noonal et al. (2002a) paper demonstrates that ELF MF exposure can increase the peripheral 
levels of Aβ1-42 and that contemporaneous blood levels of melatonin are inversely associated 
with peripheral levels of Aβ1-42. 
 

 Mayeux et al. (1999, 2003, 2011) conducted a population-based, longitudinal study of 
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elderly subjects who were cognitively normal at baseline and found that higher peripheral 
blood levels of Aβ1-42 were prognostic of subsequent development of AD.  The 2003 
paper had a longer follow-up period and 282 additional subjects (169 vs 451). 

 
In the first paper, 105 subjects, cognitively normal at baseline, were followed for an average 
of 3.6 years. The mean age at baseline was 74.3 +/- 5.3 years.  Sixty-four (64) subjects 
developed AD.  Table 1 provides the baseline and follow-up means for age, education, Aβ1-
42, Aβ1-40, and the ratio Aβ1-42/ Aβ1-40. The subjects who developed AD were older at 
baseline, had nearly two years less education, and higher Aβ1-42, Aβ1-40, and Aβ1-42/Aβ1-
40. All mean differences were significant at the p=0.001 level, except for the ratio, which 
was significant at the p=0.05 level. 

 
For Aβ1-42, the OR for AD, based on the actual Aβ1-42 values, was 1.0114, p = 0.006.  
Thus, for example, the OR for an individual with an Aβ1-42 value 10 pg/ml above the 
cutpoint for the 1st quartile (24.6 pg/ml) is estimated to be (1.0114)10 = 1.12, an increase of 
12%; for an individual with an Aβ1-42 value 40 points above this cutpoint, the estimated 
increase in risk is 57%.  A similar analysis for Aβ1-40 did not yield a significant result. 

 
Subjects were then divided into quartiles based on their Aβ1-42 values.  For Aβ1-42 there 
was a highly significant (p=0.004) trend across quartiles. The adjusted odds ratios (OR) for 
the 2nd – 4th quartiles were 2.9, 3.6, and 4.0, using logistic regression.  The latter two were 
statistically significant at the 0.05 level.  The ranges for the 3rd and 4th quartiles were 45.9 
– 85.0 pg/ml and > 85.0 pg/ml, respectively.  For the 2nd quartile, the significance level of 
the OR was not provided; however, the 95% confidence interval (CI) was [0.9 –  6.8].  
Perhaps because the per unit analysis was not significant for Aβ1-40, an analysis using 
quartiles was not reported. 

 
In the second paper (Mayeux et al., 2003), follow-up of patients was up to 10 years and 
there were 451 patients who were cognitively normal at baseline, versus 169 in the initial 
paper.  Table 2 contains the same information for this study as is provided in Table 1 for the 
initial study.  Eighty-six (86) of the 451 subjects developed AD.  Presumably, the additional 
subjects had had their peripheral amyloid beta assayed after the submission of the original 
paper.  Again, the Aβ1-42 values were divided into quartiles, based on the 451 subjects who 
were cognitively normal at their last follow-up.  The adjusted relative risk (RR) estimates 
for the 2nd – 4th quartiles were 1.3, 1.9, and 2.4, using Cox survival analysis.  The latter 
two were statistically significant at the 0.05 and 0.006 levels, respectively.  The ranges for 
the 3rd and 4th quartiles were 60.2 – 84.15 pg/ml and ≥ 84.15 pg/ml, respectively.  For the 2 
nd quartile, the significance level of the OR was again not provided; however, the 95% 
confidence interval (CI) was [0.6 –  2.1]. 

 
The mean levels of Aβ1-40, Aβ1-42, and Aβ1-42/Aβ1-40 at baseline in the second paper 
were 133.9 pg/ml, 62.2 pg/ml, and 0.50.  In the initial paper, the comparable figures 
were 120.5 pg/ml, 63.2 pg/ml, and 0.57.  The means for Aβ1-42 and Aβ1-42/Aβ1-40 are 
quite similar in the two studies.  However, the means for Aβ1-40 are quite different, so 
there were most likely several subjects who were not in the initial report, and who had 
Aβ1-40 assays which were very high.  These subjects were evidently almost all in the 
cognitively normal group.  This is because in the AD groups, the Aβ1-40 means were 
134.7 and 136.2 pg/ml.  However, in the cognitively normal group, the means were 
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111.8 and 133.3 pg/ml.  Thus, the additional 260 subjects with did not develop AD 
(365-105=260) had an average Aβ1-40 of 142.0 pg/ml.  Such a large difference is left 
unexplained in the Mayeux et al. (2003) paper. 

 
Mayeux et al. (1999) comment that “cerebral deposition of Aβ1-42 is unlikely to result 
directly from increased plasma Aβ1-42”. However, studies by Zlokovic and colleagues 
provide a basis for concluding that, in fact, peripheral Aβ1-42 is likely to cross the blood 
brain barrier, perhaps chaperoned by apolipoprotein E (ApoE), particularly the ε4 isoform 
(see Sobel & Davanipour, 1996a). Currently, the relative amounts of peripheral and 
cerebral Aβ1-42 or Aβ1-40 which aggregate are unknown. 

 
Two newly developed PET scan techniques, however, provide the ability to 
investigate the relative amounts in humans (Klunk et al., 2004; Ziolko et al., 2006; 
Small et al., 2006). It is also straightforward to use labeled amyloid beta to 
determine the rate at which peripheral amyloid beta is transported to the brain, at least 
in animal models and perhaps also in humans. 
 

In 2011, Mayeux and Schupf further discussed their and other researchers findings and their 
hypothesis that a high blood level of Aβ1-42 is a risk factor for late onset AD, but the Aβ1-42 
blood levels decline with advancing dementia.  Similarly, blood levels of Aβ1-40 may also 
decline with disease progression. 
 
 Schupf et al. (2008) studied a sample of 1021 non-demented subjects at least 65 years 

old at baseline.  Plasma Aβ1-42 and Aβ1-40 levels were assayed at baseline.  One 
hundred and four (104; 10.2%) subjects developed AD within 4.6 years.  Higher 
plasma Aβ1-42 at baseline was associated with a 3-fold increase in the risk of AD.  On 
the other hand, development of AD was associated with a significant decline in plasma 
Aβ1-42 and a decrease in the Aβ1-42/Aβ1-40 ratio as dementia progressed. 

 Cosentino et al. (2010) studied a sample of 880 subjects, 65 or older and dementia free 
at the first of two plasma Aβ measurements.  High baseline plasma for both Aβ1-42 and 
Aβ1-40, and decreasing or stable Aβ1-42 were associated with faster decline in multiple 
cognitive areas. 

 Schupf et al. (2010) studied the relationship between plasma Aβ1-42 and Aβ1-40 levels 
and the occurrence of dementia among a community-based cohort of 225 Down 
syndrome adults, dementia-free at baseline.  Sixty-one (61, 27.1%) developed AD 
during follow-up.  The mean length of follow-up was 4.1 years.  The increase in plasma 
Aβ1-40,  decrease in plasma Aβ1-42, and decrease in Aβ1-42/Aβ1-40 levels were 
significantly associated with development of dementia.  This study was an extension of 
the follow-up time of an earlier study (Schupf et al., 2007). 

 Devanand et al. (2011) studied a small number of patients (n=20) with amnestic mild 
cognitive impairment (MCI), a harbinger of AD development in the majority of cases, 
and 19 cognitively normal controls.  Plasma Aβ1-42 and Aβ1-40 levels were assayed.  In 
addition PET scans determined Pittsburgh compound B (PiB) binding in various brain 
locations and in the total brain. The plasma Aβ1-42/Aβ1-40 ratio was decreased in the 
MCI patients compared to the controls, but Aβ1-42 and Aβ1-40 did not differ between 
the two groups.  PiB binding levels were significantly higher in the cingulate and 
parietal brain areas and in the entire brain among the MCI patients compared to the 
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controls.  However, in the prefrontal cortex and parahippocampal gyrus the differences 
were only marginally significant, but the sample size was relatively small.  Low Aβ1-
42/Aβ1-42 and Aβ1-40 were associated with high cingulate, parietal and total brain PiB 
binding, using regression analyses which included age, gender, and cognitive test 
scores. 

 For completeness, we provide the results of a meta-analysis by Song et al. (2011) of 12 
cross-sectional and 7 longitudinal studies of plasma Aβ1-42 and Aβ1-40 levels related to 
AD.  The results were as follows: 
 Longitudinal studies: cognitively normal subjects who developed AD had 

higher baseline plasma Aβ1-42 and Aβ1-40 (p=0.0001 and 0.006, respectively), 
but non-significantly increased Aβ1-42/Aβ1-40 (p=0.10).   

 Cross-sectional studies: AD patients had marginally significant (p=0.08) lower 
plasma Aβ1-42.  The Aβ1-40 levels were not significantly different (p=0.69). 

 
 Noonan et al. (2002a) examined 60 electric utility workers in studying the relationship 

between measured ELF MF exposure during the work day and serum Aβ1-42 and Aβ1-40 
(square root transformed) levels. ELF MF exposure was individually determined by wearing 
a dosimeter at the waist during work time.  Blood samples were obtained between 2:50 pm 
and 4:50 pm.  The primary findings were as follows: 

i. there was an inverse association between physical work and A Aβ levels; 
ii.  there was an apparent trend for the Aβ1-42, Aβ1-40, and Aβ1-42/Aβ1-40 levels to 

be higher for higher magnetic field exposure (significance not provided); and 
iii. the differences (Table 3) in Aβ levels between the highest ( ≥ 2 milliGauss (mG), 

n=7) and lowest (< 0.5 mG, n=20) exposure categories were 156 vs 125 pg/ml 
(p=0.10) for Aβ1-40, 262 vs 136 pg/m (p=0.14) for Aβ1-42, and 1.46 vs 1.03 for Aβ1-
42/Aβ1-40 (significance not provided). 

There was a 93% increase in Aβ1-42, a 25% increase in Aβ1-40, and a 42% increase in the 
ratio Aβ1-42/Aβ1-40 between the lowest and highest ELF MF exposure categories. The 2 mG 
cutpoint for the highest category is the cutpoint generally used for medium (or at times high) 
ELF MF exposure in epidemiologic studies.  Thus, while the sample size was small, this 
study provides some evidence that ELF MF exposure may result in higher peripheral 
production of Aβ for exposures above 2mG. 

 
Melatonin production was estimated using urinary 6-sulphatoxymelatonin (aMT6s) adjusted 
for creatinine (Graham et al., 1998).   aMT6s is the primary urinary metabolite of 
melatonin.  A complete overnight urine sample was used to estimate overnight melatonin 
production, normally about 85-90% of total 24-hour production.  A post-work urine 
sample, taken on the same day as the post-work blood sample, was used to estimate work 
time melatonin blood levels.  The overnight creatinine-adjusted aMT6s levels were, on 
average, about 5 times higher than the post-work creatinine-adjusted aMT6s levels. 
Noonan et al. state that the correlations between overnight creatinine-adjusted aMT6s and 
amyloid beta levels were not significant.  No data were provided.  However, post-work 
creatinine-adjusted aMT6s levels were negatively correlated with both the Aβ1-42 and the 
Aβ1-42/Aβ1-40 post-work levels. The Spearman correlation coefficients were -0.22 (p=0.08) 
and -0.21 (p=0.10), respectively. With adjustment for age and physical work, the 
correlation with Aβ1-42 was marginally stronger (-0.25, p=0.057). The timing of the 
urine sample with respect to the blood sample appears to be important. Table 4 provides 
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the Spearman correlations, adjusted for age and physical work, based on the time 
difference between blood and urine samples, which were all obtained after the blood 
draw. Some of the workers had their urine sample in the early evening. It is clear that the 
correlation is strongest when the samples are taken close to one another in time. 

 
In an unadjusted analysis, the post-work creatinine-adjusted aMT6s levels were split into 
tertiles. Subjects in the highest tertile had the lowest levels of Aβ1-42, Aβ1-40, and Aβ1-42/ 
Aβ1-40 (Table 5). However, subjects in the middle tertile had higher levels than subjects in 
the lowest tertile. 

 
 In an in vitro study, Del Giudice et al. (2007) used human neuroglioma cells (H4/APPswe), 

which stably overexpress a specific human mutant amyloid precursor protein (APP, to 
examine the effect of ELF MF exposure.  ELF MF or sham exposure was 3.1 mT (31,000 
mG) for 18 hours.  Total Aβ and total Aβ1-42 production was statistically significantly 
elevated among the ELF MF exposed cells compared to the cells with sham exposure. No 
gross morphological changes or changes in viability were observed in the ELF MF exposed 
cells. The 3.1 mT exposure level is 2-3 orders of magnitude higher than the highest 
occupational mean exposures. The authors state that such high levels were administered 
because occupational exposures are “much more prolonged than the one described in our 
experimental setting”. There was no indication that any longer duration exposure at lower 
levels was studied. 

 
A.2. Lowered Melatonin Production: An Alternative/Complementary 

Pathway 
 

Conclusion: There is considerable in vitro and animal evidence that 
melatonin protects against AD. Therefore it is certainly possible that 
low levels of melatonin production are associated with an increase in 
the risk of AD. 

 
Several in vitro and animal studies indicate that melatonin may be protective against AD and thus 
low or lowered melatonin production may be a risk factor for AD. These studies have generally 
found that supplemental melatonin has the following effects: 

 the neurotoxicity and cytotoxicity of A  is inhibited, including mitochondria (Pappolla et 
al., 1997, 1999, 2002; Shen YX et al., 2002a; Zatta et al., 2003; Jang et al., 2005); 

 the formation of β-pleated sheet structures and Aβ fibrils is inhibited (Pappolla et al., 1998; 
Poeggeler et al., 2001; Skribanek et al., 2001; Matsubara et al., 2003; Feng et al., 2004; Cheng 
and van Breemen, 2005); 

 the profibrillogenic activity of apolipoprotein E ε4, an isoform conferring increased risk of AD, 
is reversed (Poeggeler et al., 2001); 

 oxidative stress in vitro and in transgenic mouse models of AD is inhibited if given early 
(Clapp-Lilly et al., 2001a; Matsubara et al., 2003; Feng et al., 2006), but not necessarily if 
given to old mice (Quinn et al., 2005); 

 survival time is increased in mouse models of AD (Matsubara et al., 2003); 
 oxidative stress and proinflammatory cytokines induced by A 1-40 in rat brain are reduced 

in vitro and in vivo (Clapp-Lilly et al, 2001b; Shen YX et al., 2002b; Rosales-Corral et al., 
2003); 

 the prevalence of Aβ1-40 and Aβ1-42 in the brain is decreased in young and middle 
aged mice (Lahiri et al., 2004); 
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 memory and learning is improved in rat models of AD pathology (Shen YX et al., 2001; 
Weinstock and Shoham, 2004), but not necessarily in Aβ-infused rat models (Tang et al., 
2002). 

 
Note that transgenic mouse models of AD mimic senile plaque accumulation, neuronal loss, and 
memory impairment. See Pappolla et al. (2000), Cardinali et al. (2005), Srinivasan et al. (2006), 
Cheng et al. (2006), and Wang and Wang (2006) for reviews. Thus, chronic low levels of 
melatonin production may be etiologically related to AD incidence. 

 
A.3. Cytogenetic Hypothesis Relating ELF MF Exposure to Alzheimer’s Disease 

 
Conclusion: This is an interesting hypothesis and is deserving of research efforts. 

 
Maes and Verschaeve (2011) review evidence that genomic instability, including aneuploidy, 
telomere shortening, and gene amplification, is associated with an increased risk of early-onset 
familial AD and perhaps sporadic AD.  The authors then discuss possible genetic effects of ELF 
MF (or electromagnetic field (EMF)) exposure.  Further, directed research into this hypothesis is 
warranted. 
 

D. Epidemiologic Studies of Alzheimer’s Disease/Dementia and ELF MF Exposure 
 

Conclusion: There is strong epidemiologic evidence that exposure to ELF MF is a 
risk factor for AD.  There are now twelve (12) studies of ELF MF exposure and AD 
or dementia which .  Nine (9) of these studies are considered positive and  three (3) 
are considered negative.  The three negative studies have serious deficiencies in ELF 
MF exposure classification that results in subjects with rather low exposure being 
considered as having significant exposure. There are insufficient studies to formulate 
an opinion as to whether radiofrequency MF exposure is a risk or protective factor 
for AD. 

 
D.1. Introduction 

 
First, it is necessary to point out that there are no case-control studies of melatonin as a risk factor 
for AD. This is primarily because AD results in a precipitous decline in melatonin production due 
to the destruction of specific neuronal structures and therefore it is inappropriate to use “current” 
melatonin production of cases as a surrogate estimate of the pre-AD melatonin production. Also 
there have yet to be any longitudinal studies of melatonin production. This is probably because 
neither urine nor blood have been collected appropriately to measure nocturnal melatonin 
production. 
 
If ELF MF exposure is a true risk factor, there are several problematic areas in evaluation and 
comparison of epidemiologic studies related to occupational ELF MF exposure and Alzheimer’s 
disease, particularly the following. 
 

1.   Diagnosis – false positive diagnoses will bias the odds ratio estimator towards 1.0 
2.   Occupational exposure assessment – inclusion of subjects with low exposure in the 

“exposed” categories likely biases the odds ratio estimator towards 1.0 
 Definition of ELF MF exposure – published studies have differing definitions 
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of ELF MF exposure, potentially resulting in “exposure” categories with 
significant proportions of subjects with low exposure 

 Cut-points for non-exposure/exposure categories – some studies use numerical 
estimates of exposure developed from earlier exposure studies (job exposure 
matrices) in certain occupations and use average estimates and/or low cut-points 
to determine “medium” exposure 

 Ever versus never exposed – at least one study used ever exposed, with a low 
threshold for exposure 

 Categorized occupational data – categorized data from governmental databases 
leads to relatively large variation in “exposure” within occupational categories, 
which results in subjects with low exposure being classified as having been 
exposed. 

 
Table 6 provides the data on the percentages of ELF MF exposed subjects in the published studies to 
date.  There is a wide range of percentages, due primarily to variation in exposure definition, use of 
average or mean job-specific estimates, and secondarily to the use of varying job exposure matrices. 
Table 7 provides the odds ratio estimates of studies discussed in some detail below. The studies 
which used death certificates or other non-expert databases for the identification of AD cases are not 
included in Table 7. 
 
The role of seamstresses among workers with high occupational ELF MF exposure in the two et al. 
studies (1995, 1996b) and the Davanipour et al. study (2007) is discussed. 
 

D.2. Death Certificates-Governmental Databases: Alzheimer’s Disease Diagnosis 
 
The use of death certificates or governmental databases to identify AD cases is certainly 
problematic. False positive diagnoses tend to bias the OR estimator towards 1.0. Most diagnoses of 
AD have been and still are made by physicians who are not experts in AD, and who seldom have 
sufficient clinical time to make a proper diagnosis. The determination of dementia and subsequent 
differential diagnosis of AD by someone other than an expert has a high false positive rate. In 
addition, many physicians do not think that AD is a “cause of death”, which results in an increase in 
the false negative rate. 
 
Therefore the recent “positive” Feychting et al. (2003), Håkansson et al. (2003), and Park et al. 
(2005) studies and the “negative” Savitz et al. (1998a,b) and Noonan et al. (2002b) studies have 
been excluded from the discussion below of individual studies. The Johansen et al. study (2000) 
has also been excluded because it depended upon the clinical hospital discharge diagnoses of an 
historical cohort to determine a “diagnosis” of “presenile” AD or “dementia”. Evidently, in that 
study, late-onset (age at least 65) AD was included under “dementia”. (It should be noted that 
Johansen et al. found an increased risk of “dementia”, but not “presenile” AD, associated with 
higher ELF MF exposure.) 
 

D.3. ELF MF Exposure Assessment Rates and Analytic Results 
 
The Sobel et al. (1995, 1996b), the Davanipour et al. (2007), and the Harmanci et al. (2003) studies 
have followed nearly the same protocol for ELF MF exposure assessment and classification into 
low, medium and high ELF MF occupations. In these studies, medium exposure was defined as 
mean ELF MF occupational exposure above 2 mG, but less than 10 mG, or intermittent exposures 
above 10 mG, while high exposure was defined as mean ELF M F exposure above 10 mG or 
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intermittent exposures above 100 mG. The rates of medium or high (M/H) exposure in these studies 
are considerably lower than the rates in the Feychting et al. (1998a), Graves et al. ((1999), Qiu et al. 
(2004), and Savitz et al. (1998b) studies and somewhat lower than the Feychting et al. (2003) study. 
The remaining three studies (Häkansson et al., 2003; Savitz et al., 1998a; Johansen, 2000) utilized 
subjects from electrical industries and therefore understandably have high rates of ELF MF 
exposure. (See Table 6 for these rates.) 
 
Thus, it is likely that a substantial percentage of ELF MF “exposed” subjects in 4 of the 6 comparable 
studies (Feychting et al., 1998a; Graves et al., 1999; Qiu et al., 2004) (Table 7) had a high rate of 
somewhat minimal exposure in the “exposed” category, due to classification methodologies, 
compared to the “exposed” categories in the Davanipour et al. (2007), Harmanci et al. (2003), and the 
Sobel et al. (1995, 1996b) studies. This would tend to lead to an OR estimate closer to 1.0 in the 
4 former studies. 

 
D.3.1. Sobel et al. (1995) Study – Positive Study 

 
The initial publication of an apparent association between AD and having worked in occupations 
with likely ELF MF exposure consisted of three case-control studies, two from Helsinki, Finland, 
and one from Los Angeles, USA (Sobel et al., 1995).  Control groups varied: the first case-control 
study analyzed used VaD patients; the second (and largest study) used non-neurologic hospital 
patients; and the third (and second largest study) used non-demented well subjects.  The study- 
specific ORs were 2.9, 3.1, and 3.0, while the combined OR was 3.0 (95% CI = [1.6 – 5.4], p < 
0.001), with no confounder adjustments necessary. The occupational information was apparently 
primarily related to the last occupation, e.g., judge, high ranking military officer.  A total of 386 
cases and 575 controls was analyzed in these studies. 9.3% of the cases and 3.4% of the controls 
were judged to have had an occupation with likely medium or high ELF MF exposure.  Among 
women, 31 (5.3%) were exposed to M/H occupational ELF MF, of whom 29 (95%) were 
seamstresses, who were classified as having high exposure based on measurements taken during 
the study.  Seamstresses have subsequently been shown to have very high ELF MF exposures 
(e.g., Hansen et al., 2000; Kelsh et al., 2003; Szabó et al., 2006). 
 

D.3.2. Sobel et al. (1996b) and Davanipour et al. (2007) Studies – Positive 
Studies 

 
These two studies utilized the databases of the nine (9) State of California funded Alzheimer’s 
Disease Diagnosis and Treatment Centers (ADDTC).  Sobel et al. (1996b), the second published 
study of occupational ELF MF and AD, used the Rancho Los Amigos (RLA) ADDTC database. 
There were 316 cases and 135 controls.  Twelve percent (12%) of the cases and 5.3% of the 
controls had had a medium or high "primary" exposed (ELF MF) occupation. The Davanipour et 
al., 2007) study used the databases of the other 8 ADDTCs.  Seven and one-half percent (7.5%) of 
the cases and 3.8% of the controls had had a medium or high ELF MF "primary" occupation.  
Among the women in the RLA ADDTC study, 26 (8.4%) had M/H exposure, of whom 17 
(65.4%) were seamstresses.  In the Davanipour et al. study, among women, 50 (3.8%) had M/H 
ELF MF exposure, of whom 34 (68%) were seamstresses.  This difference is statistically 
significant (p < 0.001). Among the men in the RLA ADDTC study, 14.8% had a medium or high 
ELF MF exposed occupation, while in the Davanipour et al. ADDTC study, 13.5% had a medium 
or high ELF MF exposed occupation.  This difference is not significant.  It thus appears that the 
women in the combined populations from which the ADDTCs in the Davanipour et al. study have 
drawn their patients have a lower rate of ELF MF exposed occupations than the population from 
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which the RLA ADDTC draws its patients.  This is not too surprising because Los Angeles has a 
large apparel manufacturing industry. 
 
The OR (adjusted for age-at-onset, gender, and education) for medium or high ELF MF exposure 
in the RLA ADDTC study was 3.9 (95% CI = [1.5 – 10.6], p = 0.006).  The ORs for medium or 
high ELF MF exposure in the Davanipour et al. ADDTC study were lower: 2.2 (p < 0.02; 95% CI 
= [1.2 – 3.9]) and 1.9 (p < 0.04; 95% CI = [1.04 – 3.6]), using age-at-exam and age-at-onset, 
respectively, plus gender and history of stroke in the model.  These ORs are all statistically 
significant.  In the two studies, the 95% CIs greatly overlap and, under the assumption of 
normality of the natural logarithms of the odds ratios estimators and a straightforward hypothesis 
test that the means of two independent normally distributed variables are equal, the null hypothesis 
that the corresponding ORs are equal cannot be rejected at the 0.05 level. 
 

D.3.3. Other AD/Dementia and Occupational ELF MF Exposure Studies 
 
Studies with (at least some) Positive Results 
 
Qiu et al. (2004) Study Qiu et al. (2004) studied a Swedish cohort of 931 subjects, aged 75+ at 
baseline, followed for up to 7 years. Job history was usually obtained from the next-of-kin, but only 
after 4 years of follow-up. ELF MF exposure assessment was estimated using previous occupational 
exposure studies, specific measurements (e.g., seamstresses and tailors), and expert opinion. During 
the follow-up period, 265 subjects developed dementia, with 202 receiving an AD diagnosis. 
Numerical exposure estimates were obtained using both the longest held occupation, last 
occupation, and any occupation. The estimated average daily ELF MF exposure was used to 
classify individual exposure. 
 
Exposure for a sample of seamstresses and tailors was measured at the head. They were classified as 
having low exposure. Exposures of seamstresses who used industrial sewing machines and workers 
who used home sewing machines likely were under estimated by Qiu et al. (2004): 5.5 mG for 
“industrial seamstresses” and 1.9 for tailors. Qui et al. only considered home sewing machines, 
which at the head had a mean exposure of 10 mG. For “industrial seamstresses, they assumed that 
50% of the workday was at a 10 mG exposure and 50% was at background, 1 mG. This gives an 
average exposure of 5.5 mG. For tailors, they assumed that only 10% of the workday was spent 
sewing, so the mean exposure was 1.9 mG. There are several problems with this determination of 
exposure for seamstresses and tailors: 
 

1.   exposures to the head are among the lowest body exposures and are not necessarily the 
sole important exposure; 

2.   even in Sweden, it is unlikely that home sewing machines were exclusively used. It is 
more likely that most of the machines were industrial machines, which produce much 
higher fields constantly, even when sewing is not occurring; 

3.   seamstresses have exposure most of the workday; 
4.   ambient exposure levels in industrial settings have been measured at up to 6 mG (Sobel 

and Davanipour, unpublished Finnish data); 
5.   tailors would not make a living sewing only 0.8 hours per day. 

 
Hansen et al. (2000) found that, at the side of the waist, mean full-shift exposure for industrial 
machines was approximately 30 mG, while Qiu used a figure of 10 mG. Based on unpublished 
measurements on AC home sewing machines, Sobel and Davanipour (1996c) found that exposures 
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to the head were usually the lowest measurements, while the chest, pelvic area, thigh, knee, right arm 
and hand had much higher exposures (Table 8). In addition, foot pedals can produce high magnetic 
fields (Table 8). Also, AC/DC converters in the handles (right side) of computerized home sewing 
machines constantly produce high magnetic fields – about 75 mG at 2 inches away from the handle. 
The right hand, lower right arm, and knee regularly receive high exposures (Table 
8). Thus, the 10% sewing time assumed by Qiu et al. (2004) does not mean that significant 
exposure is not over a longer time period. The biological plausibility of hypotheses discussed above 
provides an argument that exposure to other body parts may also be deleterious. The numbers or 
percentages of industrial seamstresses and/or home sewing machine workers were not provided by 
Qui et al.  Note: seamstress’ exposure assessment is discussed further in Section V.B.  
 
Nevertheless, for the principal occupation, but not for the last occupation or cumulative lifetime 
exposure, Qiu et al. (2004) found statistically significant ORs: OR=2.3 (95% CI = [1.0 – 5.1]) for 
AD and OR=2.0 (95% CI = [1.1 – 3.7]) for any dementia for men with average exposures greater 
than 2 mG. For women, no increase in risk was found for the principal occupation, last occupation, 
and all occupations combined. The average lengths of time in the last and principal occupations 
were not provided. Thus, comparison with the Feychting et al. study (1998a) could not be made. 
 
The proportions of subjects with at least 2 mG exposure were 28.2% for AD cases and 28.8% for 
controls for the principal occupation (Table 6). For all occupations combined, the proportions were 
higher. For men, with cases and controls combined, the proportions were 43.1% and 33.0%, 
respectively, for principal occupation and all occupations combined. For women, the proportions 
were 24.3% and 32.1%. In the Sobel et al. (1995, 1996b) and Davanipour et al. (2007) studies, the 
proportion of female cases and controls with medium or high exposure (considered above 2 mG) was 
only 5.5%, 80% of whom were seamstresses or had allied professions with significant ELF MF 
exposure, e.g., cutter. Thus, in these three publications, the exposure category for women contained a 
higher percentage of subjects with very high exposure. This may explain the lack of findings among 
women. The occupations which were in the exposure categories ‘at least 2 mG’ (dichotomized 
exposure) or ‘at least 1.8 mG’ (trichotomized) were not provided by Qiu et al.(2004). 
 
Harmanci et al. (2003) Study Harmanci et al. (2003) conducted a cross-sectional, population-based 
study of Alzheimer’s disease by selecting a random sample of 1067 subjects at least age 70, among 
whom 1019 (96%) agreed to participate in the study. AD was determined in a two-step process: a 
screening exam using the Turkish version of the Mini-Mental State Exam MMSE, followed by an 
expert clinical exam among those whose MMSE scored indicated cognitive impairment. Two 
hundred twenty three (223) were asked to have a clinical exam, and 155 (69.5%) agreed. Among the 
subjects with a “normal” score on the MMSE, 126 were randomly selected for a clinical 
examination. Among these 281 subjects, 57 were clinically diagnosed as having possible AD, and 
127 were determined to be cognitively normal. These subjects were included in the case-control 
study. M/H ELF MF exposed occupations were stenographers and typists, carpenters and joiners, 
metal molders and core makers, tailors, dressmakers, and hatters. Except for stenographers, these 
occupations were considered to result in medium or high ELF MF exposure in the Sobel et al. 
(1995, 1996b) and current study. A stepwise backwards logistic regression analysis was used. 
Medium/high ELF MF exposure occupations had an adjusted OR of 4.0, with a 95% CI of [1.02 – 
15.78]. It is interesting to note that use of electrical residential heating was also a risk factor (OR = 
2.8, 95% CI = [1.1 – 6.9]). 
 
Feychting et al. (1998a) Study  In the case-control study by Feychting et al. (1998a), ELF MF 
exposure during the last occupation, but not during the longest held occupation, was a risk factor 
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for dementia not caused by a single stroke.  The last occupation was held an average of 24.8 years 
among cases and 25.9 and 25.1 years among subjects within the two control groups. Consequently 
exposure during the last occupation was over a significant period of time.  Using the two control 
groups, the ORs for dementia were 3.3 and 3.8 with 95% CIs of [1.3 – 8.6] and [1.4 – 10.2] for 
occupations with geometric mean ELF MF exposures estimated to be at least 2 mG. Housewives 
were excluded from the analyses. The ORs for Alzheimer's disease were somewhat lower (2.4 and 
2.7).  When the analysis was restricted to subjects aged 75 and below at onset or examination, the 
ORs (5.0 and 4.8) for AD were statistically significant.  Also, for subjects of all ages with 
occupations likely to have resulted in an average ELF MF exposure above 5 mG, the ORs for AD 
were both high, but significant for one referent group (OR = 8.3), and not for the other (OR = 4.1).  
The Feychting et al. study was small: 44 dementia cases had occupational data, 29 
of whom were diagnosed with AD.  43% of the cases were in the ELF MF exposed group, while 
23% and 19% of the controls were in this exposure group.  Given these high percentages, it is 
clear that some lower ELF MF exposed occupations were classified in the exposed category than 
were classified in this study and the earlier Sobel et al. studies (1995, 1996b). 
 
Chang et al. (2004) Study  Chang et al. (2004) studied exposure to ELF MFs and other possible 
risk factors for AD among 62 AD patients and 124 controls, all of whom were elderly ex-military 
personnel, aged 66 to 102.  (The published paper is in Chinese and we only have the PubMed 
English translation of the article’s abstract.)  Cases and controls were matched for age.  Univariate 
and multivariate logistic regression models were analyzed.  “Early” exposure to ELF MFs had an 
odds ratio of 2.49, with a 95% CI of (0.96-6.45). 
 
Röösli et al. 2007 Study  (Röösli et al. 2007) used records from the Swiss Federal Railway on 
employees who were employed or retired between January 1, 1972 and December 31, 2002.  
Employees in the following categories were used in analyses: train drivers, shunting yard 
engineers, train attendants, and station masters.  “Average” ELF MF exposure for each year was 
assessed, based on measurements and “modeling”.  Five (5) ELF MF exposure indices were used: 
train drivers vs the other 4 occupations; cumulative work-time exposure (microtesla [μT] years); 
cumulative time above 10 μT; cumulative exposure up to 10 years prior to death or study closure; 
exposure within 20 years before death or study closure.  Death certificates were used to determine 
disease status: AD (not coded in ICD-8 and only for subjects whose death was from 1995-2002); 
senile dementia (including AD); Parkinson’s disease (PD); amyotrophic lateral sclerosis (ALS); 
cardiovascular disease (CVD); and respiratory tumor (RT).  The total sample size for analysis was 
20,141.  Cox proportional hazards models were used to estimate the hazard ratio (HR) with 
station masters as the referent group.  Station masters had, by far, the lowest ELF MF exposure. 
 
Generally, train drivers experienced a very much higher ELF MF exposure than shunting yard 
engineers, train attendants, or station masters.  ELF MF exposure was not associated with death 
due to (or with) CVD, PD, ALS, or RT.  For senile dementia, which included AD, the HR for 
train drivers was 1.96, with a 95% CI of (0.98-3.92).  For AD only, the HR was 3.15 with a 95% 
CI of (0.90-11.04).  It should be noted that the number of deaths due to or with senile dementia or 
AD were small among the train drivers, shunting yard engineers, train attendants, and station 
masters, respectively: 30, 3, 17, 11 for senile dementia; 14, 2, 6, 3 for AD.  This leads to wide 
confidence intervals. 
 
Risks associated with increasing cumulative ELF MF exposure were assessed by determining 
hazard ratios related to exposure tertiles, with the lowest tertile as the referent group.  There was 
an apparent possible increase in risk for subjects in the highest tertile, although the 95% CIs 
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included 1.0. 
 
Risks were also assessed by determining the HR for the number of years of exposure at or above 
10 μT.  In this analysis, risk increased by 5.7% for senile dementia and 9.4% for AD.  Both 
figures are statistically significant at the 0.05 level: 95% CIs were above 1.0. 
 
Studies with Only or Mostly Negative Results 
 
Graves et al. (1999) Study Graves et al. (1999) studied 89 matched case-control pairs. Complete 
occupational histories were obtained. ELF MF exposure in a given occupation was defined as having 
at least "probable intermittent exposures (a few minutes)" above 3 mG. A high exposure category 
was defined as exposure of "1 to several hours" above 3 mG. Two industrial hygienists rated the 
occupations. Thus, many exposed subjects likely had a low average exposure. 19.1% and 21.4% of 
the cases were considered to have been 'ever' exposed, while 21.4% and 22.5% of the controls were 
considered 'ever' exposed. An unknown number of subjects, classified as having experienced ELF 
MF exposure, would not have been so classified in most or all of the other studies of 
neurodegenerative diseases or cancer. The estimated adjusted ORs for ‘ever’ having been exposed 
were 0.74 and 0.95, depending upon which industrial hygienist's classification was used (Graves et 
al., 1999). 
 
As noted above, the Feychting et al. (1998a) study found elevated odds ratios associated with the 
last occupation, and in the Sobel et al. studies (1995, 1996b) and the Davanipour et al. (2007) study, 
occupational information most likely related to the last occupation. Also, Feychting et al. (1998a) did 
not find an increased risk associated with measures which included earlier occupations, e.g., highest 
exposed occupation and longest held occupation. Qui et al. (2004) found elevated risk associated 
with the principal occupation for males. Consequently, 'ever' vs 'never' exposed, as used by Graves et 
al. (1999), may not be an appropriate comparison. 
 
Graves et al. (1999) also used a cumulative exposure index, the weighted sum of the numbers of 
years in each occupation with the weights being 0, 1 and 2 for no exposure, only "intermittent 
exposures" above 3 mG, and exposure for "1 to several hours" above 3 mG, respectively. Using the 
non-zero cumulative index values, exposure was dichotomized at the median as 'low' or 'high'. 
Adjusted ORs for 'low' or 'high' cumulative exposure versus no exposure were also close to 1.0. 
The last or the primary occupation was not separately analyzed. 
 
In summary, the non-significance of the ORs in the Graves et al. (1999) study may be due to three 
reasons: (1) less restrictive definitions of magnetic field exposure resulting in minimally exposed 
subjects being classified as having been 'ever exposed' or even highly exposed; (2) equal weight 
given to exposure during any age period, e.g., age 25-45 and age 45-65; (3) a cumulative exposure 
metric which equates what can be negligible exposure with significant exposure, e.g., negligible 
exposure for 20 years equals significant exposure for 10 years. In addition, there were no 
seamstresses among their subjects, who were from an HMO established primarily for union 
families. Seamstresses are seldom in a union. 
 
Seidler et al. (2007)  Seidler et al. (2007) conducted a case-control study by recruiting dementia-
diagnosed cases, all 65 or older, from 23 general practices located in Frankfurt-on Main and 
neighboring cities.  Recruitment was primarily based on the Mini-Mental State Examination.  
The Hachinski Ischemic Score was used in an attempt to differentiate between AD and vascular 
dementia (VaD).  195 cases (45 men and 150 women) were obtained: 108 were thought to have 
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“possible” AD, 59 “possible” VaD, 25 had “secondary” dementia, and 3 an “unclassified” 
dementia.   Imaging studies were also used for differential diagnostic purposes, if available.  
Population controls were randomly selected among those 65+ years of age who scored at least 27 
on the MMSE.  A second control group was selected from the general practices which 
contributed dementia cases.  These controls needed to be ambulatory and also were required to 
have a MMSE of 27 or above.  The authors state, but do not provide any other information, that 
“preliminary” analyses using the control groups separately produced “comparable results” with 
one exception: the ORs for blue collar work were “markedly” higher (p<0.1) for ambulatory 
controls than for population controls.  Based on these unpublished analyses, the control groups 
were combined for “final” analyses.  There were 229 controls in these latter analyses: 75 men 
and 154 women. 
 
Analyses are conducted for dementia, possible AD, and possible VaD cases.  However, the 
diagnostic methods used were really quite insufficient.  For example, subjects with depression 
often have a low MMSE score. 
 
Occupational histories were obtained by interview.  Informational items obtained were job 
phase, job title, industry, and specific job tasks for every job that lasted at least one year.  Next-
of-kin were used for the dementia subjects, unless there was no next-of-kin and the subject was 
in the “first signs of dementia”.  These cases were not excluded in the published results because 
the results were not “fundamentally” different without them.  Only jobs prior to the date of 
symptom onset or more than 4 years prior to dementia diagnosis if symptom onset timing was 
unknown were considered.  Again, exclusion of these cases did not “substantially” alter the 
study results.  The median time interval between the end of the last job and dementia diagnosis 
was 17 years for men and 24 years for women, while the for the controls the medians were 10 
and 21 years, respectively. 

Job titles were coded by experienced members the Frankfurt Institute for Occupational Medicine 
according to the Classification of the Federal Statistical Office in Germany and the Occupational 
Classification of the Finnish Censuses.  Two-digit occupational codes were used.  ELF MF 
exposure levels for each job were estimated by an “expert” co-author from the German Federal 
Institute for Occupational Safety and Health, blinded to case-control status.  Exposure categories 
were specified as follows: < 1 mG; 1-2 mG; 2-10 mG, 10-100 mG,; 100-1000 mG, and  > 1000 
mG.  (It is not clear in which category the lower and upper limits of each of the middle 4 
categories belong.) 

Analyses were based on cumulative exposure and maximum exposure to ELF MF, as determined 
by the expert co-author.  ORs were determined for the 15 primary occupational two-digit categories 
(ever vs never worked in the category and per 10 years work) and for estimated cumulative 
exposure and maximum exposure.  ORs were adjusted for age, region, gender, dementia in parents, 
and pack-years of smoking.  The referent group consisted of subjects who never worked in the 
given category and who held white-collar jobs as their main occupation 

Statistically significant findings among the ever vs never analyses were as follows:  

 Dementia Cases 

 food & beverage processors; tobacco product makers - OR=4.1,  
95% CI = (1.4 , 11.8); 
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 laborers (unskilled workers) – OR=7.6; 95% CI = (1.7 , 34.2); 
 blue-collar work as the main occupation – OR=1.6; 95% CI = (1.0 , 2.5) 

AD Cases 

 blue-collar work as the main occupation – OR=1.7; 95% CI = (1.0 , 3.1) 

VaD Cases 

 food & beverage processors; tobacco product makers - OR=7.3,  
95% CI = (2.0, 27.3); 

 laborers (unskilled workers) – OR=6.3; 95% CI = (1.0 , 39.2). 
 

Analyses based on “per 10 years” of work which were statistically significant or nearly so for 
possible AD were as follows: 

 metal workers (machinery fitters, machine assemblers, mechanics, manufacturers of 
precision instruments, plumbers, welders, sheet metal and structural metal preparers 
and erectors – OR=2.2; 95% CI = (1.0 , 5.1), 

 electrical and electronics workers – OR=2.7; 95% CI = (0.9 , 8.1), 
 spinners, weavers, knitters, dyers, tailors, dressmakers – OR=1.4; 95% CI = (0.9 , 

2.2), 
 construction workers, including structural engineers, civil engineers) –  OR=12.9;  

95% CI = (0.9 , 186). 

The “ever” versus “never” analyses are really quite inappropriate because the duration of time in the 
specific and general occupational categories can be quite low.  The “per 10 years” analyses are thus 
more appropriate, but the sample sizes within job categories are quite small, except for “spinners, 
weavers, knitters, dyers, tailors, and dressmakers”.  However, it is not clear what the actual ELF MF 
exposures for spinners, weavers, knitters, and dyers might be. 

The categories of (1) metal workers, (2) electrical and electronics workers, (3) spinners, weavers, 
knitters, dyers, tailors, and dressmakers; and (4), construction workers contain many of the 
occupations classified as medium or high ELF MF exposed occupations in the Sobel, Davanipour et 
al. papers and the papers by those who have essentially used the same classification methodology.  
One of the problems in the Seidel el al. (2007) paper is that the higher classification categories 
contain may occupations with low exposure. 

The authors have available to them the actual specific occupations of each subject.  They could 
therefore classify subject ELF MF exposure using the Sobel-Davanipour et al. methodology to 
reanalyze their data and determine if their findings for presumptive dementia (cognitive 
dysfunction) or AD patients replicate (or not) the Sobel, Davanipour et al. findings. 
 
Andel et al. (2010) Study  This study uses subjects from the Swedish Twin Registry.  All subjects 
were 65 years or older in 1998.  In all, 9,508 subjects had both a dementia/AD diagnostic workup 
and ELF MF occupational exposure estimates.  27.9% of the subjects were classified as having high 
exposure – above 2 mG.  Among the subjects diagnosed as having dementia, 33.8% were classified 
as having had high exposure.  The figure for subjects diagnosed with dementia was 34.0%.  Among 
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the controls, the corresponding figure was 27.8%.  Dementia and AD were diagnosed in a 
structured, presumably appropriate manner : 216 (2.27%) with dementia; 141 (1.49%) with AD.  
Age at dementia onset (≤ 75 vs > 75) was determined by informants, presumably family members.  
Analyses were adjusted for covariates: gender, education, coronary disease, and stroke.  Subjects 
were classified into three (3) exposure groups: < 1.2 mG, 1.2 to < 2.0 mG, and ≥ 2.0 mG.  The 
referent group consisted of subjects with estimated exposure below 1.2 mG.  Note that in the 
manuscript microTesla (μT) units were used: 1 mG = 0.1 μT.  For all subjects, the dementia 
adjusted odds ratios (AORs) were 1.41 (p=0.079) for exposure between 1.2 and <2.0 mG and 1.38 
(p=0.108) for exposure ≥ 2.0 mG.  The AD AORs were 1.35 (p=0.211) and 1.38 (p=1.53).  For age 
of onset ≤ 75, the AORs were 1.94 (p=0.03) and 2.01 (p=0.022) for all types of dementia and 1.69 
(p=0.215) and 1.94 (p=0.090) for AD.  For age of onset greater than 75, the AORs were much 
closer to 1.0 and clearly not significant.  Analyses were conducted also for manual and non-manual 
workers separately.  AORs for non-manual workers were clearly non-significant.  For manual 
workers, the AORs for dementia and AD had p-values below 0.05, except for exposure ≥ 2.0 mG 
for AD when the p-value was 0.056. 
 
It is our opinion that the ELF MF exposure assessment is not accurate in this study and other studies 
(e.g., breast cancer) which use the same exposure assessment methods and data.  Specific 
occupational information was obtained by interview and then sent to “Statistics Sweden for coding 
according to categories from the 1980 Swedish Population and Housing Census”.  For men, 
occupational exposure assessment was based on measurements of a sample of 1098 Swedish men 
(Floderus et al., 1996).  For women, the results of a study of 49 occupations by Forssén et al. 
(2004) have been used.  This latter paper is also discussed below in our discussion of breast 
cancer, primarily in Section IV.E.  We have two major concerns with the occupational 
classifications with respect to ELF MF exposure: 
 

1. Generally, government classifications of occupation are wider than occupational 
determination based on individual subject information.  Individual ELF MF 
exposure classification based on government classifications is therefore not likely 
to be particularly accurate.  This will result in many individuals being 
misclassified as having exposures above 2 mG.  The exposure classification 
methodology used by Davanipour, Sobel et al. and others has, we believe, much 
lower misclassification rates for 2.0 mG and above.  For example in Davanipour 
et al. (2007) the rates of classification were 7.5% and 3.8% for AD cases and 
controls, respectively.  As stated above, the comparable classification rate in the 
Andel et al. (2010) study was 27.9%. 

2. The Forssén et al. (2004) measurements for women classified seamstresses as 
having low ELF MF exposure.  This is very much out of line with our experience 
in Finland and in California and with the experiences of other researchers.  
Davanipour & Sobel measured ELF MF exposures in two clothing manufacturing 
companies in Finland.  The ambient exposure, except during lunch time, among 
seamstresses and associated workers (e.g., cutters) in the same areas was over 6 
mG.  Exposures of individual seamstresses, all of whom used AC current 
industrial sewing machines, were much higher at every body location.  We 
personally measured scores of seamstresses.  The lowest exposure to any body 
part was 20 mG (e.g., Hansen et al., 2000).  The usual work pattern was as 
follows: (1) the seamstress sits at a U-shaped table; (2) clothes to be sewed are 
folded on the right hand side; (3) the seamstress selects an article, sews it as 
specified; and (4) refolds the article, placing it on the left hand side of the desk.  
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All this time, the sewing machine is producing ELF MFs.  This is because the 
motor is always on and a clutch needs to be engaged in order to move the needle.  
The seamstresses are doing this work for 6-8 hours per day.  Seamstresses who 
work in drycleaners stores certainly do not sew all day long, so their exposure 
would be lower. 

  
E. RF Exposure and Alzheimer’s Disease 
 

We found no human studies of AD and RF to discuss. The single published epidemiologic study of RF 
and melatonin is discussed in Section II (Burch et al., 2002). 

 
E.1.  Transthyretin Studies 

 
There have, however, been studies related to the effect RF exposure on transthyretin (TTR), also 
referred to as prealbumin.  TTR is found in the brain, cerebrospinal fluid (CSF), and blood.  Based on 
earlier research related to Aβ deposition (discussed below), Söderqvist et al. (2009a,b) investigated 
the effect(s) of RF on TTR in two studies.  Söderqvist et al. (2010) discusses these same studies.  
In these studies, serum TTR levels are used as indicators for CSF and (presumably) brain TTR 
levels.  However, there is apparently no study demonstrating that this assumption is valid. 
 

1. In the 2009a study, 500 females and 500 males, aged 18-65, were randomly recruited 
from the municipality of Örebro, Sweden.  Consenting subjects initially completed a 
questionnaire which included employment history, use of specific types of wireless 
telephones, X-ray, chemical,  and radiation exposures (e.g., in medical therapy), and 
health and lifestyle questions, including physical exercise and disease history.  An initial 
blood sample was collected from each subject as close to the end of a work week as 
possible.  TTR concentrations (g/L) were determined using “standard 
immunoephelometric techniques”.  133 (26.6%) of the male and 184 (36.8%) of the 
female subjects who were “recruited” fully participated.  TTR assay results were log-
transformed in all statistical analyses.  Short-term wireless telephone use was 
determined by cumulative use (minutes) on the day the blood sample was delivered.  
Long-term use had two categories: “cumulative use” in total hours; and years since 
initial use.  These short- and long-term figures were presumably guestimates by the 
study subjects.  High TTR was chosen as the highest quartile (> 0.31 g/L.  Low TTR 
was ≤ 0.31 g/L. 

 
There was no indication that wireless telephone use for at least 5 years or at least 10 
years affected TTR levels as dichotomized.  However, using the TTR levels themselves, 
for cumulative use, among men, there was an indication of increased risk with 
increasing use of mobile telephones (both analogue and digital).  That is, the p-values 
were between 0.05 and 1.0.  For years since first use, among men, the results were 
stronger.  The p-values were below 0.05 for mobile telephones (all phones and analogue 
only).  However, among men, for Universal Mobile Telecommunications System 
(UMTS) telephones there was declining risk with higher use (p=0.02). 
 
For short-term use, there were no findings of significance or, evidently, marginal 
significance, except in one instance.  Among women, the shorter the time between last 
use of a mobile telephone and blood samples, the lower the TTR value (p-0.03). 
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There is no indication that the statistically significant or marginally significant finding 
have any biological importance. 
 

2. Based on these short-term use finding, Söderqvist et al. conducted a “provocation” 
study, exposing volunteers to an 890 MHz mobile “phone-like” signal.  Forty-four 
volunteers, aged 18-30 were recruited.  Exposures occurred during the working day: 8 
am – 5 pm.  Exposures were over a 2 hour period, with blood samples collected prior to 
exposure, after a 30 minutes “rest” period, immediately following the provocation, and 
60 minutes after the provocation.  The provocation exposure had an average kSAR1G of 
1.0 watts/kg.  Seemingly the study design did not work out very well.  The biggest mean 
change was a decrease between sample 1 and sample 2, when presumably nothing much 
was happening, except that the subjects were told to rest.  The mean changes were very 
minimal between sample 2 and post-exposure samples 3 and 4, especially compared to 
the between subject values.  There was also a control group who did not have any 
exposure.  Their TTR measurements were not much different from the experimental 
groups measurements.  However, no statistical comparison was presented. 

 
In short, this study seems to have provided no useful information. 

 
The questions of importance here are (i) whether TTR concentrations in serum are indicative of 
concentrations in the CSF and brain and (ii) whether TTR inhibits or increases the aggregation 
and neurotoxicity of Aβ.   
 

i. As mentioned above, we could find no studies of the relationship(s) between serum and 
CSF or brain levels of TTR. 
 

ii. In in vitro studies, Schwarzman et al. (1994, 1996) found that CSF TTR binds to Aβ, 
possibly preventing or limiting amyloid formation within the brain.  Their conclusion was 
that perhaps TTR helps prevent or delay AD onset.  Serot et al. (1997) studied elderly AD 
patients and controls with ages between 2 and 90.  TTR concentrations in CSF increased 
with age among the controls.  TTR concentrations among the AD cases were similar to 
those controls in middle age and lower than the elderly controls (20.02 mg/l (sd=2.45) vs 
17.49 mg/l (sd=2.02), p<0.001).  The authors suggest that AD development may result in 
a lowering of TTR secretion.  Lovell et al. (2008) studied the “aberrant” protein complex 
prostaglandin-d-synthase (PSD) and TTR in the CSF of autopsy verified late-onset AD 
patients, patients with mild cognitive impairment (MCI), and controls.  They found that 
complexed PDS/TTR was significantly increased in the ventricular CSF of the AD and 
MCI patients compared to normal controls.  This possibly explains the results of Serot et 
al. (1997).  Animal and cell studies have found that TTR infusion leads to a reduction in 
Aβ deposits (Link, 1995), lack of neurodegeneration in the transgenic mouse AD model 
Tg2576 (Stein and Johnson, 2002), inhibition of Aβ aggregation, toxicity, and induced 
apoptotic changes in cultured cells (Giunta et al., 2005). 

 
Wati et al. (2009) then studied TTR and vascular Aβ deposition in two (2) transgenic 
mouse models of AD: Tg2576/TTR-/- which lacks endogenous TTR, but produces human 
variant amyloid precursor protein (APP), and Tg2576/TTR+/-, which does not lack 
endogenous TTR.  The Tg2576/TTR-/- mice had a significantly reduced Aβ burden 
compared to the Tg2576/TTR+/- mice, contrary to the researchers expectations.  Their 
result indicates that, in their animal model, TTR appears to be associated with increased 
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risk of amyloid burden. 
 
On the other hand, using a different mouse model ceAPPswe/PSI E9/TTR+/- versus 
ceAPPswe/PSI E9/TTR+/+, Choi et al. (2007) found that amyloid deposition in the 
hippocampus and cortex was elevated in the brains and “accelerated” in the 
hippocampus and cortex of the ceAPPswe/PSI E9/TTR+/- mice compared to the 
ceAPPswe/PSI E9/TTR+/+. 
 
Thus, results may be dependent upon differences between experimental species or sub-
species.  This suggests that (1) replication is warranted and (2) concentration on 
studies involving humans is appropriate if animal model replications continue to 
demonstrate differing results. 
 
E.2.  RF and Mitochondrial DNA (mtDNA) Oxidative Damage 
 

Coskun et al. (2010) have demonstrated that mutations in the control region of mtDNA accumulate 
in the brain with age, with AD patients having a significant elevation of these mutations.  These 
mutations in AD patients are associated with a reduced mtDNA copy number.  They found that 
these mutations generally increase with age, both within the brain and in peripheral blood DNA and 
lymphoblastoid cell DNA.  They argue that the mtDNA mutation level is inversely correlated with 
mtDNA copy number and positively correlated with beta-secretase activity, an indicator of 
increasing amyloid beta.  Consequently, mtDNA damage may be associated with increased risk of 
AD. 

Xu et al. (2010) studied oxidative damage to mitochondrial DNA related to 1800 MHz RF exposure 
in primary cultured cortical neurons.  The neurons were exposed to 1800 MHz modulated by 217 
Hz, using an average special absorption rate of 2 watts/kg for 24 hours.  Examination of the 
neurons demonstrated a significant increase in 8-hydrodeoxyguanosine (8-oxodG), an indication of 
increased DNA damage.  In addition, there was a clear reduction in the copy number of mtDNA 
and in the level of mtRNA after RF exposure.  Xu et al. (2010) also conducted replicate assays, but 
with the addition of melatonin.  The effects of RF exposure were reversed, but not completely. 

IV.  BREAST CANCER 
 
Figure 2 provides a schematic outline of the areas of study providing evidence that ELF MF 
exposure can lead to breast cancer through an effect on melatonin production levels, and, of 
course, possible but unknown other pathways.  Section references are provided in Figure 2. 
 
There is now accumulating evidence that low melatonin production may increase the risk of breast 
cancer (BC). This evidence comes from in vitro, animal, and two longitudinal human studies.  The 
in vitro and animal study literature is quite extensive, so only a highlight review is provided.  
There are numerous published case-control studies of residential and occupational ELF MF 
exposure as a risk factor for breast cancer.  No epidemiologic studies of radiofrequency MF 
exposures and breast cancer have been published, which do not include ELF MF exposure, and 
which have reasonable data on RF exposure. 
 
For a review of melatonin from basic research to cancer treatment, see Vjayalaxmi et al., 2002. 
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 Conclusion: There is sufficient evidence from in vitro and animal studies, from human 

biomarker studies, and from occupational and light at night studies to conclude that 
high ELF MF exposure may certainly be a risk factor for breast cancer. Most of the 
residential ELF MF exposure studies have been negative. This may be because 
“high” residential exposures are actually not very high.  Individual exposures may be 
of importance, e.g., home sewing machines, hair dryers, AC/DC converters near the 
head of the bed, water pipes causing intermittent high exposures near living room or 
TV room sofas and easy chairs. 

 
As with Alzheimer’s disease, we provide the results of a meta-analysis for breast cancer (Chen et 
al., 2010) despite our antipathy for such analyses, due primarily to varying study design 
components, exposure assessments, and subject differences.  Chen et al. (2010) chose 15 studies 
published between 2000 and 2009.  They found no associations between ELF MF exposure and 
(female) BC, including subgroup analyses based on exposure modes, menopausal status, and 
estrogen receptor status.  These results are said to be in agreement with results by Erren (2001).  
Chen et al. (2010) found no statistically significant association between ELF MF exposure 
(residential, electric blanket, or occupational) and BC in general or BC based on menopausal 
status or ER status.  There was substantial heterogeneity between studies.  On the other hand, 
Erren (2001) found, using earlier studies not included in Chen et al. (2010), a slightly increased 
risk (referred to as RR) of BC in general: 1.12, 95% CI = (1.09 , 1.15).  This is clearly 
statistically significant due to the very large sample size.  Erren (2001) remarks that the results 
are quite variable between studies and “in part contradictory”.  He found that the primary 
methodologic problems were “probable misclassification of exposure” and “possible 
misclassification of the disease itself”.  Thus Chen et al.’s (2010) claims that (1) their results 
suggest no association between ELF MF exposure and BC and (2) are “in accordance” with 
Erren’s results (2001) should be taken with a grain of salt. 
 

A. In Vitro and Animal Studies Relating to Melatonin as a Protective Factor against 
Breast Cancer 

 
A.1. In Vitro Studies Related to Prevention of Oxidative Damage; Comparative 

in vivo Studies with Vitamin C and Vitamin E 
 
Melatonin has been found to neutralize hydroxyl radicals and to reduce oxidative damage in over 
800 publications (Reiter et al., 1995; Tan et al., 2002).  Melatonin has also been shown to act 
synergistically with vitamin C, vitamin E and glutathione (Tan et al., 2000) and stimulates the 
antioxidant enzymes superoxide dismutase, glutathione peroxidase and glutathione reductase 
(Reiter et al., 2002). 
 

 Using a cell-free system, Tan et al. and others have demonstrated that melatonin neutralizes 
hydroxyl radicals more efficiently than does reduced glutathione Tan et al., 1993a; 
Bromme et al., 2000). 

 Melatonin reduces oxidative damage to macromolecules in the presence of free radicals 
(Reiter et al., 1997, 2001a).  One mode of action is as a free radical scavenger (Reiter et al., 
2001b). 

 Melatonin increases the effectiveness of other antioxidants, e.g., superoxide dismutase, 
glutathione peroxidase, and catalase (Antolin et al., 1996; Kotler et al., 1998; Pablos et al., 
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1995; Barlow-Walden et al., 1995; Montilla et al., 1997). 
 Melatonin has protective effects against ultraviolet and ionizing radiation (e.g., Vijayalaxmi 

et al., 1995).  Vijayalaxmi et al. studied the effects of melatonin on radiation induced 
chromosomal damage in human peripheral blood lymphocytes (Vijayalaxmi et al., 
1996).  Blood from human volunteers was collected before and after administration of a 
single 300 mg oral dose of melatonin.  The post-administration samples of both serum and 
leukocytes had increased concentration of melatonin compared to the samples prior to 
melatonin administration.  After gamma radiation and mitogen exposure, a sample of cells 
was cultured for 48-72 hours.  Lymphocytes from the sample after melatonin was 
administered had significantly fewer chromosomal aberrations and micronuclei.  Primary 
DNA damage was reduced.  Vijayalaxmi et al. hypothesized that melatonin, in addition to 
its hydroxyl radical scavenging, may also stimulate or activate DNA repair processes 
(Vijayalaxmi et al., 1998). 

 
Melatonin has been found to be a more potent protector from oxidative injury than vitamin C or 
vitamin E (micromoles/kg) in several in vivo studies (for a review, see: Tan et al., 2002). 
Melatonin was also found in vitro to scavenge peroxyl radicals more effectively than vitamin E, 
vitamin C or reduced glutathione (Pieri et al., 1994; Reiter et al. 1995), although melatonin is not a 
very strong scavenger of peroxyl radicals (Reiter et al., 2001b). 
 

A.2. Animal Studies of Mammary Tumor Prevention with Melatonin 
 
Several studies have found that melatonin inhibits the incidence of mammary tumors in 
laboratory animals either prone to such tumors or exposed to a carcinogen (e.g., Tamarkin et al., 
1981; Shah et al., 1984; Kothari et al., 1984; Subramanian and Kothari, 1991a,b; Blask et al., 
1991).  In 1981, Tamarkin et al. found that supplemental melatonin, given on the same day as 
7,12-dimethylbenz(alpha)-anthracene (DMBA) and continued for 90 days, lowered the incidence 
of mammary tumors from 79% in controls to 20% (p<0.002) in the melatonin treated Sprague- 
Dawley rats (Tamarkin et al., 1981).  When they treated pinealectomized rats with DMBA, the 
incidence of mammary tumors increased to 88%, indicating a possible effect on endogenous 
melatonin on tumor incidence.  Similar results, but with somewhat different study designs, using 
female Holtzman rats given the carcinogen 9,10-dimethylbenzanthracene have been found (Shah 
et al., 1984; Kothari et al., 1984).  Subramanian and Kothari studied the suppressive effect by 
melatonin in rats treated similarly with DMBA under varying light:dark schedules and time of 
melatonin administration in both intact and pinealectomized female Holtzman rats (Subramanian 
and Kothari, 1991a).  They found that when administered during the initiation phase, melatonin 
only suppressed tumor development in intact animals.  However, when administered during the 
promotion phase, melatonin had suppressive effects regardless of the presence or absence of the 
pineal gland.  Subramanian and Kothari (1991b) also studied C3H/Jax mice and spontaneous 
mammary tumor development.  Mammary tumors developed in 23.1% of mice provided with 
melatonin from 21 to 44 days of age, but in 62.5% of control mice (p<0.02).  Furthermore, there 
was a decrease in serum 17-beta-estradiol levels in the melatonin treated mice (p<0.05).  In a N- 
methyl-N-nitrosourea (NMU) model of hormone-responsive Sprague-Dawley rat mammary 
carcinogenesis, Blask et al. (1991) found that melatonin, given during the promotion phase, 
reduced the incidence of tumors and antagonized estradiol’s stimulation of NMU-induced tumor 
incidence and growth.  They, however, did not find a decrease in estradiol in the melatonin treated 
rats. 
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In two studies, Tan et al. (1993b, 1994) found that melatonin protected Sprague-Dawley rats 
from safrole induced liver DNA adduct formation.  The protection was found at both 
physiological and pharmacological levels of supplementation.  The level of protection was dose 
dependent. Intraperitoneal injection of paraquat causes lipid peroxidation, a decrease in total 
glutathione, and an increase in oxidized glutathione in Sprague-Dawley rats.  Melchiorri et al. 
found that melatonin inhibits these effects (Melchiorri et al., 1995).  In addition, melatonin and 
retinoic acid appear to act synergistically in the chemoprevention of animal model tumors 
(Teplitzky et al., 2001) and in vitro systems (e.g., Eck-Enriquez et al., 2000). 
 

A.3. Animal Studies Related to Prevention of Oxidative DNA Damage by 
Estradiol and Radiation 

 
Karbownik et al. (2001) found that melatonin protects against DNA damage in the liver and 
kidney of male hamsters caused by estradiol treatment. They also found that in the testes, 
estradiol did not increase DNA damage, but that melatonin was protective against the natural 
level of oxidative DNA damage, as indicated by 8-hydrodeoxyguanosine (8-oxodG) levels. 
Several studies have found that laboratory animals are protected by melatonin from lethal doses 
of ionizing radiation (e.g., Blickenstaff et al., 1994; Vijayalaxmi et al., 1999; Karbownik et al., 
2000).  Vijayalaxmi et al. (1999) and Karbownik et al. (2000) investigated markers of oxidative 
DNA damage and found that significant decreases in these markers in the melatonin treated 
animals. 
 

A.4. Melatonin: Scavenger of ●OH and Other ROS  
 
Melatonin is a powerful, endogenously produced scavenger of reactive oxygen species (ROS), 
particularly the hydroxyl radical (●OH). Other ROS which melatonin scavenges include hydrogen 
peroxide (H2O2), nitric oxide (NO●), peroxynitrite anion (ONOO-), hypochlorous acid (HOCl), 
and singlet oxygen (1O2) (Reiter, 1991; Tan et al., 2000, Hardeland et al., 1995; Antolin et al., 
1997; Stasica et al., 1998). ●OH is produced at high levels by natural aerobic activity.  ROS are 
also produced by various biological activities or result from certain environmental and lifestyle 
(e.g., smoking) exposures. 
 
Hydrogen peroxide does not appear to react directly with DNA (Halliwell, 1998), but does 
undergo chemical reactions within the cell nucleus which produce ●OH, e.g., with Fe+2. On the 
other hand, 1O2 readily oxidizes the guanine base and causes HOCl,  ONOO-, and NO● damage 
in various patterns (Halliwell, 1998). 
 
However, ●OH is the most reactive and cytotoxic of the ROS (Halliwell et al., 1986).  ●OH 
appears not to be removed by antioxidative enzymes, but is only detoxified by certain direct 
radical scavengers (Tan et al., 1999) such as melatonin. 
 
Melatonin is found in every cell of the body and readily crosses the blood-brain barrier.  It 
scavenges ROS at both physiologic and pharmacologic concentrations.  In the literature, 
“physiologic” refers to blood level concentrations of melatonin, while “pharmacologic” indicates 
2-3 orders of magnitude higher concentration. Recently, intracellular levels of melatonin, 
especially within the nucleus, have been shown to be naturally at “pharmacologic” levels for all 
cellular organelles studied to date (Maestroni, 1999; Reiter et al., 2000). 
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Tan et al. (2002) review the underlying basis for melatonin’s scavenging of ROS, which is 
briefly discussed here.  From the known structure-activity relationships, the reactive center of the 
interaction between oxidants and the melatonin molecule is its indole moiety.  This is due to its 
high resonance stability and quite low activation energy barrier towards free radical reactions. In 
addition, the methoxy and amide side chains contribute significantly to melatonin’s antioxidant 
activity.  The methoxy group in the C5 component of the molecule appears to prevent prooxidative 
activity.  If this methoxy group is replaced by a hydroxyl group, under some in vitro conditions, 
melatonin may exhibit prooxidant capability.  The mechanisms of melatonin’s scavenging ROS 
appear to involve the donation of an electron to form a melatoninyl cation radical or a radical 
addition at site C3 of the melatonin molecule.  (There are other possibilities also.)  All known 
intermediates generated by the scavenging of a ROS by melatonin are also free radical scavengers.  
This is known (by some) as the ‘free radical scavenging cascade reaction’, which allows one 
melatonin molecule to scavenge 4 or more ROS. (See Tan et al., 2007, for details). 

 
A.5. Melatonin and Oxidatively Damaged Guanine in DNA 
 

Davanipour et al. (2009) published the results of a study relating overnight melatonin production 
(as measured by aMT6s/creatinine levels in complete overnight urine samples) to the levels of 
oxidatively damaged guanine in DNA (as measured by urinary guanine damage/repair guanine 
products 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydro-guanine (8-
oxoGua).  8-oxodG is a product of the damage/repair of DNA guanine, while 8-oxoGua is a 
product of the damage/repair of either DNA or RNA guanine.  Fifty-five (55) mother-father-oldest 
adult daughter families were recruited.  All were healthy for their age.  The age ranges were as 
follows: mothers – 43-80; fathers – 46-81; daughters – 18-51.  The results were as follows: 

 with or without adjustment for BMI or weight, among the mothers there was an 
inverse relationship between creatinine-adjusted aMT6s and 8-oxodG (p=0.02); 

 among the mothers older than the oldest daughter (age 51.6) the significance level of 
the inverse relationship between creatinine-adjusted aMT6s and 8-oxodG fell to 
0.009; 

 among the fathers older than the oldest daughter, the inverse relationship between 8-
oxoGua and creatinine-adjusted aMT6s was significant at the 0.03 level; 

 among the oldest daughters, there was an increase in 8-oxoGua with increasing age. 
This study appears to be the only research published to date on the relationship between melatonin 
production and DNA damage/repair in humans. 
 

B. Longitudinal Human Studies of Low Overnight Melatonin Production as a Risk 
Factor for Breast Cancer 

 
Conclusion: Five longitudinal studies have now been conducted of low 
melatonin production as a risk factor for breast cancer.  Two of the studies 
collected urine samples in an optimal manner to estimate the important 
component of melatonin production – overnight production. However, two (2) 
used first morning void, which is close to optimal and one (1) had to use 24-
hour collection, which hides possible non-circadian rhythm, which can be 
deleterious.  One study, which used first morning void urine, was limited to 
premenopausal BC.  The study which used 24-hour urine samples was 
negative.  Of the remaining 4 studies, three were positive and the one limited 
to premenopausal BC was problematic, perhaps due to lag times and the 
likely adverse effect of BC in its very early stage on melatonin production. 
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Thus, there is increasingly strong longitudinal evidence that low melatonin 
production is a risk factor for at least post-menopausal breast cancer. 

 
There have been five (5) longitudinal studies, two of which were from the Nurses’ Health Study 
cohort, of low melatonin production as a risk factor for breast cancer. Note that many breast 
cancers are associated with a decrease in melatonin production (Bartsch et al., 1997).  There is 
often a “rebound” after excision of the tumor, but it is not known if post-excision melatonin 
production is near the pre-tumor production level (Bartsch et al., 1997).  Thus, as with AD, it is 
not appropriate to use post-tumor melatonin levels in a case-control study of low melatonin as a 
risk factor for breast cancer. 
 
DNA damage is the pathway through which normal cells become malignant.  Thus, the greater the 
amount of DNA, the greater the probabilities of a malignant transformation and the development 
of cancer.  Davanipour et al. (2009) have conducted a study on the association between 
endogenous melatonin levels and oxidative guanine DNA damage among mothers and their oldest 
sampled daughters.  The mothers’ age range was 43-80, while the oldest daughter’s age range was 
18-51.  Nearly all of the mothers, but few of the daughters were postmenopausal. Complete 
overnight urine samples were obtained. Creatinine-adjusted aMT6s and 6- hydrodeoxyguanosine 
(8-oxodG) were assayed.  8-oxodG is a measure of the level of oxidative DNA damage.  
Creatinine-adjustment is not necessary because the 8-oxodG level using complete overnight urine 
is a measure of the total repair of oxidized DNA guanine during the night.  There was a statistically 
significant (p=0.02) inverse association between the level of nocturnal melatonin production 
(aMT6s/creatinine) and 8-oxodG for the mothers, but not for the daughters. Statistical adjustment 
was made for age and weight; however, there was little difference in the results with or without 
adjustment.  The correlation between creatinine-adjusted aMT6s and 8- oxodG was 0.35 (p=0.01). 
 

 
Positive Studies 

 
Schernhammer and Hankinson (2005) reported on the association between urinary 
melatonin levels and breast cancer risk in the Nurses’ Health Study II. The study had 
collected first morning void urine samples prior to the diagnosis of any cancer in a sub- 
sample of the women in the study.  Assays of aMT6s and creatinine for 147 women who 
developed invasive breast cancer, and 291 age-matched controls, plus 43 women who 
developed in situ breast cancer and 85 matched controls were analyzed.  Analyses were 
based on quartiles of creatinine-adjusted aMT6s developed from the control data, with 
subjects in the lowest quartile as the referent group. (Thus, the analyses were conducted 
with a view that higher levels of melatonin production might be protective.)  Unadjusted 
analyses, estradiol level adjusted analyses, and analyses adjusted for age-at-menarche, 
parity, age-at-first birth, family history of BC and benign breast disease, alcohol use, 
antidepressant use, and body mass index were conducted.  It should be noted that low levels 
of melatonin are causally associated with earlier age-at-menarche (e.g., Cohen et al., 1978; 
Sizonenko, 1987).  Thus, inclusion of age-at-menarche in the adjustment is perhaps not 
appropriate.  Analyses of cases and controls from the lowest and the highest quartile were 
statistically significant for each level of adjustment.  The odds ratios (OR) were all 0.59. 
(In terms of risk associated with low melatonin production, the OR was 1/0.59 = 1.69.) 
Inclusion of the the cases with in situ breast cancer led to OR between 0.68 and 0.70. 
Significance levels were not provided.  However, the 95% CI’s for invasive breast cancer 
did not contain 1.0, while the 95% CIs when in situ breast cancer cases were included just 
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barely contained 1.0. 
 
In 2008, Schernhammer and Hankinson used the Hormones and Diet in the Etiology of 
Breast Cancer Risk (ORDET) cohort to study low overnight melatonin production as a 
possible risk factor for postmenopausal breast cancer.  The ORDET study was conducted 
in northern Italy and included 10,786 healthy women aged 35-69 at baseline, 3966 of 
whom were postmenopausal.  Complete 12-hour overnight urine samples were obtained.  
There were 178 subjects who developed postmenopausal BC prior to the Schernhammer 
et al. study analysis and met inclusion criteria, e.g., BC as the initial cancer, urine sample 
availability.  Seven hundred ten (710) women were selected as controls, matched on age 
at enrollment (± 3 years), date of recruitment (± 180 days) and laboratory assay batch.  
Conditional regression models were used for analyses, adjusting for thirteen (13) known 
BC risk factors and circulating testosterone, which was a BC risk factor in the ORDET 
study.  Analyses were performed using both aMT6s and creatinine-adjusted aMT6s.  
Analyses were done by quartiles of aMT6s.  95% CIs and trend p-values were calculated.  
Trend p-values were 0.05 or below when the analyses excluded in situ BC and below 0.10 
when in situ BC was included.  When analyses were conducted without current smokers, 
the trend p-values were below 0.005.  Comparing the highest versus lowest quartile of 
aMT6s, the p-values were at or below 0.05 for invasive BC, including or excluding 
testosterone.  When only non-current smokers were analyzed, the p-values were smaller.  
(Note: only 95% CIs were actually published.)  Results were similar for creatinine-
adjusted aMT6s analyses. 
 
In 2009, Schernhammer and Hankinson used to Nurses’ Health Study cohort to further 
investigate the relationship between urinary melatonin levels and postmenopausal BC.  
Spot morning urine assays for aMT6s were available for 357 postmenopausal women who 
developed incident BC after recruitment into the cohort and 533 matched controls.  The 
analysis methods were much the same as in the previous paper.  Quartiles of aMT6s 
among the controls were analyzed.  In multi-variable adjusted analyses, the subjects in the 
lowest quartile of aMT6s had an increased risk (p < 0.05) of developing BC compared to 
subjects in the highest quartile.  This was true for all BC, for in situ BC only, and for 
invasive BC only.  Subjects in the lowest quartile also had an increased risk compared to 
subjects in the 3rd (highest) quartile for all BCs and for in situ BC only.  Trend p-values 
were below 0.05 for all three groups: all BCs, invasive BC, in situ BC. 

 
** It should be noted that the first morning void, especially when the subject has had urine 
voids during sleep time, is not as good as complete overnight urine collection in estimating 
nocturnal melatonin production. ** 

 
Negative Study 

 
Travis et al. (2004) conducted a study of melatonin and breast cancer using the Island of 
Guernsey or Guernsey III longitudinal study. This study recruited women for an eight and 
one-half year period, ending in 1985. During the follow-up period, 127 women developed 
breast cancer.  Three hundred fifty three (353) controls were selected with matching based 
on age, recruitment date, menopausal status, day of menstrual cycle (if applicable) when the 
urine sample was obtained, and number of years post-menopausal (if applicable).  Twenty- 
four (24) hour urine samples were collected.  These samples were evidently not divided 
between overnight and other time-of-day sub-samples.  None of the analyses (all cases- 
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controls, only pre-menopausal cases-controls, or only post-menopausal cases-controls) 
showed any hint of an increase risk associated with low 24-hour melatonin production. 

 
** It is unfortunate that the 24-hour urine samples were not subdivided by time of day.  It is 
the nocturnal blood level of melatonin that is important.  About 85%-90% of pineal 
melatonin is produced nocturnally.  The circadian rhythm appears to be vital for the effects 
of melatonin in regulation of important biologic functions, including immune response. 
This particular problem with the study makes the results suspect.  (See Hrushesky and 
Blask, 2004, for further details.) ** 

 
Problematic/Peculiar Study 
 
In 2010, Schernhammer et al. used the ORDET cohort to investigate premenopausal BC.  
There were 180 premenopausal BC cases, with 683 controls selected – nearly 4 per case – 
using the same matching criteria as was previously used.  The urine samples were 12 
hour, overnight (7:00 pm – 7:00 am) samples.  There was a statistically significant trend 
towards increasing risk with higher baseline aMT6s.  This was the opposite of what was 
likely anticipated.  However, when current smokers were excluded, the increasing risk 
completely disappeared.  On the other hand, among non-current smokers, a BC diagnosis 
within 3 years of urine collection was much more likely for subjects in the highest aMT6s 
quartile compared to subjects in the lowest quartile.  Lag time from urine collection to BC 
diagnosis was also investigated among non-current smokers.  Only after 8 years of lag 
time was there a statistically significant difference between the lowest and highest 
quartiles of aMT6s: an increase in risk associated with low production.  Thus, this study’s 
results are clearly perplexing.  The authors recognize this and suggest that perhaps very 
early BC is causing an increase in melatonin production. 

 
C. No Case-Control Studies of Low Melatonin Production as a Risk Factor for 

Breast Cancer 
 
As mentioned previously, breast cancer itself often causes a decrease in melatonin production, e.g., 
Bartsch et al. (1997).  It is therefore inappropriate to use current levels of melatonin production of 
breast cancer cases in a case-control study of whether low levels of melatonin are a risk factor for 
breast cancer, and none have been published. 
 

D. Light-at-Night and Night Shift Work Studies as a Risk Factor for Breast Cancer 
– Surrogates for Low Melatonin Production 

 
Conclusion: There is moderately strong evidence that both long-term light-at-night 
and  night shift work increase the risk of breast cancer.  Five (5) studies are 
reviewed, 4 of which are positive.  The negative study did find an increased risk for 
light-at-night, but not shift work.  This study classified subjects as having had rather 
short shift work as exposed.  Only very few subjects had at least 8 years of shift 
work: 8 (1.6%) of cases and 19 (3.7%) of controls. 

 
Several studies have found an increase in risk of breast cancer among women who have rotating 
night shift work or who otherwise experience light at night. Light at night (LAN) is well-known 
to cause a decrease in nocturnal melatonin production (e.g., Lewy et al., 1980; Lowden et al., 
2004; Schernhammer et al., 2004).  Note that occupational studies of ELF MF exposure 
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(Section E, below) have included jobs with night shift work, e.g., flight attendant and 
radio/telegraph operators. 
 

Positive Studies 
 

 Lie et al. (2006) studied the occurrence of breast cancer among Norwegian nurses.  All 
data were obtained from government registers.  Among a cohort 44,835 nurses, who 
graduated from a 3-year nursing program between 1914 and 1980 and who were alive 
on January 1, 1953, or born after this date, 537 breast cancer cases which occurred 
between 1960 and 1982 were identified.  (1960 was chosen because that was the first 
year for which fertility data were available.)  Four (4) controls, alive and cancer free, for 
each case were selected from the nurse cohort, matched by year of birth (± 1 year). 
Controls were required to have graduated or started their initial job no later than the year 
the corresponding case was diagnosed with BC. Number of years of night shift work 
was estimated from work history and work locations.  Statistical adjustments in OR 
estimates included total employment time and parity.  The OR for 30+ years of night 
shift employment versus 0 years, was 2.21 (p<0.05), 95% CI = [1.10 – 4.45].  The p- 
value for trend was 0.01.  When the analysis was limited to nurses aged 50+, the OR 
was 2.01 (p>0.05), 95% CI = [0.95 – 4.26].  The number of cases without night shift 
work was only 50 for all ages, and was 29 for nurses over age 50.  The number of cases 
with at least 30 years of night shift work was 24.  (No case below age 50 had 30+ years 
of night shift work.) 

 
 Schernhammer et al. (2001) examined rotating night shift work as a possible risk factor 

for breast cancer in the Nurses’ Health Study.  The total number of years in which a 
subject had worked rotating night shifts of at least 3 nights per month was obtained in 
1988.  The sample was quite large: 31,761 nurses had not had any years meeting the 
night shift criterion; 40,993 had had 1-14 years; 4,426 had had 15-29 years; and 1,382 
had had 30+ years.  During the following 10 year period, 2,441 incident cases of breast 
cancer were identified. Compared to nurses who had had no qualifying years, the 
adjusted relative risk (RR) for nurses with 30+ years of rotating night shift work was 
1.36, with a 95% CI of [1.04 – 1.78].  All subjects with 30+ of rotating night shift work 
were post-menopausal  Analyses were also conducted within pre- and post-menopausal 
groups.  The RR and 95% CI were the same for 30+ years of exposure, because the 
number of nurses with no exposure decreased slightly (from 925 down to 801).  While 
not statistically significant, perhaps due to sample size, pre-menopausal nurses who had 
at least 15 years of shift work had an adjusted RR of 1.34, 95% CI = [0.77 – 2.33], 
essentially the same RR as post-menopausal women (RR=1.36, 95% CI = [1.04 – 1.78]) 
who worked night shift for at least 30 years. There were only 14 pre-menopausal nurses 
with 15+ years of exposure.  The trend in RR for increasing years of exposure was 
statistically significant for post-menopausal nurses and all nurses.  Adjustments were 
made for age, weight change between age 18 and menopause, and many other variables 
associated with breast cancer.  The increase in risk was almost totally due to hormone- 
receptor positive breast cancers.  This was the first prospective night shift and breast 
cancer study. 

 
 Davis et al. (2001b) studied 813 breast cancer patients, aged 20-74, and 793 controls. 

The controls were obtained through random digit dialing and were frequency matched 
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by 5-year age intervals.  Lifetime occupational history, bedroom lighting, and sleep 
habits were obtained by interview for the 10 years prior to diagnosis. Not sleeping 
during nocturnal periods (when melatonin production is usually at its peak) had an OR 
of 1.14 for each night per week.  The 95% CI was [1.01 – 1.28].  Night shift work had 
an OR of 1.6, 95% CI = [1.0 – 2.5].  There was a significant upward trend (p = 0.02) in 
the OR with increasing years and more hours per week in night shifts.  Statistical 
adjustments were made for parity, family history of BC, oral contraceptive use (ever), 
and recent (but discontinued) use of hormone replacement therapy. 

 Hansen (2001) studied BC risk among younger Danish women whose work was mostly 
at night.  All women born between 1935 and 1959, and 30-54 years of age, were 
identified though the Danish Cancer Registry.  The number of such women was 7,565. 
One control per case was randomly selected from the Danish Central Population 
Registry.  Controls were (i) living, (ii) apparently cancer free, and (iii) working before 
the date of diagnosis of the corresponding case.  Work history was obtained from the 
Danish pension fund database.  No work history was found for 530 cases, so the number 
of case-control pairs for the study was 7,035. Using a national survey (1976) of women 
and working conditions, 4 occupational categories were identified in which at least 60% 
of the female employees so some work at night.  These were manufacturing of 
beverages, land transport services, catering, and air transport services. For hospitals, 
furniture manufacturing, water transport services, and cleaning services, between 40% 
and 59% of the women work some night shifts.  Comparisons were made between 
occupations in which 60%+ of the women work night shifts and occupations in which 
less than 40% work night shifts.  Only occupations within 5 years of diagnosis were 
considered.  This limit was based on suspected induction time for breast cancer.  To be 
placed in the “exposed” category a women had to have worked at least 6 months in a 
night shift occupation.  Statistical adjustments were made for age, social class, ages at 
birth of first and last child, and parity.  The OR for all “exposed” occupations was 
statistically significant (p<0.05): OR=1.5, 95% CI = [1.3 – 1.7].  For women who 
worked at least 6 years in “exposed” occupations, the OR was 1.7 (p<0.05).  The results 
were essentially driven by the catering and air transport service occupations. (It should 
be noted that these two occupations may also result in higher ELF MF exposure, 
compared to manufacture of beverages and land transport services.) The authors state 
that “(w)hen the 5-year induction time was ignored, the ORT decreased marginally”. 

 
Negative Study 

 
 O’Leary et al. (2006) studied night shift work, light-at-night and BC in Long Island, 

NY, as part of the Electromagnetic Fields and Breast Cancer on Long Island Study 
(EFBCLIS) Group.  There were 487 cases and 509 population-based controls, frequency 
matched to the expected age distribution of the cases in the study.  These subjects had to 
have participated in the earlier Long Island Breast Cancer Study Project (LIBCSP). 
Each case had to have lived in the same home for at least 15 years prior to the diagnosis 
of breast cancer, while each control had to have lived in the same residence for at least 
15 years prior to recruitment.  Cases had to have had their BC diagnosis within the 12 
month period beginning August 1, 1996.  Controls were concurrently recruited.  The 
LIBCSP had collected, via direct interview, complete job history information, including 
shift work – all jobs held for at least 6 months beginning at age 16, full time or part- 
time.  The EFBCLIS repeated the job history interview, without the shift work 



ELF MF: Melatonin, Alzheimer’s Disease & Breast Cancer     Davanipour & Sobel 
 

43 
 

information, for the period 15 years prior to the date of BC diagnosis (cases) or 
recruitment (controls). Military assignments were included.  Light-at-night information 
was obtained by interview, and included information about sleep hours, frequency and 
length of having lights on during sleep time for the 5 year period prior to the reference 
date. 

 
Exposure to shift work was defined as ever having had a job (≥ 6 months, either part or 
full time) with at least 1 day per week of shift work, during the 15 years prior to the 
reference date.  Sub-groups were defined as follows: ever had an evening shift job; ever 
had an overnight shift job; ever had an evening shift, but never an overnight job; ever 
had an overnight shift; but never an even shift job.  Statistical analyses were adjusted 
for reference date, parity, family history of BC, education, history of benign breast 
disease. 

 
For any of the various categories of shift work during the 15 years prior to the reference 
date, there was no elevated risk of BC. However, ‘any overnight shift work’ had a 
statistically significant OR below one.  The referent group included subjects with a jobs 
having less than 1 shift work day per week. Such a job could have been held for many 
years.  The OR for at least 8 years of overnight shift work was statistically significantly 
below 1.  For light-at-night within 5 years prior to the reference date, the only 
statistically significant finding was an OR = 1.65 for waking up and turning on lights at 
least 2 times per night versus doing so no more than 3 times per month. 

 
The authors conclude that their study “provides mixed evidence for the light-at-night 
hypothesis”.  Analyses of shift work within 5 years of the reference date, the 
“induction” period used by Hansen (2001), were not presented.  Overnight shift work 
was in the work history of only 26 cases and 50 controls; a duration of at least 8 years 
of overnight shift work was experienced by only 6 cases and 19 controls.  Thus, the 
effective, “exposed” sample size was quite small.  Information as to when this shift 
work occurred relative to the reference date was not provided. 

 
E. Occupational Case-Control Studies of ELF MF Exposure as a Risk Factor for 

Breast Cancer 
 

Conclusion: There is rather strong evidence from case-control studies that 
long-term, high occupational exposure to ELF magnetic fields is a risk factor 
for breast cancer.  Six (6) independent studies are reviewed.  Four (4) have 
positive conclusions, while two (2) are negative. The latest study is particularly 
strong. The two negative studies have serious shortcomings in exposure 
classification and come from the same research group. 

 
There have been several case-control studies of occupations with more or less high ELF MF 
exposure and the risk of breast cancer.  These studies have been generally positive, in the sense 
that there appears to be an increased risk.  Earlier studies generally lack appropriate exposure 
information (e.g., Wertheimer and Leeper, 1994). 
 

Positive Studies 
 

 Peplonska et al. (2007) have conducted a large, population-based, case-control study of 
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breast cancer and 73 occupational categories.  All incident cases of cytologically or 
histologically confirmed breast cancer among women aged 20-74 in Warsaw and Lódź, 
Poland, in 2000-2002 were identified.  2,502 controls were randomly selected using the 
Polish Electronic System of Population Evidence, which maintains records on all 
citizens of Poland.  Controls were matched to cases by city of residence and age ± 
5years.  A structured questionnaire was completed by 79% of the cases and 69% of the 
controls.  The questionnaire included items related to demographics, reproductive and 
menstrual history, hormone use history, physical activity, occupational history for all 
jobs held at least 6 months, smoking, alcohol use, diet, cancer history in female 
relatives, medical and screening history, prenatal exposures, and history of weight and 
height development.  Occupational information included job title, start and stop dates, 
employer, company products and/or services, work activities and duties, physical 
activity related to work, passive smoking, and exposures to a list of chemicals.  The 
study was funded by the U.S. National Cancer Institute (NCI) and managed by Westat 
(Rockville, MD). 

 
Statistical adjustment was made for age, age-at-menarche (≤ 12; 13-14; ≥ 15), 
menopausal status; age-at-menopause, parity ≤ 1; 2; ≥ 3), body mass index (< 25; 25-30; 
≥ 30 kg/m2), first degree female family history of BC, education (< high school; high 
school; some college or professional training; college degree), previous mammographic 
screening, and city of residence.  Oral contraceptive use, marital status, tobacco and 
alcohol use, age-at-first full term birth, breastfeeding, recreational and occupational 
history were not used for adjustment in the final analyses because they had “little 
impact” on the results. 

 
In the primary analyses, for each specific job category/industry, the referent group 
consisted of all subjects who did not work in that job/industry for at least 6 months.  For 
each specific “white-collar” occupation, additional analyses using all other white-collar 
jobs as the referent group were conducted.  This was thought to provide at least a partial 
account for socio-economic factors not accounted for by education.  Similar blue-collar 
job analyses were not conducted.  Several job categories containing occupations with 
elevated ELF MF exposure had statistically significantly elevated ORs. 

 
** These ORs were significantly elevated despite the fact that all other occupations with 
elevated ELF MF exposure were placed in the referent group. ** 

 
ELF MF exposure was determined using a job exposure matrix developed within NCI 
for a brain cancer study.  No, low, medium and high categories were developed by 
“experienced industrial hygienists”.  (No reference was provided.)  The highest ELF 
MF exposure category of all jobs for an individual was used in analyses.  99% of the 
high exposed subjects were so ranked due to employment as machine operators and 
tenders in the textile apparel and furnishing industry.  Information on which 
occupations were classified as low or medium ELF MF exposure were not provided.   
 
** It should be noted that (1) ‘tenders’ generally provide maintenance to machinery 
and (2) operators of machines other than sewing machines, e.g., cutters, both have 
lower ELF MF exposure than seamstresses. **   
 
The OR for high ELF MF exposure versus no exposure was significant: OR = 1.5, 
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95% CI = [1.1 – 2.0].  For low exposure, the OR was also significant: OR = 1.2, 95% 
CI = [1.0 – 1.5].  For medium exposure the OR was also 1.2, but the 95% CI was [0.9 
– 1.5]. Additional data analyses were not provided.  The OR for high exposure among 
textile apparel machine operators and tenders is in line with the statistically 
significantly increased OR for seamstresses in the Forssén et al. (2005) study (see 
below under “negative studies”) discussed below.  In the Forssén et al. study (2004), 
seamstresses were classified as having medium-low ELF MF exposure. 
 
Specific ORs for occupations classified (surprisingly and for some likely incorrectly) 
as having high (as opposed to low or at most medium) ELF MF exposure by Forssén et 
al. (2004) (see below) were calculated: cooks (OR=1.0); computer scientists 
(OR=1.3); computer and peripheral equipment operators (OR=0.7); data entry keyers 
(OR=0.3); dentists (OR=0.6); dental nurses (OR=1.0); counter clerks and cashiers 
(OR=1.1); and telephone operators (OR=0.9). 

 
 Labréche et al. (2003) studied occupational ELF MF exposure and post-menopausal 

breast cancer.  Cases and controls were identified through pathology department records 
at 18 hospitals in Montreal, Canada.  These hospitals treat most of the breast cancer 
cases in the area.  Age was restricted to 50-75 at the time of initial diagnosis of primary 
BC.  Cases had to be residents of the region and the diagnosis had to have been in 1996 
or 1997.  Controls had one of 32 other cancer diagnoses and were frequency matched by 
age and hospital.  The following cancers were excluded: liver, intrahepatic bile duct, 
pancreas, lung, bronchus, trachea, brain, central nervous system, leukemia, lymphoma, 
and non-melanoma skin cancer, but not gastrointestinal (Schernhammer et al., 2003) or 
colorectal cancer (Bubenik, 2001).   
 
Complete occupational history, including task descriptions, and other personal 
information was obtained by personal interview, either of the subject or a surrogate if 
the subject was deceased or otherwise unavailable.  Specialized occupational 
questionnaires were used for specific occupations, including sewing machine operators, 
cooks and nurses.  The development of these questionnaires was led by Jack 
Siemiatycki.  See, for example, Siemiatycki et al. (1991, 1997).  ELF MF exposures 
were estimated from detailed descriptions of tasks, equipment used, and the work 
environment by industrial hygienists intimately familiar with Montreal workplaces. The 
ELF MF exposure categories and primary occupations were as follows: no exposure (< 2 
mG; low exposure (2-5 mG, “typical jobs”, including VDT operators, electric typewriter 
operators); medium exposure (5-10 mG; denturists, machinists); and high exposure (≥ 
10 mG; sewing machine operators, textile workers).  The industrial hygienists 
“confidence” in each subject’s exposure assessment was obtained as definitely no 
exposure, or low, medium, and high confidence of exposure. 

 
Exposures to benzene, perchloroethylene, and alphatic aldehyes, chemicals found in the 
textile industry, were also considered. 

 
Statistical adjustments were made for age at diagnosis, family history of breast cancer, 
education, ethnicity, age-at-bilateral oophorectomy, age-at-menarche, age-at-first full- 
term pregnancy, oral contraception use, duration of HRT, total duration of breast 
feeding, alcohol use, smoking, and body mass index, as appropriate.  Adjustment was 
also made for proxy versus personal responses because proxies tend to report fewer 
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jobs.  In addition, duration of employment in the textile industry was an adjustment 
variable.  As mentioned previously, adjustment for age-at-menarche is probably not 
appropriate due to melatonin’s causal relationship with age-at-menarche. 

 
In addition to the categorical analyses, the number of hours of medium or high exposure 
was used as a risk factor.  The number of hours from the lower limit of the second 
quartile to the upper limit of the third quartile of medium/high exposure was 6000 
hours.  ORs were presented for a difference of 6000 hours. 

 
All analyses, e.g., no exposure vs ever exposed, prior to 10 years before diagnosis, or 
before age 35,  were non-signficant and non-elevated except for the following ones, 
adjusted for textile industry employment and other factors: 

 
 No exposure vs medium-to-high exposure – OR = 1.90, 95% CI = [0.99 – 3.85]; 
 6000 hour increase in medium-to-high exposure – OR = 1.21, 95% CI = [0.97 –

1.49]; 
 6000 hour increase in medium-to-high exposure prior to 10 years before 

diagnosis – OR = 1.31 (p<0.05); 
 6000 hour increase in medium-to-high exposure prior to age 35 – OR = 

1.54 (p<0.05). 
 

The significant results appear to be primarily due to ELF MF association with 
progesterone positive and/or estrogen positive breast cancers. 

 
The use of a 10 year lag eliminates exposure periods which may be too near the 
diagnosis time to be etiologically relevant.  The analysis of exposures prior to age 35 
identifies the time period when the development of female breast cells appears to cease. 

 
The use of textile industry employment (yes/no) or length of time in the textile industry, 
as appropriate, as a covariate provides some adjustment for chemical exposures.  Thus, 
the increase in the ORs when adjustment was also made for textile industry employment 
relates to ELF MF exposure. 

 
Finally, controls also had cancer.  While many of the excluded cancers may conceivably 
have ELF MF as a risk factor, some of the non-excluded ones may also.  This is 
especially true if the melatonin hypothesis is correct.  Thus, the OR estimates may be 
biased towards 1. 

 
 Kliukiene et al. (1999, 2003, 2004) and Tynes et al. (1996) studied occupational ELF 

MF exposure and breast cancer among Norwegian women in general and radio and 
telegraph operators in particular.  These were follow-up studies.  A population-based 
cohort of 1.1 million women was developed using the 1960, 1970, and 1980 censuses. 
All women were working at the time of enrollment and had a potential for occupational 
ELF MF exposure.  The follow-up period was from 1961-1992.  Date of birth, and 
census information about occupation and socioeconomic status was obtained.  
Incidence of breast cancer was obtained from the Cancer Register of Norway.  Out-
migration information was obtained.   
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For the countrywide, all occupations study (1999), ELF MF occupational exposure 
assessment was not optimal, but was as follows.  The first method used expert opinion. 
An expert panel, using written guidelines, decided whether a given occupation had ELF 
MF exposure above 1 mG for than 4 hours per week, between 4 and 24 hours per week, 
or more than 24 hours per week.  Occupations were identified by a 3-5 digit industry 
code and a 3-digit occupation code.  For cumulative exposure, the mean of each of the 
three (3) levels of exposure were used: 2 hours; 14 hours, 32 hours (based on a 40 hour 
week).  It was assumed that each subject was in the same occupation from census to 
census, unless she died, emigrated or turned age 65. 
 
The second method used the Swedish job exposure matrix used in the Forssén et al. 
(2000) study (below), which was constructed from observations of male workers. 
Cumulative exposure was categorized as below 9 mG-years, between 9 and 14 mG- 
years, between 14 and 30 mG-years, and above 30 mG-years.  Exposure was also 
classified by number of work hours of exposure above background (1 mG): below 900 
hours; 900-999 hours; 1000-1999 hours; 2000 or more hours. 

 
Poisson regression, with adjustment for age, time period, and socioeconomic status, was 
used to estimate the relative risk (RR) of breast cancer.  22,543 breast cancer cases were 
diagnosed during the follow-up period.  In the total cohort and the two sub-cohorts for 
those below or at least 50 years of age at inclusion in the cohort (Kliukiene et al., 2004), 
the RRs were statistically significantly above 1.0 for each category of number of 
exposed hours, with below 900 hours as the reference category.  For each cumulative 
exposure category above the reference category (below 9 mG-years, the RR for the total 
was statistically elevated.  For the two sub-cohorts, the RRs were significantly elevated 
for the 9–14 and 14–30 mG-years categories. For the 30+ mG-years category the RRs 
were elevated, but lower bounds of the 95% CIs were 0.98 and 0.99. 

 
These studies did not have very good occupational data. 

 
For the radio and telegraph operators studies, the same cohort and occupational 
determination method was used.  The Kliukiene et al. (2003) study was identical to the 
Tynes et al. (1996) study, except for a longer follow-up.  By the end of May 2002, there  
were 99 breast cancer cases among the 2619 radio and/or telegraph operators in the 
cohort.  The standardized incidence ratio was 1.30, 95% CI = [1.05 – 1.58]. 

 
A nested case-control study was also conducted, using the 99 BC cases and 4 controls 
per case matched on year of birth ± 5 years for cases born prior to 1920 and ± 1 year for 
cases born in 1920 or later.  It was an update of an earlier study by Tynes et al. (1996). 
The reference category consisted of subjects (all radio and/or telegraph operators) who 
were not registered in the Norwegian Seamen Registry, i.e., had no history of working 
on merchant ships.  ELF MF exposure was not particularly explicit.  It seems to have 
been assumed that that women who had no history of working on merchant ships had 
lower MF exposure (ELF and radiofrequency) than those with a history of such work.  
Spot ELF MF and radiofrequency MF measurements in the radio/telegraph rooms of 2 
and 3 ships, respectively, were performed.  RF magnetic and electric fields were below 
the detection level of the instruments at the operator’s desks.  ELF magnetic fields 
varied from 0.2 mG to 60 mG at the operator’s desks.  However, the highest exposures 
were only to the stretched out leg.  “Normal” exposure to the body varied from 1 mG to 
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2 mG.  Thus, exposure was certainly not high. 
 

Tertiles of cumulative exposure at sea were used in the statistical analyses, with 
adjustment for age-at-first birth and parity.  Detailed job histories on each ship were 
available for each ‘exposed’ subject.  For each ship, the amount of time spent in the 
radio/telegraph room was estimated by an experienced researcher.  A rank of 1-3 was 
assigned: 1 – ‘long voyage’ for tankers or dry-cargo ships with longer stays as sea; 2 – 
‘many calls’ for trade ships with several loading and discharge ports; 3 – larger 
passenger ships.  Increasing rank implies increasing percentage of time spent in the 
radio/telegraph room.  Exposure was then calculated by summing the product of the 
number years of service on ships of each rank by the rank of the ships. 

 
Analyses were conducted for total exposure, and for total exposure with lag times of 10 
and 20 years prior to BC diagnosis.  Analyses were conducted for (1) all cases and 
controls, for cases and controls below age 50 in the reference year, and for cases and 
controls at least age 50 in the reference year, and (2) ER+ and ER- cases. 

 
No OR was statistically significant for any analysis without consideration of ER status. 
However, there was a statistically significant increasing trend in the ORs over 
cumulative exposure categories in the analyses for all cases, cases younger than 50, and 
cases at least age 50.  There was also a significant upward trend for a 10 year lag time 
using all cases.  The ORs for the highest exposure category were all elevated, but not 
significant perhaps because of the sample size. 

 
For analyses by ER status, the only significant finding was for ER- cases, age 50+ in the 
highest exposure category.  There were elevated ORs for all exposure categories for all 
ER- cases, and for the highest exposure category for ER+ cases and for ER+ cases 
below age 50. 

 
The authors concluded that “occupational exposure to electromagnetic fields increases 
the risk of (female) breast cancer” (Kliukiene et al., 2003). 

 
 Loomis et al. (1994) investigated BC mortality among female electrical utility workers. 

This study used U.S. national death certificate information, 1985-1989, to identify cases 
and controls (without leukemia or brain cancer as a cause or contributing cause of death) 
and occupations.  There were 27,814 women with breast cancer and sufficient 
occupational information, of whom 68 had an “electrical” occupation.  There were 
110,750 controls, of whom 199 had an “electrical” occupation.  The primary factor 
limiting the sample size was the availability of occupational information.  It should be 
noted that use of occupational data from death certificates is far from optimal. 
Statistical adjustments were made for age, ethnicity, and social class.  Loomis et al. 
found an elevated risk associated with having an electrical occupation recorded on the 
death certificate: OR=1.38 (p<0.05).  The only specific occupation with a statistically 
significant elevated risk was telephone installers, repairers and line workers: OR=2.17. 
Electrical engineers and electrical technicians had ‘elevated’, but not significant risk 
estimates (OR=1.73 and 1.28).  On the other hand, air traffic controllers, telephone 
operators, data keyers, computer operators, computer programmers did not have 
‘elevated’ risk estimates. 
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In a letter commenting on the Loomis et al. paper, Kantor et al. (1995) analyzed 
essentially the same data set, with the inclusion of data from 1984.  They used an 
industrial hygienist to estimate the probability of occupational ELF MF exposure or 
video display terminals (0, low, medium or high) among white and black women.  The 
ORs were statistically significant (but not particularly high) for medium or high 
probability of exposure for both white and black women.  When the hygienist actually 
categorized the level of ELF MF exposure, only medium exposure was associated with a 
statistically significant OR. High exposure had somewhat lower ORs. 

 
 

 Forssén et al. (2005) published a case-control study of occupational ELF MF 
exposure and breast cancer.  This study may be considered influential, unless 
reviewed in detail.  So considerable detail is provided. 

 
The Forssén et al. (2005) study found no association between occupational ELF 
MF exposure, as determined by Forssén et al. (2005) , and breast cancer. The 
study is singled out because (1) it is essentially well designed, and (2) has a 
completely inappropriate ELF MF occupational classification scheme based 
on either non-representative workers in specific occupations or what should be 
considered quite suspect individual measurements (Forssén et al., 2004). 
Many occupational groups which are generally considered to contain higher 
ELF MF exposed occupations have been classified as low or medium-low 
exposure. 

 
** Forssén et al. (2005) did find that seamstresses had statistically 
significantly elevated risk of breast cancer.  However, they classified 
seamstresses as having medium-low ELF MF exposure. ** 

 
Forssén et al. (2005) used newly collected exposure data for occupations in which 
women commonly work (Forssén et al., 2004).  The exposure study assessed 
occupations identified within the Swedish 1980 census.  Forty-nine (49) specific 
occupational titles were identified.  Volunteers working in each of these occupations 
were then ascertained by methods which are not specified.  Personal 24-hour ELF MF 
measurements were obtained on what was presumably supposed to be a typical 24-hour 
day, using a dosimeter worn at the waist.  The volunteers kept a diary so that time 
periods at work, at home, and elsewhere could be identified.  The number of subjects 
with measurements by occupation ranged from 5 to 24.  The total number of subjects 
measured was 471. There were only 5 observations for Seamstresses, and 5 Radio and 
Television Assemblers and Repairwomen.  The workday measurements were used for 
classification purposes.  In the epidemiologic study of breast cancer, 4 categories of 
exposure were used: Low (< 1 mG); Medium-Low (1-1.9 mG); Medium-High (2-2.9 
mG); and High (≥ 3 mG).  The occupations in the categories above ‘low’ are provided 
in Table 9.  The arithmetic rate of change measure was also calculated.  Seamstresses 
and Radio and Television Assemblers and Repairwomen were both classified as 
medium-low exposed occupations.  The 5 seamstresses measured for exposure had their 
own small businesses and did not work in apparel manufacturing.  They evidently also 
did not do much sewing.  They spent 55% of their workday in fields below 1 mG and 
only 15% in fields above 3mG.  This is only an average of 1 hour and 12 minutes of 
‘high’ exposure during a working day. In the two counties in Sweden in which both the 
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measurement study and the breast cancer case-control study were performed, there was 
almost no apparel manufacturing (Forssén et al., 2004; personal communication, M. 
Feychting, 2007).  Still, it is difficult to imagine such low exposures among women who 
actually work as seamstresses. 

 
The cases and controls were obtained from all women who were employed at any time 
between 1976 and 1999, based on any of the censuses between 1960 and 1990, in either 
Stockholm or Gotland counties, Sweden.  Subjects entered the study in either 1976 or 
their 15th birthday, which ever came first, and were followed through 1999 or to the date 
of their initial breast cancer diagnosis.  Cases were identified through the Regional 
Cancer Registry in Stockholm.  The referent year was the year of the case’s diagnosis. 
Controls were selected randomly by age and calendar year, apparently matched to cases. 
Cases could not also be controls.  Both cases and controls had to be living in Stockholm 
or Gotland counties during the referent year.  All information, including occupational 
history, was obtained from registries.  20,400 cases and 116,227 controls were enrolled 
in the study.  Varying numbers of cases and controls were used in the analyses, 
depending on the availability of occupational and other data.  Statistical adjustment was 
made for age, referent year, parity, and socioeconomic status. 

 
For statistical analyses, exposure was assessed in various ways: (1) ELF MF exposure 
for the occupation closest to the time prior to the referent year; (2) ELF MF exposure at 
the most recent census which was at least10 years prior to the referent date; (3) ELF MF 
exposure at the most recent census when the subject was at least age 35. Analyses were 
also carried out by (4) splitting the study period at 1985, by (5) only using subjects who 
either always had low exposure or ever having had high exposure, and by (6) defining 
low exposure as a median less than 1 mG and a third quartile of less than 1.7 mG and 
high exposure as a median greater than 2.5 mG and a first quartile including 1.7 mG.  
With these definitions, high exposed occupations were cashiers, working proprietors in 
retail trade, air stewardesses, dental nurses, cooks, post office clerks, and kitchen maids.  
No time latency period was used in the analyses related to (3). 

 
There were no significant or elevated adjusted ORs for analysis (1) using the 4 
categories of exposure, either for all BC cases, ER positive cases, or ER negative cases, 
for age below or at least 50.  The referent group had ELF MF exposure below 1 mG.  
There were no significant or elevated adjusted ORs for analysis (1) using low versus 
high (separated) exposure categories defined by (6), above. 

 
Finally, in a series of analyses based on exposure 10+ years before the referent year, 
before age 35 for post-menopausal women, referent year before or after 1985, maximum 
point exposure, rate of change, and proportion of time exposure was above 3 mG, only a 
single adjusted OR was significant.  The significant OR=0.87 and was for medium-high 
ELF MF exposure among post-menopausal women before age 35. 

 
It is thus fair to say that Forssén et al. (2005) found no relationship between their 
assessment of ELF MF exposure and breast cancer. The authors do recognize that 
“(t)he major concern in the study is exposure misclassification”. 

 
Their job exposure classification is at odds with other classifications.  Forssén et al. 
(2004, 2005) have classified Dental Nurses, Cashiers in Retail Stores and Restaurants, 
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Working Proprietors in Retail Trade, Cooks, and Air Stewardesses as high ELF MF 
exposure occupations.  None of these occupations would be classified as having high 
ELF MF exposure in any other classification scheme.  The common cut-point for high 
exposure is 10 mG.  Cashiers, cooks, and air stewardesses may at times have medium or 
high exposure, depending on (1) the exposure from scanners, (2) the exposure from 
microwave ovens, mixers, other motorized kitchen equipment, and (3) the exposure time 
from sitting near electrical panels on takeoff and landing and in the airplane’s kitchen 
areas. 

 
** Forssén et al. should conduct a sub-study to determine the actual environment in 
which the seamstresses in their study worked, the type of machines used (industrial, 
home; AC or DC operation), and the percent of time spent actually sewing.  They 
also should conduct a study of seamstresses in general in Stockholm and Gotland 
counties and the in-migration rates. Also, the authors note an occupational category 
labeled ‘textile occupations’, which certainly includes seamstresses, but is otherwise 
undefined in the paper.  Textile occupations need to be specified and studied 
individually, as was done by Hansen et al., 2000. It is important to determine 
whether the “seamstresses” in the Forssén et al. (2005) study have fundamentally 
different levels of exposure than seamstresses in other studies.** 

 
The only significant occupational finding in this study related to seamstresses.  Two 
analyses were conducted related to seamstresses (Table 10), probably because their 
exposure assessment was so at odds with every other series of exposure measurements 
of seamstresses.  First, the OR for ‘textile occupations’, undefined in the paper, versus 
low ELF MF exposed occupations was 1.37, 95% CI = [1.11 – 1.68].  Second, the OR 
for ‘textile occupations’ versus all other occupations, regardless of ELF MF exposure 
assessment, was 1.33, 95% CI = [1.10 – 1.62].  The authors state that their results 
“suggest that the increased risk for breast cancer in these occupations might be related 
to some exposure other than magnetic fields”. 

 
‘Textile occupations’ were not defined, but could certainly have included a multitude of 
occupations with quite varying chemical exposures, and generally medium or high ELF 
MF exposures.  However, none of the 49 occupational categories, other than seamstress, 
used in the study appear to relate to textile occupations, if sales and administration are 
excluded. 

 
The numbers of seamstresses as cases or controls in the study are not provided. 
However, in the AD studies by Sobel and Davanipour (1995, 1996, 2007), 
approximately 2% of the controls were seamstresses.  Thus, there may have been at least 
2000 seamstresses among the controls.  Assuming that most, if not all women in “textile 
occupations” were seamstresses, and based on the OR of “textile occupations” vs ELF 
MF exposure below 1 mG, the number of seamstresses with BC in the study can be 
estimated as approximately 475.  Rough calculations indicate that if seamstresses are 
reclassified as having high ELF MF exposure (> 3 mG), the adjusted OR for high 
occupational ELF MF versus low occupational ELF MF exposure would be about 1.10 
and statistically significant. It is worth repeating that the Forssén et al. (2004) 
occupational classification for high ELF MF exposure is (1) not as high as usual and (2) 
measured workday exposures are unusual for such occupations. 
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 Forssén et al. (2000) conducted an earlier case-control study of occupational and 
residential ELF MF exposure and breast cancer.  The cohort from which the study 
population was obtained consisted of all Swedish residents who lived within 300 
meters of a (high power, 220 or 400 kilovolt) transmission line for at least one year 
between 1960 and 1985 and were at least age 16 sometime in the period.  Subjects in 
this group living further away from transmission lines essentially had no exposure 
from such lines.  Cases were identified through cancer registries.  Controls were 
randomly selected and matched by age group, residence in the same parish at the time 
of diagnosis of the case and in the same type of house (single-family/apartment further 
than 300 meters from the same power line.  (The parish/power line criteria were 
relaxed for 95 cases; a control could not be found for 7 cases.)  Residential exposure 
was calculated from the ELF MF generated by power lines.  Occupation information 
was obtained from census data.  An older job- exposure matrix was used to assess 
occupational ELF MF exposure.  Low (< 1.2 mG), medium (1.2 – 1.9 mG), and high 
(≥ 2.0 mG) exposure categories were selected, based on quartiles.  Exposure greater or 
equal to 2.5 mG was also considered. 

 
Statistical adjustments were made for the matching variables.  Only occupational 
exposure immediately prior to the diagnosis of BC and only residential exposure at the 
time of diagnosis was used in the analyses. No information concerning occupations of 
the subjects was provided.  It is unlikely that seamstresses were included in the analyses. 

 
No significant findings were identified. 

 
Of 1767 cases and 1766 controls, only 711 and 709, respectively, had residential 
exposure information, only 744 and 764 had occupational exposure information, and 
only 197 and 200 had both types of exposure information.  For the actual analyses of 
occupational exposures, with matching variable adjustment, there was complete 
information for only 440 cases and 439 controls. For analyses using both occupation 
and residential exposures, and matching variables, there was complete information for 
only 87 cases and 83 controls. 
 

Partially Positive/Partially Negative Studies 
 
 Coogan et al. (1996, 1998) and McElroy et al. (2007) conducted case-control studies 

using the same ELF MF exposure classification scheme.  
 The 1996 Coogan et al. study selected breast cancer cases, aged 74 or younger, 

from the Maine, Wisconsin, Massachusetts, and New Hampshire cancer 
registries who were diagnosed between April 1988 and December 1991.  
Controls, aged below 65, were selected from state driver’s license lists and 
were frequency matched to cases by 5-year age intervals.  Cases aged below 65 
had to have driver’s licenses.  Controls, aged 65-74, were selected from the 
Health Care Financing Administration’s Medicare beneficiary lists.  “Most 
representative” occupation was obtained via telephone interviews.  Occupation 
duties and industry were obtained if “the occupation was not clear”. 
 
Occupations were coded according to the 1980 Bureau of the Census 3-digit 
occupational classification.  The ELF MF exposure classification scheme 
identified each of the 3-digit occupation classes as low, medium or high or 
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background (non-exposed) exposure “potential”.  It is our opinion that the 
classification scheme is rather deficient: for example, 

1. Welders are classified as having medium ELF MF potential exposure; 
2. Dressmakers (e.g., seamstress) and tailors are classified as having low 

potential for ELF MF exposure; 
3. Shoe repairers are classified as having low potential for ELF MF 

exposure; 
4. Electrical/Electronic Engineers are classified as having high potential 

for ELF MF exposure; 
5. Statisticians and Scientists are classified as having medium potential 

for ELF MF exposure. 
 
In most classification schemes, including that of Sobel-Davanipour et al., 
welders, dressmakers (seamstresses) are classified as high ELF MF exposed 
occupations, shoe repairers, electrical/electronic engineers would be classified 
as medium exposed occupations, and statisticians and scientists would be 
classified as low exposed occupations. 
 
Nevertheless, the adjusted OR for breast cancer among subjects having 
occupations with high potential ELF MF exposure versus background was 1.43, 
with a 95% CI of (0.99 , 2.09).  Among pre-menopausal cases with high 
exposure potential occupations, the adjusted OR was 1.98, with a 95% CI of 
(1.04, 3.78).   
 

 Coogan and Aschengrau (1998) essentially replicated the earlier Coogan et al. 
(1996) study, except for adding non-occupational exposure, e.g., homes close 
to transmission lines, electric heating, bed-warming device.  Cases and controls 
were obtained from Cape Cod, where elevated rates of breast cancer had been 
observed.  Complete work histories (beginning at age 18) were obtained by 
interview.  Jobs were classified using the methodology in Coogan et al. (1996).  
There were 259 cases and 738 controls.  The crude and adjusted ORs were all 
below 2.0, except for having a “high” ELF MF job at some point and “other 
ELF MF exposure”.  The adjusted OR in this case was 2.3.  None of the OR 
estimates was significant. 
 

 McElroy et al. (2007) replicated the initial Coogan et al. (1996) study with 
female breast cancer subjects obtained from the Massachusetts, New 
Hampshire, and Wisconsin cancer registries after the close of recruitment for 
the Coogan et al. (1996, 1998) studies.  Occupational ELF MF exposure using 
the same methodology as in the Coogan et al. (1996, 1998) studies was 
estimated for each subject’s primary occupation.  This was a large study: 6213 
cases and 7390 controls.  None of the adjusted (or unadjusted) ORs were 
anywhere near statistical significance.  (The largest adjusted OR was 1.21.)  
However, the trend for increasing adjusted (or unadjusted) ORs for all women 
and for women who were post-menopausal at diagnosis were statistically 
significant, with p-values between 0.02 and 0.04. 

 
We emphasize that the ELF MF exposure categories are quite inappropriate. 
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 Peplonska et al. (2007) conducted a case-control study of 2386 incident BC cases 

(diagnosed in 2000-2003) and 2502 controls.  Lifetime occupational histories and 
known BC risk factors information were obtained.  Occupational information 
included job title, start and stop dates, work activities and duties, and product(s) made 
and/or service provided.  Occupations were coded to the Standard Industrial 
Classification Manual (1987) and the Standard Occupational Classification Manual 
(1980).  Occupations were characterized as ‘white collar’ and ‘blue collar’.  Analyses 
are provided by occupation and duration, and by industry and duration.  Thus, it is 
generally not possible to identify subjects with significant ELF MF exposure.  For 
example, the following occupations are combined: 

 electrical, electronic, agricultural, industrial, mechanical, computer, and 
other engineers; 

 engineering and related technologists and technicians; 
 typists, secretaries, stenographers; 
 hairdressers and cosmetologists; 
 machine operators and tenders; 
 printing machine operators and tenders; 
 textile apparel and furnishing machine operators and tenders; 
 textile sewing machine operators and tenders; 
 welders and solderers. 

 
Analyses by at least somewhat relevant occupational categories for any duration of 
work are as follows: 

1. Engineers (electrical, electronic, agricultural, industrial, mechanical, 
computer, and others): OR=2.0, 95% CI = (1.05 , 3.8); 

2. Health record technologists and technicians: OR=2.4; 95% CI = (1.04 , 5.7); 
3. Machine operators and tenders: OR=1.2 95% CI = (1.03 , 1.5); 
4. Printing machine operators and tenders: OR=3.1; 95% CI = (1.4 , 7.0); 
5. Textile apparel and furnishing machine operators and tenders: OR=1.3; 95% 

CI = (1.03 , 1.5); 
6. Textile sewing machine operators and tenders (a subset of the previous job 

category): OR=1.2; 95% CI = (0.9 , 1.5); 
7. Welders and solderers: OR=1.2; 95% CI = (0.6 , 2.8). 

None of these seven occupations showed any trend towards increasing risk with 
duration of work: ≤ 10 years vs > 10 years. 
 
The analyses by industry are particularly inappropriate. 
 
The authors used a job exposure matrix (JEM) developed by the National Cancer 
Institute for a brain cancer study (unreferenced) to evaluate ELF MF exposure and the 
risk of BC.  They identified a statistically significant trend with ORs equal to 1.2, 1.2, 
and 1.5 for low, medium, high ELF MF exposure.  (The actual data were not provided in 
the paper or online supplementary materials.  The authors state that the “excesses in the 
highest exposure category” were almost completely due to textile apparel and furnishing 
machine operators and tenders.  These employees evidently formed “99%” of the entire 
high ELF MF exposure group. 
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With respect to considering ELF MF as a risk factor for breast cancer, the authors would 
have been better served to use the actual job title and descriptions to form categories of 
ELF MF exposure.  Nevertheless, the authors state that “occupations with potential 
exposure to magnetic fields deserve further evaluation”. 
 

 Ray et al. (2007) conducted a large and potentially valuable study of breast cancer among 
female textile workers in Shanghai, China.  The authors took advantage of a randomized 
trial of breast self-examination efficacy to conduct a case-cohort study of occupational 
exposures and BC risk.  1709 BC cases and an age-stratified reference sub-cohort of 
3155 non-cases were studied.  Hazard ratios were estimated for duration in various job 
categories and exposure duration by Cox proportional hazards methodology.   
 
A job exposure matrix was developed for ELF MF exposure (Wernil et al., 2006).  
Admittedly based on a small number of subjects, the proportion of specific processes in 
the following textile industry areas were found to result in ELF MF exposure: spinning 
(75%, 8 of 12); weaving (88.9%, 8 of 9); cutting and sewing (60%, 3 of 5); and 
maintenance (30%, 3 of 10).  There was no information about the extent (in instantaneous 
or cumulative mG) of the exposure. 
 
Among the weavers, cutters/sewers, and maintenance female personnel, only 
cutters/sewers and maintenance personnel with 10 – 20 years of experience had hazard 
ratios exceeding 1.0: HR=1.61, 95% CI = (1.16 , 2.25) and HR=1.83, 95% CI = (1.01 , 
3.32), respectively.  There were no indications of any trend.  (Note: individual simple 
calculations of odds ratios for having worked primarily as a weaver, as a cutter/sewer, or 
as a maintenance person showed no increase or decrease in risk of BC. 
 
Evidently, no information as to what the ELF MF exposures were for various jobs, e.g., 
sewer, was collected. 

 
F. Residential Case-Control Studies of ELF MF Exposure as a Risk Factor for Breast 

Cancer 
 
Residential ELF MF exposure studies and BC have either used wire configuration coding, 
proximity to high voltage lines, various protocols of room measurements, or a combination of 
these methods.  These studies have generally not found any increased risk of breast cancer (e.g., 
Feychting et al., 1998; Davis et al., 2002; London et al., 2003; Schoenfeld et al., 2003). 
Residential studies have measured actual magnetic fields only in current homes of cases and 
controls, thus homes which might be etiologically relevant are often or usually without actual 
measurements.  Wire configurations and proximity to high voltage lines were at times used for 
surrogate measures of exposure related to previous homes.  Each of these three methods of 
assessment of the level of exposure leads to significant classification errors.  In addition, 
residential exposures are, almost always, surely relatively low. Individualized exposure, due for 
example to home sewing, sitting or sleeping near a panel of circuit breakers, sitting near a water 
pipe (e.g., in the floor or ceiling), is not identified.  For homes near high voltage lines, rooms can 
have dramatically different ambient levels of ELF MF.  For these reasons, these studies are not 
relevant to the purposes of this review. 
 

G. Radiofrequency Exposure and Breast Cancer 
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There are no epidemiologic studies of radiofrequency MF exposure and breast cancer which do 
not include ELF MF exposure and which have reasonable data on RF exposure, e.g., Kliukiene et 
al. (2003).  
 
V. SEAMSTRESSES 
 

Conclusion: Seamstresses are, in fact, one of the most highly ELF MF exposed occupations, 
with exposure levels generally above 10 mG over a significant proportion of the workday.  
They have also been consistently found to be at higher risk of Alzheimer’s disease and 
(female) breast cancer.  This occupation deserves specific attention in future studies. 

 
A.  Sobel-Davanipour et al. Studies   

 
Seamstress was the primary occupation among women with high ELF MF exposure in the Sobel et 
al. (1995, 1996b) and Davanipour et al. (2007) studies related to AD.  No other published AD 
study has evidently involved populations in which sewing was a somewhat common occupation.  
In the 5 independent case-control studies presented in the 3 Sobel & Davanipour papers, most of 
the high ELF MF exposed women (cases and controls) were seamstresses.  (Among women in 
these case- control studies, the Mantel-Haenszel AD odds ratio for seamstresses is 3.13, p < 0.01). 
Information about sewing as a hobby, which at least used to be common, was unavailable. 
Seamstresses have been shown to have very high ELF MF exposures (e.g., Szabó et al., 2006; 
Kelsey et al., 2003; Deadman and Infante-Rivard, 2002; Hansen et al., 2000).  Forssén et al. 
(2004) measured 5 “seamstresses” who owned independent small businesses and found what 
they classified as medium-low exposure – a mean of 1.7 mG.  These 5 individuals used home 
sewing machines and evidently did not sew very often.  Peplonska et al. (2007), using a NCI 
occupational ELF MF classification scheme found that, at least among women, nearly all high 
exposures occurred among textile machine operators and tenders. Both Forssén et al. (2005) and 
Peplonska et al. (2007) found statistically significantly elevated ORs for breast cancer among 
seamstresses/textile machine operators and tenders. 
 
Sobel and Davanipour (1996c) measured ELF MF exposure from several home sewing machine 
models, both AC and DC models, to several parts of the body.  The results are provided in Table 
10.  These results show that (1) high ELF MF exposure occurs to many parts of the body, (2) 
exposures vary by manufacturer, model, and even by machines of the same model, and (3) 
exposures depend on whether the machine operates by AC or DC current.  For Alzheimer’s 
disease and for breast cancer, it is not known where exposures may be most important.  The 
peripheral Abeta hypothesis, if correct, would indicate that exposure to any location is important 
for AD.  To affect pineal production of melatonin, it is not known whether exposure to the pineal 
gland is what is most important.  For example, a majority of breast cancers causally lower pineal 
melatonin production.  Because the melatonin production rebounds after excision of the tumor, the 
tumor itself must be secreting something that leads to the decline in melatonin production. Thus, it 
is conceivable that ELF MF exposure may, at least in some individuals, also lead to the peripheral 
production of something that also causes a lowering of melatonin production.  It is 
also not known whether ELF MF exposure directly to the breast is etiologically important.  Note 
that the right breast receives higher ELF MF exposure from home sewing machines.  No studies 
of right versus left breast cancer and use of home sewing machines have been published. 
 

B. Examples of Studies with ‘Questionable’ Seamstress Exposure Assessment: 
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Swedish and German Studies 
 
Most of the Swedish studies on ELF MF and Alzheimer’s disease/dementia or breast cancer (e.g., 
Forssén et al., 2000, 2004, 2005), Andel et al., 2010, Seidler et al., 2007, Feychting et al., 1998a) 
have relied on an occupational exposure assessment for seamstresses which significantly under-
estimates exposure.  For example: 

 Seidler et al. (2007) uses governmental census categories which lumps seamstresses 
together with spinners, weavers, knitters, and dyers, all of whom probably have 
relatively low exposure.  Maximum exposure in this occupational category is given as 
only1.5 mG, which is below the background levels for seamstresses working in 
factories.     

 Forssén et al. (2004) created a job-exposure matrix for occupational ELF MF 
exposure among women working in the 49 most common or suspected high ELF MF 
ISCO job categories in Stockholm County using the Swedish 1980 census (Table 14).  
(ISCO stands for International Standard Classification of Occupations.)  Five (5) to 24 
subjects were selected in each of these occupations.  Each or many of the ISCO job 
categories include several different occupations.  Thus, workers from subgroups were 
selected.  Sampled workers were instructed to wear their dosimeters for 24 hours and 
to make diary entries if they need to take off the dosimeter.  Seamstresses are 
described as being rather uncommon in Stockholm County, except possibly for repair 
of clothing.  This may account for the very low ELF MF exposure identified.  
Seamstresses are listed as having a geometric mean occupational exposure of only 1.7 
mG.  Only about 15% of their time was about 3 mG exposure.  Cooks, kitchen maids, 
air stewardesses, hairdressers/beauticians all are listed as having greater exposure.  
Housekeeping service work had comparable exposure levels to seamstresses.  As 
discussed in this report, the research by Davanipour, Sobel, and colleagues 
demonstrates that actual professional seamstresses have a very different exposure 
experience. 

A re-analysis of the data in these studies with the job exposure classification scheme in the 
Davanipour & Sobel studies (Table 11) would be useful. 

Note: The Kliukiene et al. study (2004) from Norway used a rather unique four division scale 
depending on how many hours of occupational exposure were above 1 mG per week and is 
thus not related to this discussion.] 

Note: Qiu et al., 2004 exposure assessment problems has been discussed in Section D.3.4, above. 
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Figure 1: Hypothesized Biological Pathway from ELF MF Exposure to AD Development 

(from Sobel & Davanipour, 1996a) 
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Figure 2:  Outline of the Evidence that ELF MF Exposure Causes Breast Cancer through 

Decreases in Melatonin Production – with Section References 
 
                                               (Section II) 

                                                                                                                          (Section IV.D. 

 

                                                  (Sections  IV.A., IV.B) 

           

 

                                 (Section IV.E.) 

                                                                                         (Section IV.D.) 

 
Note:   Dashed lines indicate studies directly relating ELF MF exposure, light-at-night, or 

shift work to breast cancer occurrence. 
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Table 1: Baseline Data Results from the 1999 Mayeux et al. Paper: Means (Standard 

Deviation) 
 
 
 

Variable Cognitively Normal Developed AD 
at Follow-Up (3.6 Year Average Follow-Up) 

 
 

Sample Size (n) 
 

105 
 

64 
Age 73.4 (5.3) 77.4 (5.9)a 

Education 9.3 (4.6) 7.5 (3.8)a 

Aβ1-40 (pg/ml) 111.8 (44.1) 134.7 (46.4)a 

Aβ1-42 (pg/ml0 51.5 (42.0) 82.4 (68.8)a 

Aβ1-42/ Aβ1-42 0.51 (0.41) 0.67 (0.56)b
 

 
Notes: Cognitively normal was determined at baseline by the global Cognitive Dementia 
Rating (CDR) scale with CDR=0 being normal. AD was diagnosed based on a CDR of 0.5 
or 1.0, and clinical, functional and neuropsychological assessment as specified by the 
NINCDS-ADRDA criteria.  a p ≤ 0.0001; b p < 0.05. 
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Table 2: Baseline Data Results from the 2003 Mayeux et al. Paper: Means (Standard 

Deviation) 
 

______________________________________________________________________________________   
 
 Variable    Cognitively Normal  Developed AD 
            At Follow-Up     (Up to 10 Year Follow-Up) 
______________________________________________________________________________________ 
 
 Sample Size (n)    365    86 
   Age      75.5   (5.9)     79.3   (6.6)a 

 Education       9.0   (4.6)         6.8   (4.5)a 
 Aβ1-40 (pg/ml)              133.3 (61.9)            136.2 (46.7)c 
 Aβ1-42 (pg/ml)     58.8 (32.9)     76.5 (59.8)b 
 Aβ1-42/ Aβ1-42            0.48 (0.3)     0.61 (0.53)b 
______________________________________________________________________________________ 

 
 
Notes: Cognitively normal was determined at baseline by the global Cognitive Dementia 
Rating (CDR) scale with CDR=0 being normal. AD was diagnosed based on a CDR of 0.5 
or 1.0, and clinical, functional and neuropsychological assessment as specified by the 
NINCDS-ADRDA criteria.  a p ≤ 0.001; b p < 0.05; c Not Significant. 
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Table 3: Post-Work Levels of Aβ1-40, Aβ1-42, Aβ1-42/Aβ1-42 by ELF MF exposure among 

Electrical Workers in the Noonan et al. (2002a) Study 
 
     _____________________________________________________________________ 
 
 ELF MF Exposure  Aβ1-40   Aβ1-42  Aβ1-42/Aβ1-42 Sample Size 
    (pg/ml) (pg/ml) 
     _____________________________________________________________________ 
    
    < 0.5 mG     125     136        1.03       20 
 0.5 – 0.99 mG     137     163                      1.11       25 
 1.0 – 1.99 mG     128     166                   1.19         8 
    ≥ 2.0 mG     156     262                   1.46         7 
     _____________________________________________________________________ 
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Table 4: Correlation (Corr) between Post-Work Creatinine-Adjusted aMT6s and Amyloid 
Beta by Number of Minutes between Samples in the Noonan et al. (2002a) Study 

 
 
________________________________________________________________________________ 
 
 Number of         Sample Size    A1-42 A1-40  A1-42/ A1-40  
 Minutes  Corr       p-Value Corr p-Value Corr p-Value 
________________________________________________________________________________ 
 
 All Subjects 60 -0.25 0.057 -0.19 0.144 -0.23 0.080 
  ≤ 90  46 -0.30 0.047 -0.22 0.154 -0.27 0.080 
  ≤ 60 37 -0.37 0.027 -0.25 0.150 -0.37 0.029 
  ≤ 30 23 -0.43 0.054 -0.28 0.224 -0.42 0.059 
_________________________________________________________________________________ 
 
 
                                                                                             ___ 
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Table 5: Amyloid Beta Levels by Tertile of Post-Shift Creatinine-Adjusted aMT6s Levels in 

the Noonan et al. (2002a) Study 
 
 
 
________________________________________________________________________________ 
 
 aMT6s/Cr A1-42 A1-40 A1-42/ A1-40  
 Tertiles* Mean** 95% CI Mean**  95% CI Mean**  95% CI 
  (ng/mg) 
________________________________________________________________________________ 
 
   ≤ 1.38 177 [112–258] 133 [111–156]  1.30 [0.86–1.74] 
  1.39–3.3 214 [120–334] 147 [125–170] 1.33 [0.85–1.90] 
   > 3.3 123 [  58–180] 123 [108–139] 0.82 [0.49–1.26] 
________________________________________________________________________________ 
 
 *   n=60 subjects in each tertile 
 ** geometric mean averaged over the work shift 
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Table 6: Percentages of Subjects with Medium to High ELF MF Occupations Exposure 

 
 
 
 

STUDY CASES CONTROLS 
 

 
Sobel et al. (1995a) 

 
  9.3 % 

 
  3.4 % 
 Sobel et al. (1996b) 12.0 %   5.3 % 
 Davanipour et al. (2007)   7.4 %   3.8 % 

Harmanci et al. (2003) 10.5 %   3.1 % 
Feychting et al. (1998a) 43.0 % 23.0 % & 19.0 %# 
Graves et al. (1999) 19.1 % & 21.4 % 21.4 % & 22.5 %^ 
Qiu et al. (2004) 28.2 %* 28.8 %*

 
 

 

34.2 %** 42.7 %** 
   

 

   
 

Cases & Controls Combined 
 

Feychting et al. (1998) 11.1 % 
Håkansson et al. (2003) 80.5 % - likely exposed engineering industry 

workers 
Johansen et al. (2000)  56 % - electrical company workers 
Savitz et al. (1998a) electric utility cohort – percentage not supplied 
Savitz et al. (1998b)  23.9 % 

 
# Two control groups; 
^ Two industrial hygienists 
* Based on estimated daily exposure in principal occupation; 
** Based on estimated daily exposure in all occupations 

 
Note: The Huss et al. (2009) study was longitudinal and the abstract for the Chang et al. (2004) 
study did not provide the percentages of cases or controls with high ELF MF exposure. 
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Table 7: Odds Ratios for the ELF MF and AD Studies* 

 

Study   Risk Estimate (OR)  95% CI  p-value 
 
 Sobel et al. (1995)  (late-onset; L vs M/H) 
 3.0 1.6 –   5.4 < 0.001 
 Sobel et al. (1996b)  (late-onset; L vs M/H) 
 3.9 1.5 – 10.6    0.006 
 
 Feychting et al. (1998)  (mostly late-onset; last occupation; by control group) 
  (exposure ≥ 2 mG) 2.4 0.8 –   6.9   --** 
   2.7 0.9 –   7.8   --** 
  (exposure ≥ 5 mG) 4.1 0.7 – 23.5   --** 
   8.3 1.1 – 62.7   --** 
 Graves et al. (1999)  (late-onset; ever exposed) 

0.95 0.4 – 2.4   --** 
0.74 0.3 – 2.4   --** 

 Harmanci et al. (2003)  (late-onset; exposure as defined in Sobel et al. (1995, 1996b) 
  4.0 1.0 – 15.8   --**  
 Qiu et al. (2004) (age ≥ 75; exposure: ≥ 2 mG) 
  Men 2.3 1.0 – 5.1   --** 
  Women 0.8 0.5 – 1.1   --** 
 Davanipour et al. (2007)  (exposure as defined in Sobel et al. (1995, 1996b) 
  M/H vs L 2.2 1.2 – 3.9 < 0.02 
  H vs L 2.7 0.8 – 9.1 < 0.11 
 
 Chang et al. (2004)  (age: 66-102; exposure: “early exposure to magnetic fields”) 
  Exp vs No Exp 2.49 0.96 – 6.45    --** 
 
* Studies use various types of controls and definitions of ELF MF exposure. See text. 
** p-values were not provided. 
 
 
Note: the Huss et al. (2009) study was longitudinal and is therefore not in this table. 
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Table 8:  Mean ELF MF Exposures (mG) for Home Sewing Machines by Body Location: Continuous 2-Minute Measurements 

(Sobel & Davanipour, 1996c) 
 
 
 

 
Sewing Machine 

 
Background 

 
Head 

 
Breast 

 
Pelvic Area 

 
Thigh 

 
Knee 

 
Lower 

 
Right 

 
Foot 

 
Pedal 

   Left Right  Left Right Left Right Right Arm Hand   
 

Alternating Current Machines (older machines) 
 

Bernina 811 0.6 18.6 5.6 12.9 26.9 11.7 90.1 8.9 13.5 251.1 57.0 86.1 
Bernina 811 0.9 1.7 2.6 5.4 8.2 4.5 11.6 6.8 36.5 77.1 31.7 102.0 
Bernina 817 0.6 8.4 9.6 23.5 41.9 19.1 30.6 9.2 35.4 724.6 135.6 NA 
Bernina 817 1.2 12.1 14.2 33.9 51.0 10.3 588.5 8.8 125.7 753.0 132.4 NA 
Brother 920D 0.7 2.4 2.1 2.3 1.1 1.3 1.5 1.9 2.3 8.5 16.0 6.2 
Necchi Type 525 0.3 5.1 2.0 1.1 2.5 1.1 2.4 2.0 5.1 25.9 22.6 5.9 
Sears Kenmore 0.2 1.2 1.9 4.9 5.5 2.2 5.3 2.5 15.8 26.0 17.9 13.8 
Singer 625 0.3 4.6 3.6 5.6 5.5 3.9 6.6 6.4 17.2 ... ... ... 
Singer 5932 0.5 1.2 0.9 2.0 2.7 1.1 2.5 1.0 4.1 8.6 23.0 2.9 
Singer 6212C 0.3 7.0 2.8 6.4 2.0 1.4 2.2 1.4 1.9 31.0 26.2 4.4 
Viking Husqvarna 6020 0.8 1.5 1.3 1.5 2.7 1.4 2.0 3.1 9.1 5.9 24.9 62.3 
White 1410 0.2 2.2 1.6 1.1 1.1 3.2 10.8 4.2 67.5 20.8 18.3 2.8 

 
 

Direct Current Machines (newer machines) 
 

Bernina 1000  1.0 1.3 1.6 2.3 2.9 1.9 2.5 2.8 11.2 8.1 41.2 798.0 
Bernina 1090S  1.0 1.2 1.6 1.6 1.7 1.2 1.3 1.5 7.7 3.3 22.9 1.0 
Elna Diva 900  1.6 5.1 3.9 4.1 4.1 3.0 3.1 3.2 8.4 40.4 57.1 1.8 
Singer 3317C  0.7 3.4 1.6 2.9 2.2 2.1 2.2 1.5 11.3 22.1 25.8 5.8 
Singer 9015  0.7 2.5 1.9 3.3 4.9 1.7 4.3 2.1 26.2 7.0 28.9 2.3 
Viking Husqvarna 500 1.0 3.7 2.7 5.0 3.9 1.8 2.8 2.7 13.8 24.9 39.4 1.1 

 

Percent > 2.0 mG 0% 67% 50% 78% 83% 50% 89% 72% 94% 100% 100% 80% 
 
 

Note: The Bernina 1000, Bernina 1090S, Elna Diva 900, Singer 3317C, Singer 9015 and Viking Husqvarna 500 were brand new. The Singer 5932, Singer 6212C, 
and Brother 920D were 3-10 years old. The Bernina 811 and 817 machines, the Sears Kenmore, the Singer 625 the Viking Husqvarna 6020 are probably at least 15 
years old. Both the White and the Necchi are fairly old. NA = not applicable, i.e., there was no foot pedal. "..." = no measurements were taken, e.g., because of 
machine malfunction.
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Table 9: Classification of Occupations in Forssén et al. (2005) 
 
 
 

Classification Occupation 24-Hour Geometric Mean Average (mG) 
 
 
 

High (≥ 3 mG) Dental Nurse 3.0 
Air Stewardesses 3.0 
Cooks 3.1 
Working Proprietors 3.4 in 

Retail Trade 
Cashiers in Retail 4.5 

Stores and 
Restaurants 

 
 

Medium-High Computer Operators 2.0 
(2 – 2.9 mG) Motor Vehicle Drivers 2.0 

 Shop Managers 2.1 
 Shop Assistants 2.1 
 Hairdressers/Beauticians 2.1 
 Bank Clerks 2.2 
 Kitchen Supervisors 2.4 
 Post Office Clerks 2.5 
 Waitresses in Restaurants 2.5 

and School Kitchens 
Kitchen Maids 2.8 

 
 

Medium-Low Registered Nurses 1.0 
(1 – 1.9 mG) System Analysts/Programmers 1.2 

 Telephone Operators 
Radio & Television Assemblers 

1.5 

and Repairwomen 
  Seamstresses           1.6  
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Table 10: Odds Ratio Estimates for Textile Occupations in the Forssén et al. (2005) Study 
 
 
   
             ___________________________________________________________________________ 
 

Comparison OR 95% Confidence Interval 
 
             ___________________________________________________________________________ 
 

Textile Occupations 1.37 [1.11 , 1.68] 
vs 

Occupations with 24-Hour 
Exposure Below 1 mG 

 
 
 

Textile Occupations 1.33 [1.10 , 1.62] 
vs 

All Other Occupations 
(Regardless of ELF MF Exposure) 

         _______________________________________________________________ 
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Table 11: Sobel-Davanipour Occupations Classified as Being Likely to Have Resulted in 
Medium or High  ELF MF Exposure  

       
___________________________________________________________________ 
 
 Medium Exposure High Exposure 
___________________________________________________________________ 
 
 Beautician         Cutter  
 Carpenter         Power Plant Operator  
 Clothes Inspector: Manufacturing Company    Repair Sewing Machines  
 Electric Lineman       Seamstress/Tailor  
 Electrician        Welder  
 Electronics Technician  
 Electronic Assembler  
 Equipment Repair  
 Fabric Cutter  
 Foam Cutter  
 Forklift Operator  
 Furniture Maker  
 Machine Operator  
 Machinery Repair  
 Machinist ( 
 Newspaper Pressman  
 Presser: Clothing Manufacturing Company  
 Seamstress/Tailor – Part-Time  
 Sheet Metal Machine Operator  
 Shoemaker/Shoe Repairer  
 Typist  
 Upholstery; Re-Upholstery  
 Welder - Parttime  
 Wood Cutter; Machinery Repair - Forestry  
 Wood Sander – Furniture 
________________________________________________________________________  
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Introduction 

 

The subject of breast cancer and studies of melatonin has a long and rich history replete with 

destroyed scientific reputations and career-ending charges of misconduct of scientists who have 

contributed stellar scientific work that has proved extremely inconvenient for governmental 

agencies and military and industrial interests (Liburdy).  References are given in each section 

below to facilitate locating the pertinent references for each section. 

 

 
II.  Melatonin and ELF-EMF 

 

Evidence which supports a possible mechanism for ELF-EMF and breast cancer is the consistent 

finding (in five separate labs) that environmental levels of ELF-EMF can act at the cellular level 

to enhance breast cancer proliferation by blocking melatonin’s natural oncostatic action in MCF-

7 cells (Liburdy, 1993; Luben et al, 1996; Morris et al, 1998; Blackman et al, 2001; Ishido, et al, 

2001).   ELF-EMF levels between 0.6 and 1.2 µT have been shown to consistently block the 

protective effects of melatonin.   

 

The series of papers reporting increased breast cancer cell proliferation when ELF-EMF at 

environmental levels negatively affects the oncostatic actions of melatonin in MCF-7 cells 

should warrant new public exposure guidelines or planning target limits for the public, and for 

various susceptible segments of the population. 
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Luben et al, 1996.  Replication of 12 mG EMF effects on melatonin responses of MCF-7 breast 

cancer cells in vitro.  Abstract A-1 of the 1996 Annual review of research on biological effects of 

electric and magnetic fields from the generation, delivery and use of electricity, November 17-

21, 1996.  San Antonio, Texas, p.1 

 

Luben et al, 1998.  Independent replication of 60-Hz 1.2 µT EMF effects on melatonin and 

tamoxifen responses of MCF-7 cells in vitro.  Abstract A-3.4, Bioelectromagnetics Society 
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Ishido et al, 2001.  Magnetic fields (MF) of 50 Hz at 1.2 µT as well as 100 µT cause uncoupling 

of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive 

MCF-7 cells. 
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III.  Tamoxifen and ELF-EMF 

 

Girgert et al (2005) reported that “the anti-estrogenic activity of tamoxifen is reduced in two 

subclones of MCF-7 cells under the influence of ELF/EMF to different extent.  Dose-response 

curves of the growth-inhibitory effect of tamoxifen are shifted towards higher concentrations 

leading to a reduced growth inhibition at a given concentration.   Our observations confirm 

results from a previous report describing a reduced inhibitory effect of tamoxifen at 1
—7

 M from 

40% to only 17% by exposure to an EMF of 1.2 µT” (Harland t al, 1997).   Further, Girgert et al 

conclude that “From a medical point of view, it is disturbing that maximal induction of cell 

proliferation by tamoxifen at a field strength of 1.2 µT is observed at concentration of 10
-6

 M.  

This is exactly the serum concentration achieved in BC patients under standard oral therapy.” 

(De Cupis et al, 1997). 

 

The Girgert et al paper confirms prior findings that environmental level ELF-EMF inhibits the 

antiproliferative action of tamoxifen in MCF-7 human breast cancer cells.  Four other papers 

reporting this effect include Liburdy et al, 1997; Harland et al, 1997; Harland et al, 1999; and 

Blackman et al, 2001). 
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VII.  Conclusions 

 

 

Conclusion: The constellation of relevant scientific papers providing mutually-reinforcing 

evidence for an association between power-frequency electromagnetic fields (ELF-EMF) and 

breast cancer is strongly supported in the scientific literature.   

 

Conclusion:  ELF at environmental levels negatively affects the oncostatic effects of both 

melatonin and tamoxifen on human breast cancer cells.  Numerous epidemiological studies over 

the last two decades have reported increased risk of male and female breast cancer with 

exposures to residential and occupational levels of ELF.  Animal studies have reported increased 

mammary tumor size and incidence in association with ELF exposure. 

 

Conclusion: ELF limits for public exposure should be revised to reflect increased risk of breast 

cancer at environmental levels possibly as low as 2 mG or 3 mG; certainly as low as 4 mG. 
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I.     Introduction 

 
Modulation signals are one important component in the delivery of EMF signals to which cells, 

tissues, organs and individuals can respond biologically.  At the most basic level, modulation can 

be considered a pattern of pulses or repeating signals which have specific meaning in defining 

that signal apart from all others.  Modulated signals have a specific ‘beat’ defined by how the 

signal varies periodically over time.  Pulsed signals occur in an on-off pattern, which can either 

be smooth and rhythmic, or sharply pulsed in quick bursts.  Amplitude and frequency modulation 

involves two very different processes where the high-frequency signal, called the carrier wave, 

has a low-frequency signal that is superimposed on or ‘rides’ on the carrier frequency. In 

amplitude modulation, the lower-frequency signal is embedded on the carrier wave as changes in 

its amplitude as a function of time, whereas in frequency modulation, the lower-frequency signal 

is embedded as slight changes in the frequency of the carrier wave.  Each type of low-frequency 

modulation conveys specific ‘information’, and some modulation patterns are more effective 

(more bioactive) than others depending on the biological reactivity of the exposed material. This 

enhanced interaction can be a good thing for therapeutic purposes in medicine, but can be 

deleterious to health where such signals could stimulate disease-related processes, such as 

increased cell proliferation in precancerous lesions.  Modulation signals may interfere with 

normal, non-linear biological functions.  More recent studies of modulated RF signals report 

changes in human cognition, reaction time, brainwave activity, sleep disruption and immune 

function.  These studies have tested the RF and ELF-modulated RF signals from emerging 

wireless technologies (cell phones) that rely on pulse modulated RF to transmit signals. Thus 

modulation can be considered as information content embedded in the higher frequency carrier 

wave that may have health consequences beyond any effect from the carrier wave directly. 

 

In mobile telephony, for example, modulation is one of the underlying ways to categorize the 

radiofrequency signal of one telecom carrier from another (TDMA from CDMA from GSM). 

Modulation is likely a key factor in determining whether and when biological reactivity might be 

occurring, for example in the new technologies which make use of modulated signals, some 

modulation (the packaging for delivery for an EMF ‘message’) may be bioactive, for example, 

frequencies are similar to those found in brain wave patterns.  If a new technology happens to 

use brain wave frequencies, the chances are higher that it will have effects, in comparison, for 
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example, to choosing some lower or higher modulation frequency to carry the same EMF 

information to its target.  This chapter will show that other EMF factors may also be involved in 

determining if a given low-frequency signal directly or as a modulation of a radiofrequency wave 

can be bioactive.  Such is the evolving nature of information about modulation.  It argues for 

great care in defining standards that are intended to be protective of public health and well-being.  

This section describes some features of exposure and physiological conditions that are required 

in general for non-thermal effects to be produced, and specifically to illustrate how modulation is 

a fundamental factor which should be taken into account in public safety standards.  

 

II.     The Old Standards (Based on Heating and Electric Current Flow in Tissues) 

 

It is universally accepted that radiofrequency radiation (RFR) can cause tissue heating and that 

extremely low frequency (ELF) fields, e.g., 50 and 60 Hz, can cause electrical current flows that 

shock and even damage or destroy tissues.  These factors alone are the underlying bases for 

present exposure standards.  EMF exposures that cause biological effects at intensities that do 

not cause obvious thermal changes, that is, effects via non-thermal mechanisms, have been 

widely reported in the scientific literature over the last several decades.  The current public safety 

limits do not take modulation into account and thus are no longer sufficiently protective of public 

health where chronic exposure to pulsed or pulse-modulated signal is involved, and where sub-

populations of more susceptible individuals may be at risk from such exposures. 

 

 

III.     Laboratory Studies  

 

Published laboratory studies have provided evidence for more than 40 years on bioeffects at 

much lower intensities than cited in the various widely publicized guidelines for limits to prevent 

harmful effects.  Many of these reports show EMF-caused changes in processes associated with 

cell growth control, differentiation and proliferation which are biological processes of 

considerable interest to scientists who study the molecular and cellular basis of cancer.  EMF 

effects have been reported in gene induction, transmembrane signaling cascades, gap junction 

communication, immune system action, rates of cell transformation, and breast cancer cell 
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growth. These reports have cell growth control as a common theme.  Other more recent studies 

on brainwave activity, cognition and human reaction time lend credence to modulation (pulsed 

RF and ELF-modulated RF) as a concern for wireless technologies, most prominently from cell 

phone use. 

 

Experimental results are described below to illustrate the influence of each EMF parameter, 

while also demonstrating that it is highly unlikely the effects are due to EMF-caused current flow 

or heating.   

 

Several papers in the 1960s and early 1970s reported that ELF fields could alter circadian 

rhythms in laboratory animals and humans.  In the latter 1960s, a paper reported that the EMF 

environment in planned space capsules could cause human response time changes, i.e., the 

interval between a signal and the human response (Hamer, 1968).  Subsequent experiments by 

that research group were conducted with monkeys, and showed similar response time changes 

and also EEG pattern changes (Gavalas, 1970; Gavalas-Medici, 1976).  The investigators shifted 

the research subject to cats and observed EEG pattern changes, ability to sense and behaviorally 

respond to the ELF component of RFR, and the ability of minor electric current to stimulate the 

release of an inhibitory neurotransmitter, GABA, and simultaneous release of a surrogate 

measure, calcium ions, from the cortex (Kaczmarek, 1973, 1974).  At this time the investigators 

adopted newly hatch chickens as sources of brain tissue and observed changes in the release of 

calcium ions from in vitro specimens as a function of ELF frequency directly or as amplitude 

modulation (‘am’) of RFR (RFRam) (Bawin, 1975, 1976, 1978a, 1978b; Sheppard, 1979).  Tests 

of both EMF frequency and intensity dependences demonstrated a single sensitive region 

(termed 'window') over the range of frequency and intensity examined.  This series of papers 

showed that EMF-induced changes could occur in several species (human, monkey, cat and 

chicken), that calcium ions could be used as surrogate measures for a neurotransmitter, that ELF 

fields could produce effects similar to RFRam (note: without the 'am', there was no effect 

although the RFR intensity was the same), and that the dose and frequency response consisted of 

a single sensitivity window.    

 

An independent research group published a series of papers replicating and extending this earlier 
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work (Blackman et al., 1979, 1980a, 1980b, 1981, 1982, 1985, 1988a, 1988b, 1989, 1990; Joines 

and Blackman et al., 1981a, 1981b, 1986).  These papers reported multiple windows in intensity 

and in frequency within which calcium changes were observed in the chick brain experimental 

systems under EMF exposure.  Three other independent groups reported intensity and frequency 

windows for calcium, neurotransmitter or enolase release under EMF exposure of human and 

animal nervous system-derived cells in vitro (Dutta et al., 1984, 1989, 1992, 1994), of rat 

pancreatic tissue slices (Albert et al., 1980), and of frog heart (Schwartz et al., 1990) but not 

atrial strips in vitro (Schwartz et al., 1993).  This series of papers showed that multiple frequency 

and intensity windows were a common phenomenon that required the development of new 

theoretical concepts to provide a mechanism of action paradigm.   

 

Additional aspects of the EMF experiments with the chick brain described by Blackman and 

colleagues, above, also revealed critical co-factors that influenced the action of EMF to cause 

changes in calcium, including the influence of the local static magnetic field, and the influence of 

physico-chemical parameters, pH, temperature and ionic strength of the bathing solution 

surrounding the brain tissue during exposure.  This information provides clues for and 

constraints on any theoretical mechanism that is to be developed to explain the phenomenon.  

These factors demonstrate that the current risk assessment paradigms, which ignore them, are 

incomplete and thus may not provide the level of protection currently assumed.    

  

The detailed set of frequency and intensity combinations under which effects were observed, 

were all obtained from chickens incubated for 21 days in an electrically heated chamber 

containing 60-Hz fields.  Tests were performed to determine if the 60-Hz frequency of ELF 

fields (10 volts per meter in air) during incubation, i.e., during embryogenesis and 

organogenesis, would alter the subsequent calcium change responses of the brain tissue to EMF 

exposure.  The published papers (Blackman et al., 1988b; Joines et al., 1986) showed that the 

brain tissue response was changed when the field during the incubation period was 50 Hz rather 

than 60 Hz.  This result is consistent with an anecdotal report of adult humans, who were 

institutionalized because of chemical sensitivities, were also responsive to EMF fields that were 

present in the countries where they were born and raised (Blackman, 2006).  This information 

indicates there may be animal and human exposure situations where EMF imprinting could be an 
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important factor in laboratory and epidemiological situations.  EMF imprinting, which may only 

become manifest when a human is subjected to chemical or biological stresses, could reduce 

ability to fight disease and toxic insult from environmental pollution, resulting in a population in 

need of more medical services, with resulting lost days at work.   

 

Fundamental exposure parameters that must be considered when establishing a mode (or 

mechanism) of action for non-thermal EMF-induced biological effects. 

 

     A.  Intensity  

There are numerous reports of biological effects that show intensity “windows”, that is, regions 

of intensity that cause changes surrounded by higher and lower intensities that show no effects 

from exposure.  One very clear effect is 16-Hz, sine wave-induced changes in calcium efflux 

from brain tissue in a test tube because it shows two very distinct and clearly separated intensity 

windows of effects surrounded by regions of intensities that caused no effects (Blackman et al., 

1982).   There are other reports for similar multiple windows of intensity in the radiofrequency 

range (Blackman et al., 1989; Dutta et al., 1989, 1992; Schwartz et al., 1990).  Note that calcium 

ions are a secondary signal transduction agent active in many cellular pathways.  These results 

show that intensity windows exist, they display an unusual and unanticipated “non linear” (non-

linear and non-monotonic) phenomenon that has been mostly ignored in all risk assessment and 

standard setting exercises, save the National Council for Radiation Protection and 

Measurements. (NCRP) 1986 publication.  Protection from multiple intensity windows has never 

been incorporated into any risk assessment; to do so would call for a major change in thinking.  

These results mean that lower intensity is not necessarily less bioactive, or less harmful.    

 

Multiple intensity windows appeared as an unexpected phenomenon in the late 1970s and 1980s.  

There has been one limited attempt to model the phenomenon (Thompson et al., 2000).  

However, there are publications from two independent research groups showing multiple 

intensity windows for 50 MHz, 147 MHz, and 450 MHz fields when amplitude-modulated at 16 

Hz using the calcium ion release endpoint in chicken brains, in vitro.  The incident intensities 

(measured in air) for the windows at the different carrier frequencies do not align at the same 

values.  However, Joines et al., (1981a, 1981b) and Blackman et al. (1981) noted the windows of 
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intensity align across different carrier frequencies if one converts the incident intensity to the 

intensity expected within the sample at the brain surface, but correcting for the different 

dielectric constants in the samples at the different carrier frequencies.  The uniqueness of this 

response provides a substantial clue to theoreticians but it is interesting that no publications have 

appeared attempting to address this relationship.  It is obvious that this phenomenon is one that 

needs further study. 

  

     B.  Frequency  

Frequency-dependent phenomena are common occurrences in nature.  For example, the human 

ear only hears a portion of the sound that is in the environment, typically from 20 to 20000 Hz, 

which is a frequency “window.”  Another biological frequency window can be observed for 

plants grown indoors.  Given normal indoor lighting the plants may grow to produce lush 

vegetation but not produce flowers unless illuminated with a lamp that emits a different spectrum 

of light.  Similarly, there are examples of EMF-caused biological effects that occur as a result of 

EMF of concern to us in a frequency-dependent manner that cannot be explained by current flow 

or heating.  The examples include reports of calcium ion efflux from brain tissue in vitro at low 

frequency (Blackman et al., 1988a, 1988b) and at high frequency (Blackman et al., 1981; Joines 

and Blackman, 1981).  The bioactive frequency regions observed in these studies have never 

been explicitly considered for use in any EMF risk assessments, thus demonstrating the 

incomplete nature of current exposure limits.   

 

There are also EMF frequency-dependent alterations in the action of nerve growth factor (NGF) 

to stimulate neurite outgrowth (growth of primitive axons or dendrites) from a peripheral-nerve-

derived cell (PC-12) in culture (Blackman et al., 1995, 1999; Trillo et al., 1996).  The combined 

effect of frequency and intensity is also a common occurrence in both the sound and the light 

examples given above.  Too much or too little of either frequency or intensity show either no or 

undesirable effects.  Similarly, in low intensity EMF work, “islands” of effective combinations 

of intensity and frequency are surrounded by a “sea” of null effects (Blackman et al., 1988a).  

Although the mechanisms responsible for these effects have not been establish, the effects 

represent a heretofore unknown phenomenon that may have ramifications for risk assessment 

and standard setting.  Nerve growth and neurotransmitter release that can be altered by different 
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combinations of EMF frequencies and intensities, especially in developing organisms like 

children, could conceivably produce over time a subsequent altered ability to successfully or 

fully respond behaviorally to natural stressors in the adult environment; research is urgently need 

to test this possibility in animal systems.   

 

Nevertheless, this phenomenon is ignored in the development of present exposure standards that 

rely primarily on biological responses to intensities within a relatively narrow band of 

frequencies, based on an energy deposition endpoint.  

 

     C.  Static Magnetic Field  

The magnetic field of the earth at any given location has a relatively constant intensity as a 

function of time.  However, the intensity value, and the inclination of the field with respect to the 

gravity vector, varies considerable over the face of the earth.  More locally, these features of the 

earth’s magnetic field can also vary by more than 20% inside man-made structures, particularly 

those with steel support structures.  There are many reports of EMF-caused effects being 

dependent on the static magnetic field intensity (cf. Blackman et al., 1985) and of its orientation, 

with respect to an oscillating magnetic field (Blackman et al., 1990; Blackman et al., 1996).  One 

aspect common to many of these reports is that the location in the active frequency band is 

determined by the intensity of the static magnetic field.  There have been many attempts to 

explain this phenomenon but none has been universally accepted.  However, it is clear that if a 

biological response depends on the static magnetic field intensity, and even its orientation with 

respect to an oscillating field, then the conditions necessary to reproduce the phenomenon are 

very specific and might easily escape detection (cf. Blackman and Most, 1993).  The 

consequences of these results are that there may be exposure situations that are truly detrimental 

(or beneficial) to organisms but that are insufficiently common on a large scale that they would 

not be observed in epidemiological studies; they need to be studied under controlled laboratory 

conditions to determine impact on health and wellbeing.   

 

     D.  Electric & Magnetic Components    

Both the electric and the magnetic components have been shown to directly and independently 

cause biological changes.  There is one report that clearly distinguishes the distinct biological 
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responses caused by the electric field and by the magnetic field.  Marron et al. (1988) show that 

electric field exposure can increase the negative surface charge density of an amoeba, Physarum 

polycephalum, and that magnetic field exposure of the same organism causes changes in the 

surface of the organism to reduce its hydrophobic character.  Other scientists have used 

concentric growth surfaces of different radii and vertical magnetic fields to determine if the 

magnetic or the induced electric component is the agent causing biological change.   Liburdy 

(1992), examining calcium influx in lymphocytes, and Greene et al. (1991), monitoring ornithine 

decarboxylase (ODC) activity in cell culture, showed that the induced electric component was 

responsible for their results.  In contrast, Blackman et al. (1993a, 1993b) monitoring neurite 

outgrowth from two different clones of PC-12 cells and using the same exposure technique used 

by Liburdy and by Greene showed the magnetic component was the critical agent in their 

experiments.  EMF-induced changes on the cell surface, where it interacts with its environment, 

can dramatically alter the homeostatic mechanisms in tissues, whereas changes in ODC activity 

are associated with the induction of cell proliferation, a desirable outcome if one is concerned 

about wound healing, but undesirable if the concern is tumor cell growth.  This information 

demonstrates the multiple, different ways that EMF can affect biological systems. Current 

analyses for risk assessment and standard setting have ignored this information, thus making 

their conclusions of limited value.   

 

     E.  Sine and Pulsed Waves  

Important characteristics of pulsed waves that influenced the number and characteristics of the 

sine wave representations include the following: 1) frequency, 2) pulse width, 3) intensity, 4) rise 

and fall time, and 5) the frequency, if any, within the pulse ON time.  Chiabrera et al. (1979) 

showed that pulsed fields caused de-differentiation of amphibian red blood cells.  Scarfi et al. 

(1997) showed enhanced micronuclei formation in lymphocytes of patients with Turner’s 

syndrome (only one X chromosome) but no change in micronuclei formation when the 

lymphocytes were exposed to sine waves (Scarfi et al., 1996).  Takahashi et al. (1986) monitored 

thymidine incorporation in Chinese hamster cells and explored the influence of pulse frequency 

(two windows of enhancement seen), pulse width (one window of enhancement seen) and 

intensity (two windows of enhancement seen followed by a reduction in incorporation).  Ubeda 

et al. (1983) showed the influence of difference rise and fall times of pulsed waves on chick 
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embryo development.   

 

It is important to note that the frequency spectrum of pulsed waves can be represented by a sum 

of sine waves which, to borrow a chemical analogy, would represent a mixture or a soup of 

chemicals, anyone of which could be biologically active.  Risk assessment and exposure limits 

have been established for specific chemicals or chemical classes of compounds that have been 

shown to cause undesirable biological effects.  Risk assessors and the general public are 

sophisticated enough to recognize that it is impossible to declare all chemicals safe or hazardous; 

consider the difference between food and poisons, both of which are chemicals.  A similar 

situation occurs for EMF; it is critical to determine which combinations of EMF conditions have 

the potential to cause biological harm and which do not.   

 

Obviously, pulse wave exposures represent an entire genre of exposure conditions, with 

additional difficulty for exact independent replication of exposures, and thus of results, but with 

increased opportunities for the production of biological effects.  Current standards were not 

developed with explicit knowledge of these additional consequences for biological responses.   

 

     F.  Mechanisms  

Two recent papers have the possibility of advancing understanding in this research area.  

Chiabrera et al. (2000) created a theoretical model for EMF effects on an ion’s interaction with 

protein that includes the influence of thermal energy and of metabolism.  Before this publication, 

theoreticians assumed that biological effects in living systems could not occur if the electric 

signal is below the signal caused by thermal noise, in spite of experimental evidence to the 

contrary.  In this paper, the authors show that this limitation is not absolute, and that different 

amounts of metabolic energy can influence the amount and parametric response of biological 

systems to EMF.  The second paper, by Marino et al. (2000), presents a new analytical approach 

to examine endpoints in systems exposed to EMF.  The authors, focusing on exposure-induced 

lyphoid phenotypes, report that EMF may not cause changes in mean values of endpoints, but 

rather in variances in those same endpoints.  They provide further evidence using immunological 

endpoints from exposed and sham treated mice (Marino et al., 2001a, 2001b, 2001c).  Additional 

research has emerged from this laboratory on EMF-induced animal and human brain activity 
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changes that provides more evidence for the value of their research approach (Marino et al., 

2002, 2003, 2004; Carrubba et al., 2006, 2007a, 2007b).  It is apparent that much remains to be 

examined and explained in EMF biological effects research through more creative methods of 

analysis than have been used before.  The models described above need to be incorporated into 

risk assessment determinations.   

 

 

 

 

 

IV.  Problems with Segregation of Effects by Artificial Frequency Bands that Ignore 

Modulation  

 

One fundamental limitation of most reviews of EMF biological effects is that exposures are 

segregated by the physical (engineering/technical) concept of frequency bands favored by the 

engineering community.  This is a default approach that follows the historical context established 

in the past by the incremental addition of newer technologies that generate increasingly higher 

frequencies.   However, this approach fails to consider unique responses from biological systems 

that are widely reported at various combinations of frequencies, modulations and intensities.  

 

When common biological responses are observed without regard for the particular, engineering-

defined EMF frequency band in which the effects occur, this reorganization of the results can 

highlight the commonalities in biological responses caused by exposures to EMF across the 

different frequently bands.  An attempt to introduce this concept to escape the limitations of the 

engineering-defined structure occurred with the development of the 1986 NCRP radiofrequency 

exposure guidelines because published papers from the early 1970s to the mid 1980s (to be 

discussed below) demonstrated the need to include amplitude modulation as a factor in setting of 

maximum exposure limits.  The 1986 NCRP guideline was the one and only risk evaluation that 

included an exception for modulated fields.   

 

The current situation argues strongly for a change in the way risk assessment is conducted, 
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especially for the last 15 to 20 years.   Unfortunately, subsequent risk evaluations did not follow 

the NCRP example, but returned to the former engineering-defined analysis conditions, in part 

because scientists who reported non-thermal effects were not placed on the review committees, 

and in the terms of Slovic (1999) "Risk assessment is inherently subjective and represent a blend 

of science and judgment with important psychological, social, cultural, and political factors.  …  

Whoever controls the definition of risk controls the rational solution to the problem at hand.  …  

Defining risk is thus an exercise in power."  It appears that by excluding scientists experienced 

with producing non-thermal biological effects, the usually sound judgment by the selected 

committees was severely limited in its breadth-of-experience, thereby causing the members to 

retreat to their own limited areas of expertise when forced to make judgments, as described by 

Slovic (1999), "Public views are also influenced by worldviews, ideologies, and values; so are 

scientists' views, particularly when they are working at limits of their expertise."  The current 

practice of segregating scientific investigations  (and resulting public health limits) by artificial 

divisions of frequency dramatically dilutes the impact of the basic science results, thereby 

reducing and distorting the weight of evidence in any evaluation process (see evaluations of bias 

by Havas 2000, referring to NRC 1997 compared to NIEHS 1998 and NIEHS 1999).   

 

     A.  Suggested Research 

Are there substitute approaches that would improve on the health-effects evaluation situation?  

As mentioned above, it may be useful in certain cases to develop a biologically based clustering 

of the data to focus on and enrich understanding of certain aspects of biological responses.  Some 

examples to consider for biological clustering include: 1) EMF features, such as frequency and 

intensity inter-dependencies, 2) common cofactors, such as the earth’s magnetic field or co-

incident application of chemical agents to perturb and perhaps sensitize the biological system to 

EMF, or 3) physiological state of the biological specimen, such as age or, sensitive sub-

populations, including genetic predisposition (Fedrowitz et al., 2004, 2005).   

 

To determine if this approach has merit, one could combine reports of biological effects found in 

the ELF (including sub-ELF) band with effects found in the RF band when the RF exposures are 

amplitude modulated (AM) using frequencies in the ELF band.  The following data should be 

used: 1) human response time changes under ELF exposure (Hamer, 1968), 2) monkey response 
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time and EEG changes under ELF exposure (Gavalas et al., 1970; Gavales-Medici & Day-

Magdaleno, 1976), 3) cat brain EEG, GABA and calcium ion changes induced by ELF and AM-

RF (Kaczmarek and Adey, 1973, 1974; Bawin et al. 1973), 4) calcium ion changes in chick brain 

tissue under ELF and AM-RF (Bawin et al., 1975, 1976, 1978a, 1978b; Sheppard et al., 1979; 

Joines and Blackman et al., , 1981a, 1981b, 1986; Blackman et al., 1979, 1980a, 1980b, 1981, 

1982, 1985, 1988a, 1988b, 1989, 1990), and 5) calcium changes under AM-RF in brain cells in 

culture (Dutta et al., 1984, 1989, 1992) and in frog heart under AM-RF (Schwartz et al., 1990). 

The potential usefulness of applying biological clustering in the example given above even 

though AM is used, is that the results may have relevance to assist in the examination of some of 

the effects reportedly caused by cellular phone exposures which include more complex types of 

modulation of RF.  This suggestion is reasonable because three groups have recently reported 

human responses to cell phone emissions that include changes in reaction times (Preece et al., 

1998, 1999; Koivisto et al. 2000a, 2000b; Krause et al., 2000a, 2000b) or to brain wave 

potentials that may be associated with reaction time changes (Freude et al., 1998, 2000).  

 

The papers described above, published in the 1960s through 1991, foreshadowed the more recent 

publications in 1999 and 2000 showing response time changes, or associated measures, in human 

subjects during exposure to cell phone-generated radiation (although none of the earlier studies 

was acknowledged in these recent reports on cognition and reaction time).  Without guidance 

from this extensive earlier work, the development of the mechanistic bases for non-thermal 

effects from EMF exposures will be substantially delayed.  
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V.  Conclusions  

 
•  There is substantial scientific evidence that some modulated fields (pulsed or repeated signals) are 
bioactive, which increases the likelihood that they could have health impacts with chronic exposure even 

at very low exposure levels.  Modulation signals may interfere with normal, non-linear biological 

processes. 

  
•  Modulation is a fundamental factor that should be taken into account in new public safety standards; at 

present it is not even a contributing factor.   

 
•  To properly evaluate the biological and health impacts of exposure to modulated RFR (carrier waves), 

it is also essential to study the impact of the modulating signal (lower frequency fields or ELF-modulated 

RF). 
 

• Current standards have ignored modulation as a factor in human health impacts, and thus are inadequate 

in the protection of the public in terms of chronic exposure to some forms of ELF-modulated RF signals.  

 
• The current IEEE and ICNIRP standards are not sufficiently protective of public health with respect to 

chronic exposure to modulated fields (particularly new technologies that are pulse-modulated and heavily 

used in cellular telephony). 
 

• The collective papers on modulation appear to be omitted from consideration in the recent WHO and 

IEEE science reviews. This body of research has been ignored by current standard setting bodies that rely 

only on traditional energy-based (thermal) concepts. 
 

•  More research is needed to determine which modulation factors, and combinations are bioactive and 

deleterious at low intensities, and are likely to result in disease-related processes and/or health risks; 
however this should not delay preventative actions supporting public health and wellness. 

 

•  If signals need to be modulated in the development of new wireless technologies, for example, it makes 
sense to use what existing scientific information is available to avoid the most obviously deleterious 

exposure parameters and select others that may be less likely to interfere with normal biological processes 

in life.   

 
•  The current membership on Risk Assessment committees needs to be made more inclusive, by adding 

scientists experienced with producing non-thermal biological effects.  

 
•  The current practice of segregating scientific investigations (and resulting public health limits) by 

artificial divisions of frequency needs to be changed because this approach dramatically dilutes the impact 

of the basic science results and eliminates consideration of modulation signals, thereby reducing and 
distorting the weight of evidence in any evaluation process. 

 

 

Disclaimer: the opinions expressed in this text are those of its author, and are not necessarily those of his 

employer.   
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ABSTRACT 

Diverse biological responses to non-thermal (NT) microwaves (MW), including adverse 

health effects related to increased cancer risk, have been studied by multiple research groups all 

over the world. In approximately half of these studies, no any effects were found (negative studies), 

while the other half reported the NT MW effects (positive studies). This fact is often referred to as 

non-reproducibility of the NT MW effects. In most cases, such a conclusion is based on comparing 

studies, which significantly differ in important biological and physical variables/parameters. The 

aim of this chapter is to provide an overview of the complex dependence of the NT MW effects on 

various physical and biological parameters, which must be controlled in replication studies. To the 

aim of this paper, all studies available to the author, which included analysis of different 

variables/parameters and reported some positive NT MW response to be a reference for analyzing 

its dependence on physical and biological parameters, were included. Selection criteria included 

relevant experimental design, methodological quality and statistical analysis. Besides dependencies 

on carrier frequency, modulation, genotype,  physiological traits, presence of radical scavengers and 

antioxidants, reported by many research groups, the emerging data suggest dependencies of the NT 

MW effects on polarization, intermittence and coherence time of exposure, static magnetic field, 

electromagnetic stray fields, sex, age, individual traits, cell density during exposure. This overview 

provides clear evidence that in most cases, the references to non-reproducibility of the NT MW 

effects are not correct. Unfortunately, most reviews and panels in the field do not include analysis 

of various biological variables and physical parameters when comparing the data on the NT MW 

effects from different studies. As result, misleading conclusion is often made that MW at NT levels 

produce no “reproducible” effects. Our analysis suggests that different (bandwidth, frequency, 

modulation, polarization) NT MW signals should be considered as separate agents in setting the 

safety standards. The data also indicate that duration of exposure may be as important as power 

density (PD) and specific absorption rate (SAR), and, therefore, the "dose" and duration of exposure 

should also be considered in safety standards along with PD/SAR. Further evaluation of the 

dependencies of NT MW effects on biological and physical variables/parameters are needed for 

understanding the mechanisms by which NT MW  affect biological systems, planning in vivo and 

epidemiological studies, setting the safety standards, and minimizing the adverse effects of MW  

from mobile communication. 

 

 

Keywords: non-thermal effects of microwaves, mobile (cellular) phones, safety standards. 
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List of Abbreviations: 

Anomalous viscosity time dependence (AVTD); blood-brain barrier (BBB); catalase (CAT); Digital 

Enhanced (former European) Cordless Telecommunications (DECT); circularly polarized (CP); 

continuous wave (CW); Digital Advanced Mobile Phone System (DAMPS); discontinuous 

transmission (DTX); electroencephalographic (EEG); electromagnetic field (EMF); embryonic stem 

(ES) cells; ethidium bromide (EtBr); extremely low frequency (ELF); Gaussian Minimum Shift 

Keying (GMSK); Ginkgo biloba (Gb); Global System for Mobile Communication (GSM); 

glutathione peroxidase (GSH-Px); International Commission for Non-Ionizing Radiation Protection 

(ICNIRP); linearly polarized (LP); malondialdehyde (MDA); micronucleus (MN) assay; 

microwaves (MWs); N-acetyl-beta-d-glucosaminidase (NAG); nitric oxide (NO); non-thermal 

(NT); ornithine decarboxylase (ODC); phorbol ester 12-myristate 13-acetate (PMA); 

phosphorylated H2AX histone (-H2AX); power density (PD); regional cerebral blood flow (rCBF); 

Russian National Committee on Non-Ionizing Radiation Protection (RNCNIRP); specific 

absorption rate (SAR); static magnetic field (SMF); superoxide dismutase (SOD); Time Division 

Multiple Access (TDMA); tumor suppressor p53 binding protein 1 (53BP1); ultraviolet (UV); 

Universal Mobile Telecommunications System (UMTS). 

 

I. THERMAL VERSUS NON-THERMAL EFFECTS 

 

 Exposures to electromagnetic fields vary in many parameters: power (specific absorption 

rate, incident power density), wavelength/frequency, near field/far field, polarization (linear, 

circular), continues wave (CW) and pulsed fields (that include variables such as pulse repetition 

rate, pulse width or duty cycle, pulse shape, pulse to average power, etc.), modulation (amplitude, 

frequency, phase, complex), static magnetic field (SMF) and electromagnetic stray fields at the 

place of exposure, overall duration and intermittence of exposure (continuous, interrupted), acute 

and chronic exposures. With increased absorption of energy, so-called thermal effects of 

microwaves (MW) are usually observed that deal with MW-induced heating. Specific absorption 

rate (SAR) or power density (PD) is a main determinate for thermal MW effects. Several other 

physical parameters of exposure have been reported to be of importance for so-called non-thermal 

(NT) biological effects, which are induced by MW at intensities well below any measurable heating 

(Grundler, Jentzsch et al. 1988; Iskin 1990; Devyatkov, Golant et al. 1994; Pakhomov, Akyel et al. 

1998; Adey 1999; Belyaev, Shcheglov et al. 2000; Betskii, Devyatkov et al. 2000; Banik, 

Bandyopadhyay et al. 2003; Grigoriev, Stepanov et al. 2003; Grigoriev 2004; Lai 2005; Belyaev 

2010; Cifra, Fields et al. 2011) (Pakhomov and Murphy 2000). 
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Most often, current safety standards are based on thermal MW effects observed in short-term 

(acute) exposures. On the other hand, NT MW effects, especially those induced during prolonged 

(chronic) exposures, are accepted and taken into account for setting the national safety standards in 

some countries such as Russia (Grigoriev, Stepanov et al. 2003; Grigoriev 2004; Grigoriev, Nikitina 

et al. 2005). It should be noted that, in contrast to the ICNIRP (International Commission for Non-

Ionizing Radiation Protection) safety standards (ICNIRP 1998) which are based on the acute 

thermal effects of MW, the standards adopted by the Russian National Committee on Non-Ionizing 

Radiation Protection (RNCNIRP) are based on experimental data from chronic (up to 4 month) 

exposures of animals to MW at various physical parameters including intensity, frequency and 

modulation, obtained from research performed in the former Soviet Union (Grigoriev, Stepanov et 

al. 2003; Grigoriev 2004; Grigoriev, Nikitina et al. 2005). 

Since setting the current safety standards, the situation with exposure of the general 

population to MW has changed significantly. Nowadays, most of the human population is 

chronically exposed to MW signals from various sources including mobile phones and base 

stations. These exposures are characterized by low intensities, varieties and complexities of signals, 

and long-term durations of exposure that are comparable with a lifespan. So far, the “dose” 

(accumulated absorbed energy that is measured in radiobiology as the dose rate multiplied by 

exposure time) is not adopted for the MW exposures and SAR or PD is usually used for guidelines. 

To what degree SAR/PD can be applied to the nowadays NT MW chronic exposures is not known 

and the current state of research demands reevaluation of the safety standards (Grigoriev, Nikitina 

et al. 2005). 

The literature on the NT MW effects is very broad. About half of available experimental 

studies report non-thermal biological effects of microwaves (Huss, Egger et al. 2007). There are 

four lines of evidence for the NT MW effects: (1) altered cellular responses in laboratory in vitro 

studies and results of chronic exposures in vivo studies (Grigoriev, Stepanov et al. 2003; Lai 2005; 

Cook, Saucier et al. 2006); (2) results of medical application of NT MW  in the former Soviet 

Union countries (Sit'ko 1989; Devyatkov, Golant et al. 1994; Betskii, Devyatkov et al. 2000; 

Pakhomov and Murphy 2000; Pakhomov and Murphy 2000); (3) hypersensitivity to 

electromagnetic fields (EMF) ; (4) epidemiological studies suggesting increased cancer risks from 

using mobile phones longer than 10 years (Kundi, Mild et al. 2004; Lonn, Ahlbom et al. 2004; 

Hardell, Eriksson et al. 2005). 

The first data on the NT effects of MW in so-called millimeter range (wavelength 1-10 mm 

in vacuum) was obtained by Vilenskaya and co-authors (Vilenskaya, Smolyanskaya et al. 1972) and 

Devyatkov (Devyatkov 1973). Highly resonant effects of ultra-weak MW (near 70 GHz) on the 
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induction of λ-phage were first established by Webb (Webb 1979), and subsequently corroborated 

(Lukashevsky and Belyaev 1990). In these and subsequent studies the observed spectra of MW 

action were found to have the following common properties: (1) the MW effects were strongly 

dependent on the frequency (frequency windows), (2) there was an associated power (intensity) 

threshold below which no effect was observed, and above which the effects of exposure depended 

only weakly on power over several orders of magnitude (so-called S-shaped or sigmoid 

dependence), (3) the occurrence of MW effects depended on the duration of exposure, a certain 

minimum duration of exposure was necessary for an effect to manifest itself. These important 

regularities of the NT MW effects have previously been reviewed (Postow and Swicord 1986; 

Grundler, Jentzsch et al. 1988; Golant 1989; Iskin 1990; Belyaev 1992; Devyatkov, Golant et al. 

1994; Pakhomov, Akyel et al. 1998; Hyland 2000; Pakhomov and Murphy 2000). 

The first investigations of the NT MW effects at lower frequency ranges were performed by 

several research groups in USSR (Presman, IuI et al. 1961; Presman 1963) and in USA by Frey 

(Frey 1967; Frey 1974), Blackman and colleagues (Blackman, Benane et al. 1980; Blackman, 

Benane et al. 1980; Joines and Blackman 1980) and Adey and colleagues (Adey, Bawin et al. 1982; 

Lin-Liu and Adey 1982). These groups found dependence of the NT MW effects on modulation. 

The effect of pulse-modulated MW  was related to peak power, whereas average power was found 

to be relatively unimportant (Frey 1974). Frequency dependence of the MW effects have been 

reported (Frey 1974). 

Since that time, other groups have confirmed and extended the main findings of these 

pioneering studies. Below, survey of recent studies, which evaluate dependence of the NT MW 

effects on physical parameters and biological variables, is provided. 

 

 

II. FREQUENCY DEPENDENCE AND FREQUENCY WINDOWS 

 

The effects of NT MW on DNA repair in E. coli K12 AB1157 were studied by the method 

of anomalous viscosity time dependence (AVTD) (Belyaev, Alipov et al. 1992; Belyaev, Alipov et 

al. 1992). The AVTD method is a sensitive technique to detect changes in conformation of 

nucleoids/chromatin induced by either genotoxic or stress factors (Belyaev and Harms-Ringdahl 

1996; Belyaev, Shcheglov et al. 1996; Belyaev, Alipov et al. 1997; Sarimov, Malmgren et al. 2004; 

Belyaev, Hillert et al. 2005; Markova, Hillert et al. 2005). Significant inhibition of DNA repair was 

found when X-ray-irradiated cells were exposed to MW within the frequency ranges of 51.62-51.84 

GHz and 41.25-41.50 GHz. The effects were observed within two “frequency windows”, both 
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displaying a pronounced resonance character with the resonance frequencies of 51.755 GHz and 

41.32 GHz, respectively (Belyaev, Alipov et al. 1992; Belyaev, Alipov et al. 1992). Of note, these 

MW effects were observed at PD well below any thermal effects and could not be accounted for by 

heating. The frequency windows of resonance type have often been termed “resonances” as also 

will be used below. 

The resonance frequency of 51.755 GHz was stable within the error of measurements, +1 

MHz with decreasing the PD from 3∙10
-3

 to 10
-19

 W/cm
2
 (Belyaev, Alipov et al. 1992; Belyaev, 

Shcheglov et al. 1996). At the same time, the half-width of the resonance decreased from 100 MHz 

to 3 MHz revealing an extremely sharp dependence on frequency (Q ~ 10
4
). This sharp narrowing 

of the 51.755 GHz resonance with decreasing the PD from 3∙10
-3 

to 10
-7

 W/cm
2 

followed by an 

emergence of new resonances, 51.675+0.001, 51.805+0.002, and 51.835+0.005 GHz (Belyaev, 

Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997). The half-widths of all these resonances 

including the main one, 51.755+0.001 GHz, were about 10 MHz at the PD of 10
-10

 W/cm
2
. These 

data were interpreted in the framework of the model of electron-conformational interactions as a 

splitting of the main resonance 51.755 GHz by the MW field (Belyaev, Shcheglov et al. 1996). 

The MW effects were studied at different PD and several frequencies around the resonance 

frequency of 51.675 GHz (Shcheglov, Belyaev et al. 1997). This resonance frequency was found to 

be stable, +1 MHz, within the PD range of 10
-18

 - 10
-8

 W/cm
2
. Along with disappearance of the 

51.675 GHz resonance response at the sub-thermal PD of 10
-6

 - 10
-3

 W/cm
2
, a new resonance effect 

arose at 51.688+0.002 GHz (Shcheglov, Belyaev et al. 1997). This resonance frequency was also 

stable within the PD range studied. 

Taken together, the data on NT MW effects on chromatin (Belyaev, Alipov et al. 1992; 

Belyaev, Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997) suggested a sharp rearrangement 

of the frequency spectra of MW action, which was induced by the sub-thermal MW (Belyaev, 

Alipov et al. 1992; Belyaev, Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997). The half-

widths of all three resonances depended on PD, changing either from 2-3 MHz to 16-17 MHz 

(51.675 GHz and 51.668 GHz resonances) or from 2-3 MHz to 100 MHz (51.755 GHz resonance) 

(Belyaev, Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997). The data indicated also that 

dependencies of half-width on PD might vary for different resonance frequencies. 

Significant narrowing in resonance response with decreasing PD has been found when 

studying the growth rate in yeast cells (Grundler 1992) and chromatin conformation in thymocytes 

of rats (Belyaev and Kravchenko 1994). In the Gründler’s study, the half-width of the resonance 

(near 41 GHz) decreased from 16 MHz to 4 MHz as PD decreased from 10
-2

 W/cm
2
 to 5 pW/cm

2
 

(Grundler 1992). 
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Thus, the results of studies with different cell types indicate that narrowing of the resonance 

window upon decrease in PD is one of the general regularities in cell response to NT MW. This 

regularity suggests that many coupled oscillators are involved non-linearly in the response of living 

cells to NT MW as has previously been predicted by Fröhlich (Frohlich 1968). 

Gapeev et al. studied effects of MW exposure (frequency range 41.75-42.1 GHz,  frequency 

increment 50 MHz, PD 240 W/cm
2
) on the respiratory burst induced by calcium ionophore 

A23187 and phorbol ester 12-myristate 13-acetate (PMA) in the peritoneal neutrophils of mice 

(Gapeev, Safronova et al. 1996; Gapeyev, Safronova et al. 1997). MW inhibited the respiratory 

burst. MW effect displayed resonance-like dependence on frequency, the resonance frequency and 

half-width of the resonance being  41.95 GHz and 160 MHz, respectively  (Q= 260) (Gapeev, 

Safronova et al. 1996; Gapeyev, Safronova et al. 1997). In other studies, Gapeev et al. analyzed 

acute zymosan-induced paw edema in mice (Gapeyev, Mikhailik et al. 2008; Gapeyev, Mikhailik et 

al. 2009). MW exposure of animals at the PD of 0.1 mW/cm
2 

resulted in decrease of the paw edema 

that was frequency-dependent in the range of 42-43 GHz. 

Based on the extrapolation from the data obtained in the extremely high frequency range 

(30-300 GHz), the values for half-width of resonances at the frequency range of mobile phones 

(0.9–2 GHz) were estimated to be 1-10 MHz (Sarimov, Malmgren et al. 2004). Effects of GSM 

(Global System for Mobile Communication) MW on chromatin conformation and 53BP1 (tumor 

suppressor p53 binding protein 1)/-H2AX (phosphorylated H2AX histone) DNA repair foci in 

human lymphocytes were studied in this frequency range (Sarimov, Malmgren et al. 2004; Belyaev, 

Hillert et al. 2005; Markova, Hillert et al. 2005; Belyaev, Markova et al. 2009). These MW effects 

depended on carrier frequency (Sarimov, Malmgren et al. 2004; Markova, Hillert et al. 2005; 

Belyaev, Markova et al. 2009). This dependence was replicated in independent experiments with 

lymphocytes from twenty six healthy and hypersensitive persons (Belyaev, Hillert et al. 2005; 

Markova, Hillert et al. 2005; Belyaev, Markova et al. 2009). 

Tkalec and colleagues exposed duckweed (Lemna minor L.) to MW at the frequencies of 

400, 900, and 1900 MHz (Tkalec, Malaric et al. 2005). The growth of plants exposed for 2 h to a 23 

V/m electric field of 900 MHz significantly decreased in comparison with the control, while an 

electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 

900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth 

significantly. At both frequencies, a longer exposure mostly decreased the growth and the highest 

electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 

V/m) for 14 h caused a significant decrease at 400 and 1900 MHz while 900 MHz did not influence 

the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. 
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Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where 

a significant increase (41%) was found.  The authors concluded that MW might influence plant 

growth and, to some extent, peroxidase activity. However, the effects of MW strongly depended on 

the characteristics of the field exposure such as frequency and modulation. These dependences were 

replicated in further studies (Tkalec, Malaric et al. 2007; Tkalec, Malaric et al. 2009). 

Remondini et al. analyzed changes in gene expression in human EA.hy926 endothelial cells 

using gene microarrays (Remondini, Nylund et al. 2006). Cells were exposed to MW (SAR 1.8-2.5 

W/kg, 1 h exposure) either at 900-MHz GSM Basic mode or 1800-MHz GSM Basic mode. 

Exposure to 900 MHz resulted in up-regulation in 22 genes and down-regulation in 10 genes. No 

significant change in gene expression was observed after exposure to 1800 MHz. 

 

 

III.  NON-LINEARITY:  SIGMOID INTENSITY DEPENDENCES AND POWER WINDOWS 

 

Devyatkov with colleagues have found and published in Russian that wide variety of NT 

MW effects in vitro and in vivo display sigmoid dependence on intensity above certain intensity 

thresholds (Devyatkov 1973). 

In English literature, one of the earliest observation of threshold in response to NT MW was 

published by Frey (Frey 1967). In this study, the threshold of 30 µW/cm2 was found in the study by 

Frey on Brain stem evoked responses to RF in cats (Frey 1967). This value was 4 orders of 

magnitude lower then intensities needed to cause internal body temperature increase. 

In their pioneering study on blood-brain barrier (BBB) permeability, Oscar and Hawkins 

exposed rats to MW at 1.3 GHz and analyzed BBB permeability by measuring  uptake of several 

neutral polar substances in certain areas of the brain (Oscar and Hawkins 1977).  A single, 20 min 

exposure, to continuous wave (CW) MW increased the uptake of D-mannitol at average power 

densities of less than 3 mW/ cm
2
. Increased permeability was observed both immediately and 4 h 

after exposure, but not 24 h after exposure. After an initial rise at 0.01 mW/ cm
2
, the permeability of 

cerebral vessels to saccharides decreased with increasing microwave power at 1 mW/cm
2
. Thus, the 

effects of MW were observed within the power window of 0.01- 0.4 mW/cm
2
. The findings on 

“power windows” for BBB permeability have been subsequently corroborated by the group of 

Persson and Salford (Salford, Brun et al. 1994; Persson, Salford et al. 1997). In their recent study,  

the effects of GSM MW on the permeability of the BBB and signs of neuronal damage in rats were 

investigated using a real GSM programmable mobile phone in the 900 MHz band (Eberhardt, 

Persson et al. 2008). The rats were exposed for 2 h at an SAR of 0.12, 1.2, 12, or 120 mW/kg. 
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Albumin extravazation and also its uptake into neurons increased after 14 d. The occurrence of dark 

neurons in the rat brains increased later, after 28 d. Both effects were seen already at 0.12 mW/kg 

with only slight increase, if any, at higher SAR values. 

Sigmoid intensity dependences and power windows for the NT MW effects were observed in many 

other studies as previously reviewed (Postow and Swicord 1986; Grundler, Jentzsch et al. 1988; 

Golant 1989; Iskin 1990; Devyatkov, Golant et al. 1994; Blackman 2009). 

Since 1980, there have been numerous reports of biological effects that show intensity 

“windows”, that is, regions of intensity that cause changes surrounded by higher and lower 

intensities that show no effects from exposure, see for review (Blackman 2009). These results mean 

that lower intensity is not necessarily less bioactive, or less harmful. 

Olcerst at al have reported that MW-induced increase in rubidium passive efflux did not increase 

monotonically with absorbed power (Olcerst, Belman et al. 1980). In fact, the highest exposure 

(SAR 390 mW/g) resulted in an increase, not statistically different from the lowest exposure level 

(SAR 100 mW/g) For sodium ions, at the greatest SAR of 390 mW/g, the effect was the smallest 

(Olcerst, Belman et al. 1980). 

The data obtained in experiments with E coli cells and rat thymocytes provided new 

evidence for sigmoid type of PD dependence and suggested that, similar to ELF effects, MW effects 

may be observed within specific “intensity windows” (Belyaev, Shcheglov et al. 1992; Belyaev and 

Kravchenko 1994; Belyaev, Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997). The most 

striking example of the sigmoid PD dependence was found at the resonance frequency of 51.755 

GHz (Belyaev, Shcheglov et al. 1996). When exposing E. coli cells at the cell density of 4∙10
8
 

cell/ml, the effect reached saturation at the PD of 10
-18

-10
-17 

W/cm
2
 and did not change up to PD of 

10
-3 

W/cm
2
. In these experiments, the direct measurements of PD below 10

-7 
W/cm

2
 were not 

available and lower PD was obtained using calibrated attenuators. Therefore, some uncertainty in 

the evaluation of the lowest PD was possible. The background MW radiation in this frequency 

range has been estimated to be 10
-21

-10
-19

 W/m
2
/Hz (Kolbun and Lobarev 1988). Based on the 

experimentally determined half-width of the 51.755 GHz resonance, 1 MHz (Belyaev, Shcheglov et 

al. 1996), the background PD was estimated as 10
-19

-10
-17

 W/cm
2
 within the 51.755 GHz resonance. 

The resonance MW effects on E. coli cells were observed at the PD very close to the estimated 

background value (Belyaev, Shcheglov et al. 1993; Belyaev, Alipov et al. 1994; Belyaev, 

Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997; Shcheglov, Alipov et al. 2002). These data 

suggested that the PD dependence of MW effect at the specific resonance frequencies might have 

intensity threshold just slightly above the background level. Dependence of the MW effect on PD at 

one of the resonance frequencies, 51.675 GHz, had the shape of “intensity window” in the PD range 
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from 10
-18

 to 10
-8

 W/cm
2 

(Shcheglov, Belyaev et al. 1997). It is interesting, that no MW effect at 

this resonance frequency was observed at sub-thermal and thermal PD. This type of PD dependence 

has supported hypothesis about possible rearrangement of the frequency MW spectra action by the 

MW field (Belyaev, Shcheglov et al. 1996). The position of the PD window varied between 

different resonance frequencies and depended on cell density during exposure of cells (Shcheglov, 

Belyaev et al. 1997). Despite some uncertainty in the evaluation of PD at the levels below 10
-7 

W/cm
2
 in the referred studies the data indicated that NT MW at the resonance frequencies may 

result in biological effects at very low intensities comparable with intensities from base stations and 

other MW sources used in mobile communication. 

Gapeev et al. have studied dependence of the MW effects at the resonance frequency of 

41.95 GHz on the respiratory burst induced by calcium ionophore A23187 and PMA in the 

peritoneal neutrophils of mice (Gapeev, Safronova et al. 1996; Gapeyev, Safronova et al. 1997). 

Inhibitory effects of MW exposure has been observed at the PD of 0.001 mW/cm
2
 and displayed 

sigmoid dependence on PD at higher power densities (Gapeev, Safronova et al. 1996; Gapeyev, 

Safronova et al. 1997). In other study, Gapeev et al. analyzed acute zymosan-induced paw edema in 

mice (Gapeyev, Mikhailik et al. 2009). MW exposure of animals at the frequency of 42.2GHz and 

exposure duration of 20 min decreased the paw edema. Sigmoid dependence of this effect on PD 

has been obtained with a maximum at the PD of 0.1 mW/cm
2
. 

 French et al. exposed human astrocytoma cells to EMR at 835 MHz at a power density of 

either 40 mWcm
2
 or 8.1 mWcm

2
 (French, Donnellan et al. 1997). Lower power signal  was more 

potent than high power signal. At the lower power density, it was observed that the rate of DNA 

synthesis decreased, and that the cells flattened and spread out in comparison to unexposed cultures. 

At higher power density there were no effects seen on cell proliferation, but alteration in cell 

morphology included increased cell spreading and also the appearance of actin-containing blebs at 

localized sites on the membrane. It was hypothesized that 835 MHz radiation at low power density 

may be affecting a signal transduction pathway involved in cell proliferation. 

 Sigmoid dependence of the negative impact of mobile phone usage on semen quality in 

human males was found in recent study analyzing motility, vitality, ROS generation by the whole 

cell, ROS generation by the mitochondria, oxidative DNA damage and DNA fragmentation (De 

Iuliis, Newey et al. 2009).  Specifically, all of the responses examined showed an extremely rapid 

change at low SAR exposures that then reached a plateau at a point where around 30% of the sperm 

population was affected. 
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 Hintzsche et al.  have recently reported sigmoid dependence on PD in the range up to 4.3 

mW/cm
2 

for non-thermal effects of MW on mitotic spindle in human-hamster hybrid cells 

(Hintzsche, Jastrow et al. 2011). 

 Sun et al. have investigated the effects of exposure to a 1.8-GHz radiofrequency radiation 

(RFR) at different intensities on epidermal growth factor (EGF) receptor clustering and 

phosphorylation in human amniotic (FL) cells (Sun, Shen et al. 2012). The results showed that 

exposure to RFR at specific absorption rate (SAR) of 0.5, 1.0, 2.0, or 4.0 W/kg for 15 min 

significantly induced EGF receptor clustering and enhanced phosphorylation of the tyrosine-1173 

residue in FL cells. The RFR effect displayed a sigmoid-dependence on SAR with a prominent 

plateau in the range of 0.5-4 W/kg and a threshold below 0.5 W/kg. 

 It should be mentioned that almost all biophysical mechanisms, which have previously been 

proposed to account for NT MW effects, predict thresholds in dependence of these effects in 

intensity (Grundler, Jentzsch et al. 1988; Golant 1989; Iskin 1990; Devyatkov, Golant et al. 1994; 

Golo 2005; Matronchik and Belyaev 2008). 

To conclude, since 1970, there have been numerous reports of biological effects that show 

thresholds, sigmoid dependence of the NT MW effects on intensity and also “power windows”, that 

is, regions of intensity that cause changes surrounded by higher and lower intensities that show no 

effects from exposure. These results mean that: (i) lower intensity is not necessarily less bioactive, 

or less harmful;(ii)the NT effects may be observed at intensities above thresholds which are very 

close to background levels and similar to intensities from base stations. 

 

 

IV.  DOSE AND DURATION OF EXPOSURE 

 

So far, the “dose” (accumulated absorbed energy that is measured in radiobiology as the 

dose rate multiplied by exposure time) is not adopted for the MW exposures and PD or SAR (dose 

rate analog in radiobiology) is usually used for guidelines. To what degree SAR/PD can be applied 

to the nowadays NT MW chronic exposures is not exactly known and the current state of research 

demands reevaluation of the safety standards (Grigoriev, Nikitina et al. 2005). 

Based on mechanistic consideration of the NT MW effects, Frey has suggested that the toxicology 

model used by investigators was not the appropriate model on which to design MW experiments 

(Frey 1993).  With chemical substance in a toxicology model, a dose-response relationship is 

usually observed: the greater the dose, the greater the effect. In analogy with toxicology, MW 

experiments tended to be designed with high doses and with little regard for other parameters such 
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as modulation and frequency. This might be one reason why many MW studies yielded so little 

useful information (Frey 1993). 

 The role of exposure duration in combination with dose rate/SAR for appearance and 

persistence of the NT MW effects have been analyzed by many research groups using various end-

points. 

 Koveshnikova et al. exposed rats to pulsed MW (carrier frequency 3 GHz, pulse repetition 

400 Hz, rectangular pulses of 2 s, power flux density , PD, of 100, 500 and 2500 W/cm2),  

during 60 days, 12 h/daily (Koveshnikova and Antipenko 1991) (is a determining factor 1991b). 

Chromosomal abreactions  (CA) were analyzed in hepatocytes.  Exposure was performed at three 

arrays of pulses so that 16, 29 or 48 arrays of pulses per 1 min were generated. The ratio of the 

obtained doses per animal was 1 : 1.8 : 3, correspondingly. Increased level of CA was generally 

observed at PD > 100 W/cm
2
. Importantly, the differences between PD disappeared when the dose 

per animal increased. In particular, even the PD of 100 W/cm2 induced CA at higher absorbed 

doses. These data support the notion that the absorbed dose may be an important parameter for 

estimation of risks. 

Bozhanova with co-authors reported that the effect of cellular synchronization induced by 

NT MW depended on duration of exposure and PD (Bozhanova, Bryukhova et al. 1987). The 

dependence on duration of exposure fitted to exponential function. The important observation was 

that in order to achieve the same synchronization of cells, the decrease in PD could be compensated 

by the increase in the duration of exposure. 

MW exposure of E. coli cells and rat thymocytes at PDs of 10
-5

-10
-3

 W/cm
2
 resulted in 

significant changes in chromatin conformation if exposure was performed at resonance frequencies 

during 5-10 min (Belyaev, Alipov et al. 1992; Belyaev, Shcheglov et al. 1992; Belyaev and 

Kravchenko 1994). Decrease in the MW effects due to lowering the PD by orders of magnitude 

down to 10
-14

-10
-17

 W/cm
2 

could be compensated by several-fold increase of exposure time to 20-40 

min (Belyaev, Alipov et al. 1994). At the relatively longer duration of exposure, more then 1 h, and 

the lowest PD of 10
-19

 W/cm
2
, the same effect was induced as at highest PDs and shorter durations 

(Belyaev, Alipov et al. 1994). 

Kwee and Raskmark analyzed effects of MW at 960 MHz and various SARs, 0.021, 0.21, 

and 2.1 mW/kg on proliferation of human epithelial amnion cells (Kwee and Raskmark 1998). 

These authors found linear correlations between exposure time to MW at 0.021 and 2.1 mW/kg and 

the MW-induced changes in cell proliferation albeit no such clear correlation was seen at 0.21 

mW/kg. 
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 Peinnequin et al. have studied effects of 24 or 48 h MW 2.45 GHz exposure at non-thermal 

level, 5 mW/cm
2
, on apoptosis in human T-cell line Jurkat clone E6-1 (Peinnequin, Piriou et al. 

2000). MW affected Fas -, but neither butyrate- nor ceramide - induced apoptosis. This effect 

depended on exposure time and was observed only upon 48 h exposure. 

 Croft et al. have tested twenty-four subjects participated in a single-blind fully 

counterbalanced cross-over design, where both resting EEG and phase-locked neural responses to 

auditory stimuli were measured while a mobile phone (MP) was either operating or turned off 

(Croft, Chandler et al. 2002). MP exposure altered resting EEG, decreasing 1-4 Hz activity (right 

hemisphere sites), and increasing 8-12 Hz activity as a function of exposure duration. MP exposure 

also altered early phase-locked neural responses, attenuating the normal response decrement over 

time in the 4-8 Hz band, decreasing the response in the 1230 Hz band globally and as a function of 

time, and increasing midline frontal and lateral posterior responses in the 30-45 Hz band.  The data 

have shown that active MPs affect neural function in humans and do so as a function of exposure 

duration. 

Caraglia et al. have evaluated the in vivo effect of MW-EMF in human epidermoid cancer 

KB cells (Caraglia, Marra et al. 2005). It was found that MW-EMF induced time-dependent 

apoptosis (45% after 3 h) that was paralleled by an about 2.5-fold decrease of the expression of ras 

and Raf-1 and of the activity of ras and Erk-1/2. 

Gapeyev et al. studied anti-inflammatory effect of low-intensity MW exposure (0.1 

mW/cm
2
) using the model of acute zymosan-induced footpad edema in mice (Gapeyev, Mikhailik 

et al. 2008). Single whole-body MW exposure of mice at the frequencies of 42.2, 51.8, and 65 GHz 

after zymosan injection reduced both the footpad edema and local hyperthermia. At the frequency 

of 42.2 GHz the effect had sigmoid dependence on exposure duration with a maximum at 20-80 

min. A linear dependence on the exposure duration with significantly lower increment was 

observed at a 10-fold less intensity (0.01 mW/cm
2
). However, this decrease in the effect was 

compensated by a slight increase in duration of exposure from 80 min to 120 min. 

 Recently, the negative impact of mobile phone usage on semen quality in human males was 

repeatedly found to correlate with  the duration of exposure (Agarwal, Deepinder et al. 2008; 

Agarwal, Desai et al. 2009). 

 Gerner et al. exposed human fibroblats to modulated GSM 1800 MHz at 2 W/kg (Gerner, 

Haudek et al. 2010). While short-term exposure within 2 hours did not significantly alter the 

proteome, an 8-h exposure caused a significant and reproducible increase in protein synthesis. Most 

of the proteins found to be induced were chaperones, which are mediators of protein folding. Heat-

induced proteome alterations detectable with used proteome methodology would require heating 
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greater than 1°C. Because GSM-induced heating was less than 0.15°C, a heat-related response was 

excluded. These data further supported the notion that the exposure time seems to be a critical 

factor. 

 Differentiated astroglial cell cultures were exposed for 5, 10, or 20 min to either 900 MHz 

continuous waves or 900 MHz waves modulated in amplitude at 50 Hz (Campisi, Gulino et al. 

2010). The strength of the electric field at the sample position was 10 V/m (rms). The irradiation 

conditions allowed the exclusion of any possible thermal effect. A significant increase in ROS 

levels and DNA fragmentation was found only after exposure of the astrocytes to modulated MW 

for 20 min. No evident effects were detected when shorter time intervals were used. 

Adang et al. exposed Wistar albino rats to low-level RF during 21 months to two different 

microwave frequencies and exposure modes, 2 h a day, seven days a week (Adang, Remacle et al. 

2009). After 14 and 18 months of exposure, the authors observed a significant increase in white 

blood cells and neutrophils of about 15% and 25%, respectively. Lymphocytes fell down after 18 

months of exposure with about 15% compared to the sham-exposed group. No effects were 

observed at shorter duration of exposure. Exposure may probably have worked as a trigger and 

influenced the immune system, which reacted to this stressor by increasing the percentage of 

monocytes in the peripheral blood circulation. 

Schrader et al. analysed production of spindle disturbances in FC2 cells, a human-hamster 

hybrid (A(L)) cell line, by MW with a field strength of 90 V/m at a frequency of 835 MHz 

(Schrader, Munter et al. 2008). Sigmoid dependence on time of exposure was observed with linear 

increase up to 30 min of exposure and saturation at longer exposures up to 2 h. 

Markova et al. have found that inhibitory effect of MW on the 53BP1 foci leveled off at 1h-

exposure (Markova, Malmgren et al. 2010). Human mesenchymal stem cells (MSC) and fibroblasts 

were expsosed to MW at GSM 915 MHz/UMTS 1947 MHz and SAR of 37/39 mW/kg. No further 

increase in effects was observed both in MSC and fibroblasts at prolongation of exposure to 3 h. 

This data are in agreement with previous results obtained in human peripheral blood lymphocytes 

that MW effects were the same at 1-h and 2-h exposures (Belyaev, Hillert et al. 2005; Markova, 

Hillert et al. 2005). 

Panagopoulos and Margaritis have studied the effects of different durations of a single 

(continuous), daily exposure, ranging from 1 min up to 21 min, to EMF from GSM 900 MHz 

(Global System for Mobile telecommunications) and DCS 1800 MHz (Digital Cellular System-

referred to also as GSM 1800 MHz), on the reproductive capacity of Drosophila melanogaster 

(Panagopoulos and Margaritis 2010). The insects were exposed to each type of radiation at intensity 

of about 10 W/cm
2
, corresponding to a distance of 20 or 30 cm from the antenna of a DCS 1800 or 
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a GSM 900 mobile phone handset, respectively. The results show that the reproductive capacity 

decreases almost linearly with increasing exposure duration to both GSM 900 and DCS 1800 

radiation, suggesting that short-term exposures to these radiations have cumulative effects. 

Additionally, the results show that GSM 900 MHz radiation is slightly more bioactive than DCS 

1800 MHz radiation, at the same exposure durations and under equal radiation intensities. 

In some studies, the prolonged MW exposures were associated with less prominent effects 

than shorter exposures (Nikolova, Czyz et al. 2005; Tkalec, Malaric et al. 2007; Markova, 

Malmgren et al. 2010). This type of dependence on exposure duration was explained by adaptation 

of the exposed biosystems to the MW exposure (Markova, Malmgren et al. 2010). 

Esmekaya et al.  exposed human peripheral blood lymphocyte to GSM modulated MW radiation at 

1.8 GHz and SAR of 0.21 W/kg for 6, 8, 24 and 48 h (Esmekaya, Aytekin et al. 2011). The authors 

reported morphological changes in exposed lymphocytes. Longer exposure periods led to 

destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial 

crista occurred in cells exposed to RF for 8 h and 24 h and were more pronounced in cells exposed 

for 48 h. RF exposure did not increase the temperature. The authors concluded that  the greater 

damage occurred after longer periods of exposure to NT MW. 

Tepe Çam and Seyhan have analyzed DNA damage in hair root cells of volunteers before 

and after they have used 900-MHz GSM mobile phone for 15 or 30 min.  The 900-MHz GSM 

exposure significantly increased single-strand DNA breaks in cells of hair roots close to the position 

of phone at the heads of volunteers. 30 min talking by mobile phone induced more DNA damage 

than 15 min talking (Cam and Seyhan 2012). 

Nazıroğlu et all have measured cytosolic free Ca
2+

  in human leukemia  cells during 1-24 h 

exposure to 2.45 GHz electromagnetic radiation at the average SAR of 1.63 W/kg (Naziroglu, Cig 

et al. 2012). Radiation induced  increase of cytosolic free Ca
2+ 

concentration was time-dependent 

and was highest at 24-h exposure. 

In some studies, prolonged MW exposures were associated with less prominent effects than 

shorter exposures (Nikolova, Czyz et al. 2005; Tkalec, Malaric et al. 2007; Markova, Malmgren et 

al. 2010). This type of dependence on exposure duration was accounted for adaptation of the 

exposed systems to the MW exposure. The magnitude of adaptation depends on a number of 

biological variables that will be considered elsewhere. 

In recent German study, 24 out of 60 participants were exposed to MW from base station at 

a power density of < 60 µW/m², 20 participants to 60 - 100 µW/m², and 16 participants to more 

than 100 µW/m² (Buchner and Eger 2011).  The values of the stress hormones adrenaline and 

noradrenaline grew significantly during the first 6 months after starting the GSM base station; the 
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values of the precursor substance dopamine substantially decreased in this time period. The initial 

condition was not restored even after 1.5 years. Due to the not regulable chronic difficulties of the 

stress balance, the phenylethylamine levels dropped until the end of the investigation period. These 

effects show a dose-effect relationship. 

 Recently reported general indications of a dose–response relationship between chronic 

exposure to cellular phone MW and parotid gland malignancy indicate necessity of the dose 

approach at the epidemiological level (Duan, Zhang et al. 2011). For the first time in epidemiology 

of RF-induced tumors, Cardis et al. have used estimates of radio frequency energy deposition at the 

centre of tumors in the brain as a measure of MW dose (Cardis, Armstrong et al. 2011). An 

increased risk of glioma was seen in individuals at the highest quintile of radio frequency dose, 

though reduced risks were seen in the four lower quintiles. When risk was examined as a function 

of dose received in different time windows before diagnosis, an increasing trend was observed with 

increasing MW dose (for exposures 7 years or more in the past. 

In conclusion, the data from different groups suggest that duration of exposure and dose 

may have significant role for the NT MW effects. In specially designed studies, reduction in dose 

rate/SAR could be compensated by prolongation of exposure time in order to achieve the same MW 

effect. The temporal nature of the MW effects contributes to the apparent lack of consistent results 

reported in the literature. Emerging epidemiology data indicate that the dose of MW exposure may 

correlate with the increased brain tumor risk. 

 

 

V.  TIME AFTER EXPOSURE 

 

The MW effects on E. coli cells significantly depended on the post-exposure time (Belyaev, 

Shcheglov et al. 1993; Belyaev, Alipov et al. 1994; Shcheglov, Alipov et al. 2002). This 

dependence had an initial phase of increase about 100 min post-exposure followed by a phase, 

which was close to a plateau, around 100 min. A trend to decrease in effect was observed at longer 

times up to 300 min (Belyaev, Shcheglov et al. 1993; Shcheglov, Alipov et al. 2002). 

Significant MW-induced changes in chromatin conformation were observed when rat 

thymocytes were analyzed in-between 30-60 min after exposure to MW (Belyaev and Kravchenko 

1994). This effect nearly disappeared if the cells were incubated more than 80 min between 

exposure and analysis. 

Gapeev et al. have studied dependence of the MW effect on the function of the mouse 

peritoneal neutrophils in dependence on duration of exposure at the frequency of  41.95 GHz and 
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the PD of 240 µW/cm
2
 (Gapeev, Safronova et al. 1996; Gapeyev, Safronova et al. 1997). This 

dependence had a bell-shaped form with the maximal effects at 20 - 40 min of exposure. 

In recent studies, human lymphocytes from peripheral blood of healthy and hypersensitive 

to EMF persons were exposed to NT MW from the GSM mobile phones (Belyaev, Hillert et al. 

2005; Markova, Hillert et al. 2005).  NT MW induced changes in chromatin conformation similar to 

those induced by heat shock, which remained up to 24 h after exposure. It was found in the same 

and following studies that GSM MW at the carrier frequency of 915 MHz and UMTS (Universal 

Mobile Telecommunications System) MW at 1947.4 MHz inhibited formation of 53BP1/-H2AX 

DNA repair foci and these adverse effects remained during 72 h after an 1-h exposure (Belyaev, 

Hillert et al. 2005; Markova, Hillert et al. 2005; Belyaev, Markova et al. 2009). The same group has 

reported that contrary to human fibroblast, which were able to adapt during chronic exposure to 

GSM/UMTS non-thermal MW, human stem cells did not adapt (Markova, Malmgren et al. 2010). 

Jorge-Mora et al. investigated the effects of MW 2.45 GHz radiation on the paraventricular 

nucleus (PVN) of the hypothalamus, extracted from brains of exposed rats (Jorge-Mora, Misa-

Agustino et al. 2011). Expression of c-Fos was analyzed in rats exposed once or repeatedly (ten 

times in 2 weeks) to MW at non-thermal SAR of 0.0776 and 0.301 W/kg. High SAR triggered an 

increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts 

higher than in control rats after 24 h. Repeated irradiation at 0.0776  W/kg increased cellular 

activation of PVN by more than 100% compared to animals subjected to acute irradiation and to 

repeated non-radiated repeated session control animals. The results suggest that the time of 

exposure to single or repeated doses of NT MW is a determining factor, though possibly not the 

only factor, in establishing the power levels that may produce a response. 

Lu et al. have demonstrated that reactive oxygen species (ROS) plays an important role in the 

process of apoptosis in human peripheral blood mononuclear cell (PBMC), which is induced by the 

exposure to 900 MHz radiofrequency electromagnetic at the SAR of 0.4W/kg when the exposure 

lasts longer than two hours (Lu, Huang et al. 2012). 

The data indicate that there is a time window for observation of the NT MW effects, which 

may be dependent on endpoint measured, cell type, duration and PD of exposure.   

 

 

VI.  COHERENCE TIME 

 

MW exposure of L929 fibroblasts was performed by the group of Litovitz (Litovitz, Krause 

et al. 1993). MW at 915 MHz modulated at 55, 60, or 65 Hz approximately doubled ornithine 
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decarboxylase (ODC) activity after 8 h. Switching the modulation frequency from 55 to 65 Hz at 

coherence times of 1.0 s or less abolished enhancement, while times of 10 s or longer provided full 

enhancement. These results suggested that the microwave coherence effects are remarkably similar 

to those observed previously with extremely low frequency (ELF) magnetic fields by the same 

authors. 

 

 

VII.  INTERMITTENCE 

 

Diem and colleagues exposed cultured human diploid fibroblasts and cultured rat granulosa 

cells to intermittent and continuous MW (1800 MHz; SAR 1.2 or 2 W/kg; different modulations; 

during 4, 16 and 24 h; intermittent 5 min on/10 min off or continuous exposure) (Diem, Schwarz et 

al. 2005). Comet assay was applied to analyze DNA single- and double-strand breaks. MW-induced 

effects occurred after 16 h exposure in both cell types and after different mobile-phone 

modulations. The intermittent exposure showed a stronger effect than continuous exposure. 

Remondini et al. analyzed changes in gene expression in human HL-60 leukemia cells using 

gene microarrays (Remondini, Nylund et al. 2006). Cells were exposed to MW (SAR 1.0-1.3 W/kg, 

1800 MHz DTX mode, 24 h exposure) either continuously or intermittently, 5 min ON/5 min OFF. 

Gene expression was affected by intermittent exposure but not continuous exposure. 

Elhag et al. investigated effect of near field EMR from GSM mobile phones on the oxidant and 

antioxidant status in rats (Elhag, Nabil et al. 2007). Rats were subjected to either intermittent 

exposure (15 min/day for four days) or acute exposure for 1 h. Significant drop in the plasma 

concentration of vitamin C, vitamin E, vitamin A and reduced glutathione (GSH) was observed in 

both exposed groups as compared to controls. EMR exposure of rats produced a significant 

decrease in catalase (CAT) and superoxide dismutase (SOD) activities, with the values of these 

activities for acute-exposure group is significantly lower than those of intermittent exposure. The 

authors concluded that the effects of acute exposure to mobile phones on the rat's antioxidant status 

is significantly higher than those of intermittent exposure of the same type of radiation. 

Chavdoula et al used a 6-min daily exposure of dipteran flies, Drosophila melanogaster, to 

GSM-900MHz (Global System for Mobile Telecommunications) mobile phone electromagnetic 

radiation (EMR), to compare the effects between the continuous and four different intermittent 

exposures of 6 min total duration on the insect's reproductive capacity as well as on the induction of 

apoptosis (Chavdoula, Panagopoulos et al. 2010). It was found that intermittent exposure, similar to 

continuous exposure, decreases the reproductive capacity and alters the actin-cytoskeleton network 



19 
 

of the egg chambers, another known aspect of cell death, and that this effect is due to DNA 

fragmentation. Intermittent exposures with 10-min intervals between exposure sessions proved to 

be almost equally effective as continuous exposure of the same total duration, whereas longer 

intervals between the exposures seemed to allow the organism the time required to recover and 

partly overcome the above-mentioned effects of the GSM exposure. 

 

 

VIII.  MODULATION 

 

Several types of modulations used in mobile communication have previously been reviewed  

(Foster and Repacholi 2004; Blackman 2009; Juutilainen, Hoyto et al. 2011). In particular, the 2G 

signals use the Gaussian Minimum Shift Keying (GMSK) modulation, have a high coherence, 

extremely low frequency amplitude modulation spectra, high crest factor (pulsed signal) and a 

power regulation with an update in the order of seconds. In contrast, the 3G Wideband Code-

Division Multiple Access (WCDMA) uses essentially Quadrature Phase Shift Keying (QPSK) 

modulation, has a low coherence and a broad-band extremely low frequency amplitude modulation 

spectrum. 

While considering effect of modulation, all other parameters, which are important for 

appearance of biological effects induced by NT MW, should be taken into account. In particular it is 

useless to include in analysis the papers where no effects of NT MW were detected at all because 

usually these studies do not scan the parameters of exposure in wide range to enable detecting the 

NT MW effects. Even more importantly is to analyze separately different types of modulations 

because each type may result in its own specific effect. When such approach is used, clear evidence 

is emerging for the effects of specific modulations. For example, among three studies on cancer-

relevant non-genotoxic endpoints,  biological effects (apoptosis, altered cell proliferation, lipid 

peroxidation) were induced by GSM modulated signal but not by a CW signal (Juutilainen, Hoyto 

et al. 2011). All these studies involved combined exposure to RF fields and other agents, and found 

GSM-modulation-specific effects on apoptosis. Another example is increased power in the alpha 

band (8–12 Hz) of EEG, which has been consistently seen in several studies most of which have 

used GSM-type modulation and have found that signals with pulse modulation are more 

biologically active than CW fields, or that signals with higher degree of modulation (e.g., handset-

like signals) are more biologically active than signals with lower degree of modulation (e.g., base 

station-like signals). Studies that have used only GSM-type signals have provided additional 

evidence for effects of modulated RF signals on human brain functions (van Rongen, Croft et al. 
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2009). Overall, the consistency of the positive findings indicates that there may be reproducible 

modulation-specific effects on the human central nervous system (Juutilainen, Hoyto et al. 2011). 

This result is consistent with the well-known notion that properly modulated RF may be a useful 

tool in experiments directed at understanding nervous system function (Frey 1967). 

Using aforementioned approach, it became clear that significant body of papers where NT 

MW effects were observed and modulated and unmodlatlated signals were carefully compared 

revealed the differences. There is strong experimental evidence for the role of modulation in the 

diverse biological effects of NT MW both in vitro and in vivo (Lin-Liu and Adey 1982; Byus, 

Lundak et al. 1984; Dutta, Subramoniam et al. 1984; Byus, Kartun et al. 1988; Dutta, Ghosh et al. 

1989; Veyret, Bouthet et al. 1991; Gapeev, Iakushina et al. 1997; Litovitz, Penafiel et al. 1997; 

Penafiel, Litovitz et al. 1997; Persson, Salford et al. 1997; d'Ambrosio, Massa et al. 2002; Huber, 

Treyer et al. 2002; Markkanen, Penttinen et al. 2004; Huber, Treyer et al. 2005). Examples include 

different types of modulation such as amplitude-, speech and phase modulations:  (i) Amplitude 

modulation at 16 Hz, but not 60 Hz or 100 Hz, of a 450-MHz MW increased activity of ODC 

(Byus, Kartun et al. 1988). (ii) Speech-modulated 835-MHz MW produced no effect on ODC as 

compared to the typical signal from a TDMA (Time Division Multiple Access) digital cellular 

phone (Penafiel, Litovitz et al. 1997). (iii) Phase-modulated GSM-1800 MW (Gaussian Minimum 

Shift Keying, GMSK) at 1.748 GHz  induced micronuclei in human lymphocytes while CW MW 

did not (d'Ambrosio, Massa et al. 2002). 

 Normal human lymphocytes were exposed for 5 days to continuous wave (CW) or pulsed 

wave (PW) 2450-MHz radiation at non-heating (37 degrees C) and various heating levels 

(temperature increases of 0.5, 1.0, 1.5, and 2 degrees C) (Czerska, Elson et al. 1992). The pulsed 

exposures involved 1-microsecond pulses at pulse repetition frequencies from 100 to 1,000 pulses 

per second at the same average SAR levels as the CW exposures. At non-heating levels, CW 

exposure did not affect lymphoblastoid transformation. At heating levels both conventional and CW 

heating enhanced transformation to the same extent and correlate with the increases in incubation 

temperature. PW exposure enhanced significantly transformation at non-heating levels. At heating 

levels PW exposure enhanced transformation to a greater extent than did conventional or CW 

heating. Authors concluded that PW 2450-MHz radiation acts differently on the process of 

lymphoblastoid transformation in vitro compared with CW 2450-MHz radiation at the same 

average SARs. 

 Bolshakov and Alexeeev used microelectrode and voltage-clamp techniques to record 

spontaneous electrical activity and ionic currents of Lymnea stagnalis neurons during exposure to a 

900-MHz field in a waveguide-based apparatus (Bolshakov and Alekseev 1992). The field was 
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pulse-modulated at repetition rates ranging from 0.5 to 110 pps, or it was applied as a continuous 

wave (CW). When subjected to pulsed waves (PW), rapid, burst-like changes in the firing rate of 

neurons occurred at SARs of a few W/kg. If the burst-like irregularity was present in the firing rate 

under control conditions, irradiation enhanced its probability of occurrence. The effect had a 

threshold SAR near 0.5 W/kg. CW radiation had no effect on the firing rate pattern at the same 

SAR. Thus, the effect was dependent on modulation. Mediator-induced, current activation of 

acetylcholine, dopamine, serotonin, or gamma-aminobutyric-acid receptors of the neuronal soma 

was not altered during CW or PW exposures and, hence, could not have been responsible for the 

bursting effect. 

 Gapeev and co-authors studied production of reactive oxygen species (ROS) in isolated 

peritoneal neutrophils of mice using a model of synergistic reaction of calcium ionophore A23187 

and phorbol ester PMA (Gapeev, Iakushina et al. 1997; Gapeyev, Yakushina et al. 1998).  MW 

exposure at 41.95 GHz, continuous wave mode and 50 W/cm
2
,
 
inhibited ROS production. MW 

modulated with the frequency of 1 Hz resulted in stimulation of the synergistic reaction. 

Modulation frequencies of 0.5, 2, 4, and 8 Hz did not cause significant effects, and modulation 

frequencies of 0.1, 16, and 50 Hz inhibited the synergistic reaction. 

In other study, Gapeev et al. analyzed acute zymosan-induced paw edema in mice (Gapeyev, 

Mikhailik et al. 2009). MW exposure of animals at the PD of 0.1- 0.7 mW/cm
2 

and some 

“effective” frequencies in the range of 42-43 GHz decreased the paw edema. Application of 

different modulation frequencies from the range of 0.03–100 Hz to MW exposure at the effective 

carrier frequency of 42.2 GHz did not lead to considerable changes in the effect. In contrast, 

modulation of MW at the ‘‘ineffective’’ carrier frequencies of 43.0 and 61.22 GHz by frequencies 

from the ranges of 0.07–0.1 and 20–30 Hz resulted in a maximal anti-inflammatory effects. The 

results suggested a complex dependence of the anti-inflammatory action of low-intensity MW on 

carrier and modulation frequencies. 

Capri et al. evaluated the nonthermal effects of both a 900 MHz GSM signal and a 900 MHz 

CW RF field at low SARs (70–76 mW/kg average) on human peripheral blood mononuclear cells 

(PBMCs) in vitro (Capri, Scarcella et al. 2004). Data obtained from cells exposed to a GSM-

modulated RF field showed a slight decrease in cell proliferation when PBMCs were stimulated 

with the lowest mitogen concentration and a slight increase in the number of cells with altered 

distribution of phosphatidylserine across the membrane. Data obtained from CW-exposed cultures 

showed no difference with respect to sham-exposed cultures in any of the end points studied. 

Huber with coauthors investigated effects of MW similar to those used in mobile 

communication, a “base-station-like” and a “handset-like” signal (10 g tissue-averaged spatial peak-
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SAR of 1 W/kg for both conditions), on waking regional cerebral blood flow (rCBF) in 12 healthy 

young men (Huber, Treyer et al. 2005). The effect depended on the spectral power in the amplitude 

modulation of the carrier frequency such that only “handset-like” MW exposure with its stronger 

low-frequency components but not the “base-station-like” MW exposure affected rCBF. This 

finding supported previous observations of these authors (Huber, Treyer et al. 2002) that pulse 

modulation of MW is of importance for changes in the waking and sleep EEG, and substantiated the 

notion that pulse modulation is crucial for MW-induced alterations in brain physiology. 

Markkanen et al. exposed cdc48-mutated Saccharomyces cerevisiae yeast cells to 900 or 

872 MHz MW, with or without exposure to ultraviolet (UV) radiation, and analyzed apoptosis 

(Markkanen, Penttinen et al. 2004).  Amplitude modulated (217 pulses per second) MW 

significantly enhanced UV induced apoptosis in cells, but no effect was observed in cells exposed 

to unmodulated fields at the identical time-average SAR of 0.4 W/kg that was lower than the 

ICNIRP safety standards. 

Persson and colleagues studied effects of MW of 915 MHz as CW and pulse-modulated 

with different pulse power and at various time intervals on permeability of the blood-brain barrier 

(BBB) in Fischer 344 rats (Persson, Salford et al. 1997). Albumin and fibrinogen were 

demonstrated immunochemically and classified as normal versus pathological leakage. The CW-

pulse power varied from 0.001 W to 10 W and the exposure time from 2 min to 960 min. The 

frequency of pathological rats significantly increased in all exposed rats. Grouping the exposed 

animals according to the level or specific absorption energy (J/kg) gave significant difference in all 

levels above 1.5 J/kg. The exposure was 915 MHz MW either pulse modulated at 217 Hz with 0.57 

ms pulse width, at 50 Hz with 6.6 ms pulse width, or CW. The frequency of pathological rats was 

significantly higher in MW-exposed groups than in controls and the frequency of pathological rats 

after exposure to pulsed radiation was significantly less than after exposure to CW. 

In a study by Lуpez-Martin et al. (Lopez-Martin, Brogains et al. 2009), GSM-exposed 

picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in 

the brain, in comparison to picrotoxin-treated rats exposed to an equivalent dose of unmodulated 

radiation. Neither MW exposure caused tissue heating, so thermal effects could be ruled out. The 

most marked effects of GSM MW on c-Fos expression in picrotoxin-treated rats were observed in 

limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central 

lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed 

to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. 

These results suggested a specific effect of the pulse GSM modulation on brain activity of a 

picrotoxin-induced seizure-proneness rat model. 
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Luukkonen et al. investigated effects of MW at 872 MHz and relatively high SAR value (5 

W/kg) on intracellular reactive oxygen species (ROS) production and DNA damage in human SH-

SY5Y neuroblastoma cells. The experiments also involved combined exposure to MW and 

menadione, a chemical inducing intracellular ROS production and DNA damage. Both CW and a 

pulsed signal similar to that used in GSM mobile phones were used. Exposure to the CW radiation 

increased DNA breakage in comparison to the cells exposed only to menadione. Comparison of the 

same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 

60 min after the end of exposure. No effects of the GSM-like modulated signal were seen on either 

ROS production or DNA damage. 

Hinrikus et al. (Hinrikus, Bachmann et al. 2008) evaluated the effects of MW (450 MHz) 

pulse-modulated at the frequencies of 7, 14 and 21 Hz on human electroencephalographic (EEG) 

rhythms. The field power density at the scalp was 0.16 m W/cm
2
. Modulated microwaves caused an 

increase in the average EEG alpha (17%) and beta (7%) power but the theta rhythm remained 

unaffected. Increases in the EEG alpha and beta power were statistically significant during the first 

half-period of the exposure interval (30 s) at the modulation frequencies of 14 and 21 Hz. The 

authors concluded that the effect of the 450-MHz MW modulated at 7, 14 and 21 Hz varies 

depending on the modulation frequency. 

Hoyto et al. exposed human SH-SY5Y neuroblastoma and mouse L929 fibroblast cells to 

MW (SAR of 5 W/kg) at 872 MHz using continuous-waves (CW) or a modulated GSM-like signal 

under isothermal conditions (Hoyto, Luukkonen et al. 2008). Menadione was used to induce 

reactive oxygen species, and tert-butylhydroperoxide (t-BOOH) was used to induce lipid 

peroxidation. Two statistically significant differences related to MW exposure were observed: Lipid 

peroxidation induced by t-BOOH was increased in SH-SY5Y (but not in L929) cells, and 

menadione-induced caspase 3 activity was increased in L929 (but not in SH-SY5Y) cells. Both 

differences were statistically significant only for the GSM-modulated signal. 

Franzellitti et al. exposed human trophoblast HTR-8/SVneo cells to MW at 1.8 GHz CW 

and differently modulated GSM signals (GSM-217Hz, (speaking only): and GSM-Talk (34% of 

speaking and 66% of hearing):) during 4 - 24 h (Franzellitti, Valbonesi et al. 2008).  The inducible 

HSP70C transcript was significantly enhanced after 24 h exposure to GSM-217 Hz signals while 

being reduced after 4 and 16 h exposure to GSM-Talk signal. In another study of the same group , 

HTR-8/SVneo cells were exposed for 4, 16 or 24 h to 1.8 GHz continuous wave (CW) and different 

GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min 

field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand 

breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-
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modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters 

in trophoblast cells after 16 and 24 h of exposure, while the un-modulated CW was ineffective 

(Franzellitti, Valbonesi et al. 2010). 

Only CW RF resulted in statistically significant effect on immune system of the exposed rats 

(Campisi, Gulino et al. 2010). In this study, primary rat neocortical astroglial cell cultures were 

exposed to MW for 5, 10, or 20 min to either 900 MHz continuous waves or 900 MHz waves 

modulated MW in amplitude at 50 Hz using a sinusoidal waveform and 100% modulation index. 

The strength of the electric field (rms value) at the sample position was 10 V/m. A significant 

increase in ROS levels and DNA fragmentation was found only after exposure of the astrocytes to 

modulated EMF for 20 min. No evident effects were detected when shorter time intervals or 

continuous waves were used. The irradiation conditions allowed the exclusion of any possible 

thermal effect. The results show the importance of the amplitude modulation in the interaction 

between EMF and neocortical astrocytes (Campisi, Gulino et al. 2010). 

There are studies where similar effects of modulated and CW MW were observed. Adang et 

al. exposed Wistar albino rats to low-level CW and pulse-amplitude modulated RF during 21 

months at 970 MHz (Adang, Remacle et al. 2009). Similar effects on immune system were 

observed in both groups. 

Significant amount of in vivo studies under varying parameters of exposure (intensity, 

frequency, exposure time, modulation, intermittence) have been performed in Russia/Soviet Union 

and published in Russian. Retrospective analysis of 52 Russian/Soviet in vivo studies with animals 

(mice, rats, rabbits, guinea pigs) on chronic exposure to MW has recently been published 

(Grigoriev, Stepanov et al. 2003). In these studies, various endpoints were measured up to 4 month 

of chronic exposure including analysis of: weight of animal body, histological analysis and weight 

of tissues, central nervous system, arterial pressure, blood and hormonal status, immune system, 

metabolism and enzymatic activity, reproductive system, teratogenic and genetic effects. Based on 

their analysis, the authors concluded that: “exposure to modulated MW resulted in bioeffects, which 

can be different from the bioeffects induced by CW MW; exposure to modulated MW at low 

intensities (non-thermal levels) could result in development of unfavorable effects; direction and 

amplitude of the biological response to non-thermal MW, both in vitro and in vivo, depended on 

type of modulation; often, but not always, modulated MW resulted in more pronounced bioeffects 

than CW MW; the role of modulation was more pronounced at lower intensity levels”.  

One review of the Russian/Soviet studies on the role of modulation on MW effects is 

available in English (Pakhomov and Murphy 2000). The authors conclude that “a number of good-

quality studies have convincingly demonstrated significant bioeffects of pulsed MW. Modulation 
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often was the factor that determined the biological response to irradiation, and reactions to pulsed 

and CW emissions at equal time-averaged intensities in many cases were substantially different”. 

Since that time, more studies have been published in Russian which show the role of modulation in 

experiemnts with animals  (Dolgacheva, Semenova et al. 2000; Pashovkina and Akoev 2000; 

Pashovkina and Akoev 2001; Pashovkina and Akoev 2001; Akoev, Pashovkina et al. 2002). 

In conclusion, significant amount of in vitro and in vivo studies from different research 

groups, although not universally reported, clearly indicated dependence of the NT MW effects on 

modulation. 

 

 

IX.  POLARIZATION 

 

 Polarization is a property of electromagnetic waves that describes the orientation of their 

oscillations versus direction of propagation. In most cases, electromagnetic wave propagates in free 

space as a transverse wave - the polarization is perpendicular to the wave's direction of propagation. 

The electric field may be oriented in a single direction (linear polarization), or it may rotate as the 

wave propagates (circular or elliptical polarization). In the latter cases, the oscillations can rotate 

either towards the right (right-handed polarization) or towards the left (left-handed polarization) in 

the direction of propagation.  

 The effects of circularly polarized (CP) MW were studied in E. coli cells at the frequencies 

from two frequency windows (resonances) that were identified using linearly polarized (LP) MW, 

within the frequency ranges of 51.62-51.84 GHz and 41.25-41.50 GHz (Belyaev, Alipov et al. 

1992; Belyaev, Shcheglov et al. 1992). At the resonance frequency of 51.76 GHz, right-handed CP 

MW inhibited repair of X-ray-induced DNA damages (Belyaev, Alipov et al. 1992; Belyaev, 

Shcheglov et al. 1992). In contrast to right-handed polarization, left-handed CP MW had virtually 

no effect on the DNA repair, while the efficiency of LP MW was in-between of two circular 

polarizations. Inversion in effectiveness of circular polarizations was observed at another resonance 

frequency, 41.32 GHz. In contrast to the frequency of 51.76 GHz, left-handed CP MW at 41.32 

GHz significantly inhibited DNA repair, while right polarization was almost ineffective. MW of the 

same CP affected cells at several frequencies tested within each resonance, alternative CP being 

almost ineffective (Belyaev, Alipov et al. 1992; Belyaev, Shcheglov et al. 1992; Belyaev, 

Shcheglov et al. 1992). Therefore, specific sign of effective CP, either left- or right-, was the 

attribute of each resonance. Two different types of installations, based on either spiral waveguides 

(Belyaev, Shcheglov et al. 1992) or quarter-wave mica plates (Belyaev, Alipov et al. 1992; Belyaev, 

http://en.wikipedia.org/wiki/Linear_polarization
http://en.wikipedia.org/wiki/Circular_polarization
http://en.wikipedia.org/wiki/Elliptical_polarization
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Transverse_wave
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Shcheglov et al. 1992; Shcheglov, Belyaev et al. 1997; Ushakov, Shcheglov et al. 1999; Ushakov, 

Alipov et al. 2005), were used to produce CP MW. Similar results were observed regardless the 

way of producing the MW of different polarizations. 

Pre-irradiation of E. coli cells to X-rays inverted the sign of effective polarization (Belyaev, 

Alipov et al. 1992; Belyaev, Shcheglov et al. 1992). This inversion was observed for two different 

resonances, 41.32 and 51.76 GHz. Neither resonance frequencies, nor half-widths of the resonance 

changed during the inversions in effective CPs. The effects of left- and right-handed CP MW 

become the same at 50 cGy (Belyaev, Alipov et al. 1992). At this dose, about one single stranded 

DNA break per haploid genome was induced. X-ray-induced DNA breaks result in relaxation of the 

supercoiled DNA-domains. It is known that the majority of DNA in living cells has a right-handed 

helicity (B-form) but a minor part, in order of 1 %, may alternate from the B-form with the form of 

left-handed helix (Z-form). Supercoiling is connected with transitions between right B-form to left 

Z-form in these DNA sequences. Therefore, the data suggested that difference in biological effects 

of polarized MW might be connected with DNA helicity and supercoiling of DNA-domains. 

Supercoiling of DNA-domains is changed during cell cycle because of transcription, 

replication, repair, and recombination. It can also be changed by means of DNA-specific 

intercalators such as ethidium bromide (EtBr). EtBr changes supercoiling and facilitates the 

transition of DNA sequences from Z-form to B-form. Preincubation of E. coli AB1157 cells with 

EtBr inverted the effective polarization at the resonance frequency of 51.755 GHz and right-handed 

MW became more effective than left polarization (Ushakov, Shcheglov et al. 1999). EtBr changed 

the supercoiling of DNA-domains starting at a concentration of 1 g/ml as measured with the 

AVTD in different cell types including E. coli (Belyaev, Shcheglov et al. 1996; Belyaev, Alipov et 

al. 1997; Belyaev, Eriksson et al. 1999). These data provided further evidence that DNA may be a 

target for the NT MW effects. 

The effects of MW on conformation of nucleoids in E. coli cells have recently been studied 

at the power flux density of 100 µW/cm
2 

(Ushakov, Alipov et al. 2006). Linearly polarized MW 

resulted in significant effects within specific frequency windows of resonance type in the range of 

51-52 GHz. The distances between frequency windows were about 55-180 MHz. Only one of the 

two possible circular polarizations, left-handed or right-handed, was effective at each frequency 

window. The sign of effective circular polarization alternated between frequency windows. 

 While most data on the role of polarization in MW effects on chromatin have been obtained 

by the same research group (Belyaev, Alipov et al. 1992; Belyaev, Shcheglov et al. 1992; Belyaev, 

Shcheglov et al. 1992; Alipov, Belyaev et al. 1993; Belyaev, Alipov et al. 1993; Belyaev, 

Shcheglov et al. 1993; Belyaev and Kravchenko 1994; Shcheglov, Belyaev et al. 1997; Ushakov, 
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Shcheglov et al. 1999; Ushakov, Alipov et al. 2005; Ushakov, Alipov et al. 2006), recent data of 

others corroborated our findings at least partially (Shckorbatov, Pasiuga et al. 2009).  These authors 

analyzed the condensation of chromatin in human buccal epithelium cells and human fibroblasts by 

the method of vital indigo carmine staining. MW induced chromatin condensation in dependence on 

polarization (Shckorbatov, Pasiuga et al. 2009). The same research group investigated the effects 

influence of linear and left-handed and right-handed elliptically polarized MW at 36.65 GHz on 

chromatin in human fibroblast nuclei (Shckorbatov, Pasiuga et al. 2010). Microwave irradiation at 

10 and 100 μW/cm
2 

induced chromatin condensation. The right-handed elliptically polarized 

radiation was more active than the left-handed polarization. 

 Obviously, the difference in effects of right- and left polarizations could not be explained by 

the heating or by the mechanism dealing with “hot-spots” due to unequal SAR distribution. The 

data about the difference in effects of differently polarized MW, the inversion of effective circular 

polarization between resonances and after irradiation of cells with X-rays and incubation with EtBr 

provided strong evidence for the non-thermal mechanisms of MW effects. These data suggested 

chiral asymmetry in the target for the NT MW effects, one of which is presumably chromosomal 

DNA (Belyaev, Alipov et al. 1992), and selection rules on helicity if quantum-mechanical approach 

is applied (Belyaev, Shcheglov et al. 1992). 

 Lai and Singh have consistently reported that circularly polarized MW exposure at 2450 

MHz induced DNA damage in brain cells of the exposed rats (Lai and Singh 1995; Lai and Singh 

1996; Lai and Singh 1997). Replication studies have also tested circularly polarized MW exposure 

at 2450 MHz and no induced DNA damage was reported (Malyapa, Ahern et al. 1997; Malyapa, 

Ahern et al. 1998; Lagroye, Anane et al. 2004). All these replication studies have used another 

exposure system. However, handedness of circular polarization has not been described neither in 

original study, no in replications. If the handedness was different between studies it could 

reasonably account for inconsistency. 

 In some studies, MW of circular polarization with undefined  handedness were used, but the 

obtained effects were not compared with alternative circular polarization or linear polarization 

(Bartsch, Kupper et al. 2010). 

 

 

XI.  ELECTROMAGNETIC ENVIRONMENT 

 

It is very likely that background EMF might be of importance for the MW effects. This 

hypothesis is based on the experimental observations that SMF, ELF magnetic fields, and MW at 
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low intensities induced similar effects in cells under specific conditions of exposure (Belyaev, 

Alipov et al. 1999; Belyaev, Shcheglov et al. 2000; Belyaev and Alipov 2001; Binhi, Alipov et al. 

2001; Belyaev, Hillert et al. 2005). Despite very little has been achieved for mechanistic 

explanation of such effects, there are attempts to consider the effects of EMF in a wide frequency 

range in the frames of the same physical models (Chiabrera, Bianco et al. 1991; Matronchik, Alipov 

et al. 1996; Chiabrera, Bianco et al. 2000; Binhi 2002; Panagopoulos, Karabarbounis et al. 2002; 

Matronchik and Belyaev 2005; Matronchik and Belyaev 2008). 

Litovitz and colleagues found that the ELF magnetic noise inhibited the effects of MW on 

ODC in L929 cells (Litovitz, Penafiel et al. 1997). The ODC enhancement was found to decrease 

exponentially as a function of the noise root mean square amplitude. With 60 Hz amplitude-

modulated MW, complete inhibition was obtained with noise levels at or above 2 T. With the 

DAMPS (Digital Advanced Mobile Phone System) cellular phone MW, complete inhibition 

occurred with noise levels at or above 5 T. Further studies by the same group revealed that the 

superposition of ELF noise inhibited hypoxia de-protection caused by long term repeated exposures 

of chick embryos to MW (Di Carlo, White et al. 2002). 

The effect of a magnetic noise on microwave-induced spatial learning deficit in the rat was 

investigated by Lai (Lai 2004). Rats were exposed to MW (2450 MHz CW, PD 2 mW/cm
2
, average 

whole-body SAR 1.2 W/kg) alone or in combination with noise exposure (60 mG). Microwave-

exposed rats had significant deficit in learning. Exposure to noise alone did not significantly affect 

the performance of the animals. However, simultaneous exposure to noise significantly attenuated 

the microwave-induced spatial learning deficit. The author concluded that simultaneous exposure to 

a temporally incoherent magnetic field blocks MW-induced spatial learning and memory deficits in 

the rat (Lai 2004). 

Lai and Singh studied combined effects of a temporally incoherent magnetic noise (45 mG) 

and MW (CW 2450 MHz, PD 1 mW/cm
2
, average whole-body SAR of 0.6 W/kg) in rat brain cells 

(Lai and Singh 2005). MW exposure induced significant DNA breakages as measured with both 

neutral and alkaline comet assays. Exposure to noise alone did not significantly affect cells. 

However, simultaneous noise exposure blocked the MW-induced effects. 

 Burch et al. have analyzed the relationship between cellular telephone use and excretion of 

the melatonin metabolite 6-hydroxymelatonin sulfate (6-OHMS) in two populations of male electric 

utility workers (Study 1, n=149; Study 2, n=77) (Burch, Reif et al. 2002). Participants collected 

urine samples and recorded cellular telephone use over 3 consecutive workdays. Personal 60-Hz 

magnetic field (MF) and ambient light exposures were characterized on the same days. A repeated 

measures analysis was used to assess the effects of cellular telephone use, alone and combined with 
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MF exposures, after adjustment for age, participation month and light exposure. No change in 6-

OHMS excretion was observed among those with daily cellular telephone use >25 min in Study 1 

(5 worker-days). Study 2 workers with >25 min cellular telephone use per day (13 worker-days) 

had lower creatinine-adjusted mean nocturnal 6-OHMS concentrations (p=0.05) and overnight 6-

OHMS excretion (p=0.03) compared with those without cellular telephone use. There was also a 

linear trend of decreasing mean nocturnal 6-OHMS/creatinine concentrations (p=0.02) and 

overnight 6-OHMS excretion (p=0.08) across categories of increasing cellular telephone use. A 

combined effect of cellular telephone use and occupational 60-Hz MF exposure in reducing 6-

OHMS excretion was also observed in Study 2. The authors concluded that exposure-related 

reductions in 6-OHMS excretion were observed in Study 2, where daily cellular telephone use of 

>25min was more prevalent. Prolonged use of cellular telephones may lead to reduced melatonin 

production, and elevated 60-Hz MF exposures may potentiate the effect. 

 Yao and colleagues investigated the influence of the GSM-like MW at 1.8 GHz on DNA 

damage and intracellular reactive oxygen species (ROS) formation in human lens epithelial cells 

(hLECs) (Yao, Wu et al. 2008).  DNA damage examined by alkaline comet assay was significantly 

increased after 3 W/kg and 4 W/kg radiation, whereas the double-strand breaks (DSB) evaluated by 

-H2AX foci were significantly increased only after 4 W/kg radiation. Significantly elevated 

intracellular ROS levels were detected in the 3-W/kg and 4-W/kg groups. After exposure to 4 W/kg 

for 24 hours, hLECs exhibited significant G0/G1 arrest. All the effects were blocked when the MW 

exposure was superposed with a 2 µT electromagnetic noise. The authors concluded that 

superposed electromagnetic noise blocks MW-induced DNA damage, ROS formation, and cell 

cycle arrest. 

 It has previously been reported that resonance effects of MW on E. coli cell depend on the 

magnitude of static magnetic field at the place of MW exposure (Belyaev, Alipov et al. 1994). This 

dependence was explained by the model of electron-conformational interactions that also  predicted 

possible shift of resonance frequencies in dependence on SMF (Belyaev, Shcheglov et al. 1996). 

 More recently, Ushakov with co-authors exposed E. coli cells to MW at the PD of 10
-10

 

W/cm
2 

and the frequencies of 51.675, 51.755 and 51.835 GHz (Ushakov, Alipov et al. 2005). In this 

study, cells were exposed to MW at various values of SMF within the range of geomagnetic filed: 

22, 49, 61, or 90 T. The authors observed that the effects of MW exposure on the conformation of 

nucleoids depended on the SMF during exposure. 

Gapeev at al. analyzed  effects of MW (41.85-42.1 GHz, frequency increment 50 MHz, PD 

50 µВт/сm
2
, 20 min exposure) on synergistic reaction of calcium ionophore A23187 and phorbol 

ester PMA in activation of the respiratory burst of the peritoneal neutrophils of mice (Gapeev, 
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Iakushina et al. 1997). The MW exposure was performed at various SMF. At a SMF of 50 µT, the 

authors observed frequency-dependent inhibition of the synergetic reaction with maximal effect at 

the frequency of 41.95 GHz. In the same frequency range, frequency-dependent activation of the 

synergetic reaction with a maximal effect at the frequency of 42.0 GHz was found at a SMF of 95 

µT. The authors concluded that increasing the SMF from 50 to 95 µT resulted in the inversion of 

ten MW effects and the shift of the resonance frequency by 50 MHz (Gapeev, Iakushina et al. 1997; 

Gapeev, Iakushina et al. 1999). Moreover, these effects of MW at the 41.95 GHz and 42.0 GHz 

were not found at the SMF of +1, 28.3, 75.5 or 117.3 µT suggesting that the NT MMW effects may 

appear only at specific values of  SMF (Gapeev, Iakushina et al. 1997; Gapeev, Iakushina et al. 

1999). 

 During 1997–2008, Bartsch et al. have performed two long-term (I and II) and two life-long 

(III and IV) experiments analyzing the effect of chronic exposure to a low-intensity GSM-like 

signal (900 MHz pulsed with 217 Hz, 100 μW/cm² average power flux density, 38–80 mW/kg SAR 

for whole body) on health and survival of unrestrained female Sprague-Dawley rats kept under 

identical conditions (Bartsch, Kupper et al. 2010). Radiofrequency continued up to 37 months. In 

experiment I  no adverse health effects of chronic RF-exposure were detectable, neither by 

macroscopic nor detailed microscopic pathological examinations. Also in experiment II no apparent 

macroscopic pathological changes due to treatment were apparent. In the course of two complete 

survival experiments (2002–2005; 2005–2008) median survival was significantly shortened under 

RF-exposure in both experiments by 9.06% (95% CI 2.7 to 15.0%) (p=0.0064); i.e by 72 days in 

experiment III and 77 days in experiment IV (Bartsch, Kupper et al. 2010). Based on their thorough 

analysis of possible reasons for variability in RF effects from year to year, the authors assumed that 

theses variations follow the course of solar activity within the 11-years’ sunspot cycle which, 

according to theirs reported observations, seems to affect pineal melatonin secretion which is an 

integral part of endogenous defense against cancer. The activity of the sun may influence laboratory 

animals via changes in the geomagnetic field, which is omnipresent and perceived by specific 

receptors, e.g. retinal melanopsin, also involved in the light-mediated synchronization of the SCN 

(central circadian clock of the brain) and controlling the circadian secretion of pineal melatonin. 

The observations indicating dependence of the NT MW effects on SMF and EMF stray field 

may be of significant interest for further development of physical theory for the NT MW effects and 

development of safe mobile communication. 
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XII.  CELL-TO-CELL INTERACTION IN RESPONSE TO MICROWAVES 

 

The effects of NT MW at the resonance frequency of 51.755 GHz on conformation of 

nucleoids in E. coli cells were analyzed with respect to cell density during exposure (Belyaev, 

Alipov et al. 1994). The per-cell-normalized effect of MW increased by a factor of 4.7+0.5 on 

average if cell density increased by one order of magnitude, from 4∙10
7 

to 4∙10
8 

cell/ml. These data 

suggested a co-operative nature of cell response to MW, which is based on cell-to-cell interaction 

during exposure. This suggestion was in line with the observed partial synchronization of cells after 

exposure to MW. 

The co-operative nature of cell response to MW at the resonance frequency of 51.755 GHz 

was confirmed in further studies with E. coli cells (Belyaev, Shcheglov et al. 1996; Shcheglov, 

Belyaev et al. 1997; Shcheglov, Alipov et al. 2002). In addition, dependence of the per-cell-

normalized effect on cell density was found for two other resonances, 51.675 GHz and 51.688 GHz. 

These data suggested that dependence on cell density during exposure is a general attribute of the 

resonance response of E. coli cells to NT MW. At the cell density of 4∙10
8 

cells/ml, the average 

intercellular distance was approximately 13 m that is 10 times larger than the linear dimensions of 

E. coli cells (Belyaev, Alipov et al. 1994; Shcheglov, Alipov et al. 2002). Therefore, no direct 

physical contact seemed to be involved in the cell-to-cell interaction. Two mechanisms, 

biochemical and electromagnetic, were considered to account for the co-operative nature in the 

resonance response to weak EMF in wide frequency range including ELF, MW and ionizing 

radiation (Belyaev 1993; Belyaev, Alipov et al. 1994; Alipov, Shcheglov et al. 2003). The first one, 

biochemical, is based on release of secondary chemical messengers (ions, radicals, or molecules) by 

those cells, which were directly targeted. Via diffusion, these messengers can induce response in 

other cells. The second mechanism, electromagnetic, is based on reemission of secondary photons.  

According to this mechanism, reemitted photons can induce response in other cells if the 

intercellular distance is shorter than the length of photon absorption. The experimental data on MW 

effects fitted better to the electromagnetic mechanism but a combination of two mechanisms was 

also possible (Belyaev, Alipov et al. 1994; Shcheglov, Alipov et al. 2002). In particular, radicals 

with prolonged lifetimes might be involved in the observed cell-to-cell communication during 

response to EMF (Belyaev, Alipov et al. 1998). 

The absorption length of photons with the frequencies of 10
12

-10
13

 Hz corresponds to the 

intracellular distance at the cell density of 5∙10
8
 cell/ml, at which saturation in the dependences of 

EMF effects on cell density was observed (Belyaev, Alipov et al. 1994; Belyaev, Alipov et al. 1995; 

Belyaev, Alipov et al. 1998; Shcheglov, Alipov et al. 2002). Such photons may be involved in cell-
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to-cell communication according to the electromagnetic mechanism and in agreement with the 

prediction of Fröhlich that biosystems support coherent excitations within frequency range of 10
11

-

10
12

 Hz (Frohlich 1968). From this point of view, cell suspension may respond to NT MW as a 

whole. In this case, the number of the exposed cells should be large enough to facilitate cell-to-cell 

communication during the responses to MW at specific parameters of exposure such as frequency, 

modulation, and polarization. Interestingly, the cell density for saturation of both MW and ELF 

effects was about 5∙10
8
 cell/ml that is close to cell densities in soft tissues of eukaryotes (Belyaev, 

Alipov et al. 1998; Shcheglov, Alipov et al. 2002). Such density of cells in the tissues may be 

important for regulation of living systems by electromagnetic cell-to-cell communication. Cellular 

membranes and DNA have been considered as possible sources of coherent excitations and 

photons, which may be involved in electromagnetic cell-to-cell communication (Frohlich 1968; 

Belyaev, Shcheglov et al. 1996; Belyaev, Alipov et al. 1998). 

PD dependences of the MW effect at the 51.755 GHz resonance frequency were 

considerably different between two cell densities, 4∙10
7 

cells/ml and 4∙10
8 

cells/ml (Belyaev, 

Shcheglov et al. 1996). However, the resonance frequency of 51.755 GHz did not shift with the 

changes in cell density. The half-width of the 51.755 GHz resonance did not depend on cell density 

either. Contrary to the 51.755 GHz resonance response, the half-width of the 51.675 GHz resonance 

depended on cell density (Shcheglov, Belyaev et al. 1997). The data suggested that intracellular 

interaction during the NT MW exposures at some specific frequencies might affect sub-cellular 

targets for NT MW. This target is presumably chromosomal DNA that is organized in the DNA-

domains (Belyaev, Alipov et al. 1992; Belyaev, Alipov et al. 1993; Matronchik and Belyaev 2005). 

In all studies concerning dependence of the MW effects on cell density, the cells occupied a 

negligible part of the exposed volume and could not change the absorption of MW even at the 

highest cell densities (Belyaev, Alipov et al. 1994; Belyaev, Shcheglov et al. 1996; Shcheglov, 

Belyaev et al. 1997; Shcheglov, Alipov et al. 2002). Striking difference in the cell responses at 

various cell densities provided further evidence for non-thermal mechanism of the observed MW 

effects. 

Significant MW effect on synchronization of Saccharomyces carlsbergensis yeast cells were 

observed by Golant and co-authors (Golant, Kuznetsov et al. 1994). Exposure to MW at 30 W/cm
2
 

and 46 GHz induced synchronization as measured by cell density and bud formation. The authors 

assumed that MW induced cell-to-cell interaction resulting in the observed synchronization. 

Possible role of intrinsic electromagnetic fields in cell-to-cell communication and 

mechanisms of their generation have recently been reviewed (Cifra, Fields et al. 2011). 
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XIII.  GENETIC BACKGROUND AND CELL TYPE 

 

Belyaev et al. have studied  effects of MW on E. coli cells of three isogenic strains with 

different length of chromosomal DNA (Belyaev, Alipov et al. 1993). Bacterial chromosomal DNA 

in the cells of N99 wild type stain was lengthened by inserting DNA from  and imm
434

bio
10

 

phages. Two strains were obtained with increased length of chromosomal DNA, N99() and 

N99(,imm
434

bio
10

). The cells of these 3 strains were exposed  to MW 10
-10

 at W/cm
2 

and 10-17 

frequencies within the ranges of 41.24-41.37 GHz and 51.69-51.795 GHz. The changes in 

chromatin conformation were analyzed before and after exposure. Clear resonance responses to 

MW were observed for each strain in  both frequency ranges. However, each strain had its own 

resonance frequency, which were statistically significantly different between strains. All resonances 

had the same amplitude and half-width (Belyaev, Alipov et al. 1993). In each frequency band, all 3 

resonances had  the  same effective circular polarization: right-handed in the 41.24-41.37 GHz band 

and left-handed within 51.69-51.795 GHz. All these data have led to conclusion that lengthening  of 

chromosomal DNA resulted in shifting the resonance MW spectra of action. Importantly, these 

shifts in resonance frequencies could not be explained by the genetic activity of the inserted DNA. 

On the other hand, theoretical consideration based on oscillations of the DNA-domains regarding a 

whole nucleoid provided a good correlation between the increasing in the DNA length and the shifts 

in resonances (Belyaev, Alipov et al. 1993). A detailed analysis of MW effects on the cells of 

another  E. coli strain, AB1157, at 10
-10

 W/cm
2 

and various frequencies within 51.69-51.795 GHz, 

revealed the resonance frequency of 51.755+0.001 GHz (Belyaev, Shcheglov et al. 1996). This 

value was statistically significantly different from the resonance frequency of 51.765+0.002 in 

response of E. coli N99 cells to MW in the same frequency range (Belyaev, Shcheglov et al. 1996). 

It should be noted that both strains, AB1157 and N99, are considered as wild type strains. 

Nevertheless, these strains are different in their genotypes by several gene markers (Lukashevsky 

and Belyaev 1990; Belyaev, Alipov et al. 1992). These data provided evidence that cells of different 

origin, even being considered as wild type cells, might have different resonance responses to NT 

MW because of differences in their genotypes. 

Stagg with colleagues exposed tissue cultures of transformed and normal rat glial cells to 

modulated MW (TDMA that conforms to the North American digital cellular telephone standard) at 

836.55 MHz (Stagg, Thomas et al. 1997). Results from DNA synthesis assays differed for these two 

cell types. Sham-exposed and MW-exposed cultures of primary rat glial cells showed no significant 

differences for either log-phase or serum-starved condition. C6 glioma cells exposed to MW at 5.9 
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W/g SAR (0.9 mW/cm
2
) exhibited small (20-40 %) but significant increases in 38 % of [

3
H]-

thymidine incorporation experiments. 

Repacholi with co-authors chronically exposed wild-type mice and E mu-Pim1 transgenic 

mice, which are moderately predisposed to develop lymphoma spontaneously, to plane-wave pulse-

modulated MW at 900 MHz with a pulse repetition frequency of 217 Hz and a pulse width of 0.6 

ms (Repacholi, Basten et al. 1997). Incident power densities were 2.6-13 W/m
2
 and SARs were 

0.008-4.2 W/kg, averaging 0.13-1.4 W/kg. The lymphoma risk was found to be significantly higher 

in the exposed transgenic mice. No effects were seen in the wild type mice. 

Markkanen with colleagues found that MW affected the UV-induced apoptosis in 

Saccharomyces cerevisiae yeast cells KFy437 (cdc48-mutant) but did not modify apoptosis in 

KFy417 (wild-type) cells (Markkanen, Penttinen et al. 2004). 

Czyz with colleagues exposed pluripotent embryonic stem (ES) cells of wild-type and 

deficient for the tumor suppressor p53 to pulse modulated GSM MW at 1.71 GHz (Czyz, Guan et 

al. 2004). Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate 

temporal changes between GSM-Basic (active during talking phases) and GSM-DTX 

(discontinuous transmission, which is active during listening phases thus simulating a typical 

conversation), were applied to the cells at and below the ICNIRP safety standards, 2 and 1.5 W/kg . 

GSM-217 MW induced a significant upregulation of mRNA levels of the heat shock protein hsp70 

of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, 

c-myc, and p21 levels in p53-deficient, but not in wild-type cells. Theses data further substantiated 

the notion that the genetic background determines cellular responses to GSM MW. 

Nylund and Leszczynski have examined cell response to MW (900 MHz GSM-like signal, 

average SAR of 2.8 W/kg) using two human endothelial cell lines: EA.hy926 and EA.hy926v1 

(Nylund and Leszczynski 2006). Gene expression changes were examined using cDNA Expression 

Arrays and protein expression changes were examined using 2-DE and PDQuest software. The 

same genes and proteins were differently affected by exposure in each of the cell lines. 

Remondini et al. analyzed changes in gene expression in six human cell lines by gene 

microarrays (Remondini, Nylund et al. 2006). Cells were exposed to MW at 900 MHz GSM Basic 

mode, SAR 1.8-2.5 W/kg, 1 h exposure. Most cell lines responded to GSM-900 MHz, except for 

the CHME5 human microglial cells. 

Rat1 and HeLa human cells were subjected to RF exposure  at a frequency of 875 MHz with an 

intensity of 0.07 mW/cm2  (Friedman, Kraus et al. 2007). In Rat1 cells, phosphorylation peaked at 

15 min after irradiation and returned to basal level within 30 min, whereas, in HeLa cells, peak 

phosphorylation was at 5 min after stimulation and decreased thereafter. Increases in Hb- 



35 
 

EGF release upon mobile phone irradiation were detected in both Rat1 and HeLa cell lines, 

although the amount released from irradiated HeLa cells was much higher than that released from 

Rat1 cells. 

 Zhao et al. studied whether expression of genes related to cell death pathways are 

dysregulated in primary cultured neurons and astrocytes by exposure to MW from GSM cell phone 

at the frequency of 1900 MHz for 2 h (Zhao, Zou et al. 2007). Microarray analysis and real-time 

RT-PCR have shown up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-

like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in 

both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, 

astrocytes showed up-regulation of the Bax gene. The authors concluded that even relatively short-

term exposure to the cell phone radiation can up-regulate elements of apoptotic pathways in cells 

derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. 

 Hoyto et al. analyzed the effects of MW exposure on cellular ornithine decarboxylase 

(ODC) activity in fibroblasts, two neural cell lines and primary astrocytes (Hoyto, Juutilainen et al. 

2007). Several exposure times and exposure levels were used, and the fields were either 

unmodulated or GSM-like-modulated. Murine L929 fibroblasts, rat C6 glioblastoma cells, human 

SH-SY5Y neuroblastoma cells, and rat primary astrocytes were exposed to RF radiation at 872 

MHz in a waveguide exposure chamber equipped with water cooling. Cells were exposed for 2, 8, 

or 24 hours to CW MW or to a GSM type signal pulse modulated at 217 Hz. ODC activity in rat 

primary astrocytes was decreased statistically significantly and consistently in all experiments 

performed at two exposure levels (1.5 and 6.0 W/kg) and using GSM modulated or CW radiation. 

In the secondary cell lines, ODC activity was generally not affected. The authors concluded that 

ODC activity was affected by MW exposure in rat primary neural cells, but the secondary cells used 

in this study showed essentially no response. In further studies by the same group, the difference in 

response of human SH-SY5Y neuroblastoma and mouse L929 fibroblast cells to a GSM-modulated 

MW at 872 MHz was replicated (Hoyto, Luukkonen et al. 2008). 

Human cultured fibroblasts of three different donors and three different short-term human 

lymphocyte cultures were exposed to UMTS-like MW at 1950 MHz and the SAR below safety 

limit of 2 W/kg by Schwarz et al. (Schwarz, Kratochvil et al. 2008). The alkaline comet assay and 

the micronucleus assay were used to analyze genotoxic effects. UMTS exposure increased the 

comet tail factor (CTF) and induced centromere-negative micronuclei in human cultured fibroblasts 

in a dose and time-dependent way. No UMTS effect was obtained with lymphocytes, either 

unstimulated or stimulated with phytohemagglutinin. The authors concluded that UMTS exposure 

may cause genetic alterations in some but not in all human cells in vitro. 
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 Del Vecchio et al. have tested viability, proliferation, and vulnerability of neural cells, after 

continuous radiofrequency (RF) electromagnetic fields exposure (global system for mobile 

telecommunications (GSM) modulated 900 MHz signal at a specific absorption rate (SAR) of 1 

W/kg and maximum duration 144 h) generated by transverse electromagnetic cells. Two cellular 

systems, SN56 cholinergic cell line and rat primary cortical neurons were used (Del Vecchio, 

Giuliani et al. 2009). Exposure to RF did not change viability/proliferation rate of the SN56 

cholinergic cells or viability of cortical neurons. Co-exposure to RF exacerbated neurotoxic effect 

of hydrogen peroxide in SN56, but not in primary cortical neurons, whereas no cooperative effects 

of RF with glutamate and 25-35AA beta-amyloid were found. These data suggest that only under 

particular circumstances (cell type and type of co-exposure) exposure to GSM modulated, 900MHz 

signal act as a co-stressor for oxidative damage of neural cells. 

 Gerner et al. exposed four different human cell types exposed to modulated GSM 1800 MHz 

at 2 W/kg (Gerner, Haudek et al. 2010). While short-term exposure did not significantly alter the 

proteome, an 8-h exposure caused a significant increase in protein synthesis in Jurkat T-cells and 

human fibroblasts, and to a lesser extent in activated primary human mononuclear cells (Gerner, 

Haudek et al. 2010). Quiescent (metabolically inactive) mononuclear white blood cells, did not 

detectably respond to GSM 1800 MHz. Most of the proteins found to be induced were 

chaperones, which are mediators of protein folding. Heat-induced proteome alterations detectable 

with used proteome methodology would require heating greater than 1°C. Because GSM-induced 

heating was less than 0.15°C, a heat-related response was excluded. 

 Dragicevic et al. evaluated brain mitochondrial function in aged Tg mice and non-transgenic 

(NT) littermates following 1 month of daily exposure to EMF at 918 MHz frequency, involved 

modulation with Gaussian minimal-shift keying (GMSK) signal, and SAR levels that varied 

between 0.25 and 1.05 W/kg (Dragicevic, Bradshaw et al. 2011).The cognitively-important brain 

areas of cerebral cortex and hippocampus in EMF-exposed mice exhibited clear increases in 

maximum mitochondrial respiration, while the striatum and amgydala were unaffected. For Tg 

mice, long-term EMF treatment induced a dramatic reduction in mitochondrial ROS levels in both 

cerebral cortex and hippocampus, but not in striatum or amygdala. By contrast, NT mice given 

EMF treatment did not show significant changes in ROS levels within any of the four brain areas 

analyzed. Therefore, EMF treatment reduced ROS levels selectively in Tg mice and selectively in 

cognitively-important brain areas. 

Finally, it follows from the emerging data that MW effects are dependent on genotype and 

cell-type. These dependences may explain, at least partly, the discrepancies among studies from 
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different laboratories and demand  careful selection of biological objects in designing the 

replication studies. 

 

 

XIV.  SEX-AND AGE-RELATED DIFFERENCES 

 

There are few studies consistently indicating that MW may exert a sex-related influence on 

brain activity. 

Papageorgiou and co-authors investigated the sex-related influence of MW similar to that 

emitted by GSM900 mobile phones on brain activity (Papageorgiou, Nanou et al. 2004). Baseline 

EEG energy of males was greater than that of females, and exposure to MW decreased EEG energy 

of males and increased that of females. Memory performance was invariant to MW exposure and 

sex influences. 

Smythe and Costall reported the effects of mobile phone exposure on short- and long-term 

memory in male and female subjects (Smythe and Costall 2003). The results showed that males 

exposed to an active phone made fewer spatial errors than those exposed to an inactive phone 

condition, while females were largely unaffected. These results further indicated that mobile phone 

exposure has functional consequences for human subjects, and these effects appear to be sex-

dependent. 

Nam and colleagues exposed volunteers of both sex to MW emitted by a CDMA cellular 

phone for half an hour (Nam, Kim et al. 2006). Physiological parameters such as systolic and 

diastolic blood pressures, heart rate, respiration rate, and skin resistance were simultaneously 

measured. All the parameters for both groups were unaffected during the exposure except for 

decreased skin resistance of the male subjects (Nam, Kim et al. 2006). 

 Güler et al. exposed infant female and male white rabbits to 1800 MHz GSM like RF signal 

at SAR of 1.8 W/kg for 15 min/day during 7-14 days (Guler, Tomruk et al. 2012). Lipid 

peroxidation levels in the liver tissues of female and male infant rabbits increased under RF 

radiation exposure. Liver 8-hydroxy-2 ’-deoxyguanosine (8-OHdG) levels of female rabbits 

exposed to RF radiation were also found to increase when compared with the levels of non-exposed 

infants. However, there were no changes in liver 8-OHdG levels of male rabbits under RF exposure. 

 Santini et al. have performed a survey study on symptoms experienced during use of digital 

cellular phones using questionnaire of 161 students and workers in a French engineering school 

(Santini, Seigne et al. 2001). A significant increase in concentration difficult (p < 0.05) was 

reported by users of 1800-MHz (DCS) cellular phones compared to 900-MHz (GSM) phone users. 
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In users of cellular phones, women significantly (p < 0.05) complained more often of sleep 

disturbance than men. This sex difference for sleep complaint was not observed between women 

and men non-users of cellular phone. The use of both cellular phones and VDT significantly 

increased concentration difficulty. Digital cellular phone users also significantly (p < 0.05) more 

often complained of discomfort, warmth, and picking on the ear during phone conversation in 

relation with calling duration per day and number of calls per day. The complaint warmth on the ear 

might be a signal to users for stopping the call. 

 Prevalence of women (usually around 70%) among subjects, which report hypersensitivity 

to electromagnetic fields of wide frequency range including MW, may also provide indirect 

evidence for the gender-dependent effects of MW. 

In his pioneering study concerning age in cancer risk from MW exposure, Hardell and 

colleagues found that the highest risks were associated with >5-year latency period in the youngest 

age group studied, 20-29-year, for analog phones (OR = 8.17, 95% CI = 0.94-71), and cordless 

phones (OR = 4.30, 95% CI = 1.22-15) (Hardell, Mild et al. 2004).  Of note, no participants of age 

less 20 years were involved on this study. In further studies from the Hardell’s group, highest risk 

was found in the age group <20 years at time of first use of wireless phones (Hardell and Carlberg 

2009; Hardell, Carlberg et al. 2009). 

Nam with co-authors reported that skin resistance in teenagers decreased by exposure to 

CDMA MW from cellular phones whereas no effects were seen in adults (Nam, Kim et al. 2006). 

Capri et al. analyzed CD25, CD95, CD28 molecules in unstimulated and stimulated CD4+ e 

CD8+ T cells in vitro (Capri, Salvioli et al. 2006). Peripheral blood mononuclear cells (PBMCs) 

from young and elderly donors were exposed or sham-exposed to RF (1,800 MHz, SAR 2 W/kg) 

with or without mitogenic stimulation. No significant changes in the percentage of these cell subsets 

were found between exposed and sham-exposed lymphocytes in both young and elderly donors. 

Nevertheless, RF exposure induced a slight, but significant, downregulation of CD95 expression in 

stimulated CD4+ T lymphocytes from elderly, but not from young donors. This age-related result is 

noteworthy given the importance of such molecule in regulation of the immune response. 

 

 

XV.  INDIVIDUAL TRAITS 

 

Shckorbatov et al. investigated electrokinetic properties of cell nuclei and condensation of 

heterochromatin in human buccal epithelium cells in response to MW at  42.2 GHz (Shckorbatov, 
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Grigoryeva et al. 1998). MW exposure decreased electric charge of cell nuclei and an increased 

chromatin condensation in dependence on individual traits of donors. 

Individual variability in effects of GSM and UMTS MW on chromatin conformation and 

53BP1/-H2AX DNA repair foci was observed in studies with lymphocytes from hypersensitive to 

EMF subjects and healthy persons (Sarimov, Malmgren et al. 2004; Belyaev, Hillert et al. 2005; 

Markova, Hillert et al. 2005; Belyaev, Markova et al. 2009). The same individual variability was 

reported for response of chromatin condensation human lymphocytes to ELF magnetic fields 

(Sarimov, Alipov et al. 2011). This variability correlated with initial state of chromatin in the 

exposed cells (Sarimov, Alipov et al. 2011). Thus, the data from two different research groups have 

indicated that the NT MW effects on human cells depended on initial sate of chromatin that 

individually varied between subjects. 

Zotti-Martelli with colleagues exposed peripheral blood lymphocytes from nine different 

healthy donors for 60, 120 and 180 min to CW MW with a frequency of 1800 MHz and PD of 5, 

10, and 20 mW/cm
2
 and analyzed DNA damage using micronucleus (MN) assay (Zotti-Martelli, 

Peccatori et al. 2005). Both spontaneous and induced MN frequencies varied in a highly significant 

way among donors, and a statistically significant increase of MN, although rather low, was 

observed dependent on exposure time and PD. The data analysis highlighted a wide inter-individual 

and reproducible variability in the response. 

Hinrikus et al. (Hinrikus, Bachmann et al. 2008) evaluated the effects of pulse-modulated 

MW (450 MHz) on human EEG rhythms. Thirteen healthy volunteers were exposed to MW; the 

field power density at the scalp was 0.16 m W/cm
2
. Differences were found in individual sensitivity 

to exposure. Increases in the EEG beta power appeared statistically significant in the case of four 

subjects. In other study, the same authors confirmed and extended their observations on individual 

sensitivity to exposure with pulse-modulated MW. The experiments were carried out on four 

different groups of healthy volunteers. A 450-MHz MW modulated at 7 Hz (first group), 14 and 21 

Hz (second group), 40 and 70 Hz (third group), 217 and 1000 Hz (fourth group) frequencies was 

applied. MW exposure, SAR 0.303 W/kg, increased the EEG energy. The proportion of subjects 

significantly affected was similar in all groups except for the 1000 Hz group: in the first group 16% 

at 7 Hz modulation; in the second group 31% at 14 Hz modulation and 23% at 21 Hz modulation; in 

the third group 20% at 40 Hz and 13% at 70 Hz modulation; in the fourth group 16% at 217 Hz and 

0% at 1000 Hz modulation frequency. 

Sannino et al. evaluated the induction of micronuclei in response to MW (900 MHz, average 

SAR of 1.25 W/kg) exposure and subsequent treatment with mitomycin C in peripheral blood 

lymphocytes from five human volunteers (Sannino, Sarti et al. 2009). MW exposure reduced the 
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level of mitomycin C –induced micronuclei in cells collected from four donors (i.e., responders). 

However, the effect of MW was not observed in the remaining donor (i.e., non-responder). The 

overall data indicated the existence of heterogeneity in the MW response among individuals. 

Human sensitivity to radio frequency (RF) standing waves was tested using a movable 

reflecting wall (Huttunen, Hanninen et al. 2009). When the reflector was moved, the position of the 

maximums of the standing waves changed and the electromagnetic intensity changed in the body of 

the standing test subject. The computer with an AD-converter registered the signals of the hand 

movement transducer and the RF-meter with 100MHz dipole antennas. A total of 29 adults of 

different ages were tested. There were 9 persons whose hand movement graphs included features 

like the RF-meter. Six showed responses that did not correlate with the RF-meter. There were also 

14 persons who did not react at all. Sensitive persons seem to react to crossing standing waves of 

the RF signals. 

To conclude, while only few studies were performed, to evaluate individual sensitivity, the 

obtained results indicate dependence of response to MW exposure on individual traits. 

 

 

XVI.  PHYSIOLOGICAL VARIABLES:  STAGE OF CELL GROWTH, TEMPERATURE, 

OXYGEN, DIVALENT METALS 

 

The importance of physiological variables, which may include all conditions of cell culture 

growth such as aeration, the composition of the growth and exposure media, on NT MW effects has 

previously been reviewed (Grundler, Jentzsch et al. 1988). Since that time, significant body of new 

data has been accumulated unequivocally supporting the role of physiological variables for the NT 

MW effects, which should be carefully taken into account when replicating the original studies. 

Belyaev et al. have reported that both value and direction of the MW effects strongly 

depended on the phase of culture growth, at which E. coli cells were exposed to CP or LP MW (100 

W/cm
2
) at the resonance frequencies of 41.32 GHz and 51.76 GHz (Belyaev, Shcheglov et al. 

1993; Belyaev, Alipov et al. 1994). At logarithmic phase of growth, MW resulted in condensation 

of nucleoids. In contrast, MW exposure decondensed nucleoids in cells if exposure was performed 

at the stationary phase of growth. It is known, that the state of nucleoid condensation depends on 

cell activity. In stationary cells nucleoids are more condensed compared to logarithmic cells that 

divide actively. It was concluded that MW are able to either stimulate or inhibit activity of the cells 

in dependence on stage of growth, stationary or logarithmic, respectively. Higher variability in 

effects was observed for logarithmic phase and effects were more stable for the stationary phase 
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that is characterized by partial synchronization of cells (Belyaev, Shcheglov et al. 1993; Belyaev, 

Alipov et al. 1994). There was no effect at all if cells were exposed at the end of the logarithmic 

phase where the MW effects changed their direction from inhibition to stimulation (Belyaev, 

Alipov et al. 1994). Another peculiarity was observed at the very beginning of the logarithmic 

stage, where the condensation of chromatin induced by MW was relatively weak. The AVTD data 

were confirmed by the electrophoretic analysis of proteins bound to DNA (Belyaev, Shcheglov et 

al. 1993). The effect in the stationary phase was characterized by a decrease in the quantity of 

several DNA-bound proteins with molecular weights of 61, 59, 56, 26, and 15 kDa. In contrast, 

abundance of some DNA-bound proteins, 61, 56, 51 and 43 kDa increased after exposure at the 

logarithmic phase. The decrease or increase in the abundance of DNA-bound proteins correlated 

with the observed changes in the state of nucleoids, decondensation or condensation, respectively. 

Shcheglov et al. have studied effects of MW at the PD range of 10
-18

 to 3∙10
-3

 W/cm
2 

stationary on logarithmic and stationary cells at various cell densities (Shcheglov, Alipov et al. 

2002). Relatively weak response to MW was observed in exponentially growing cells. Partially 

synchronized stationary cells were more sensitive, especially at the cell densities above 10
8
 cell/ml. 

The data suggested that the co-operative responses of cells to MW vary in dependence on phase of 

growth. 

Recent data by Ushakov and colleagues indicated that the MW effects on E. coli cells 

depended on concentration of oxygen in the cell suspension during exposure (Ushakov, Alipov et 

al. 2005). This dependence might suggest that oxygen concentration should be indicated in order to 

improve reproducibility in replication studies. 

Biological systems have been shown to be very sensitive to perturbations at conditions 

where critical components are at phase transition points, governed by local temperature, ionic 

strength and pH. This phenomenon was demonstrated by independent laboratories using 2.45-GHz 

MW radiation associated with a phase transition in lipid-protein complexes around 20-25 
0
C 

(Olcerst, Belman et al. 1980; Fisher, Poznansky et al. 1982; Liburdy and Vanek 1985; Allis and 

Sinha-Robinson 1987; Liburdy and Vanek 1987). 

 Fisher et al. have reported an effect of low-level 2450-MHz MW on total and ouabain-

sensitive 24Na
+
 flux from human erythrocytes. Erythrocytes washed and loaded with 24Na

+
 were 

exposed at an absorption rate of 2.0-3.0 mW/ml suspension in a waveguide system under 

temperature- controlled conditions for 1 or 2 hr. Experiments were run in parallel, with exposed and 

sham- irradiated (control) samples, at various temperatures between 7 and 35
0
C. Continuous-wave 

electromagnetic radiation at 2450 MHz had a significant effect on 24Na
+
 efflux, but only in the 

temperature range 22-25
0
C. Total efflux increased an average of 23%; this was the result of an 
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increase in the ouabain-insensitive component (mean, 33%) and a decrease in the ouabain- sensitive 

portion (mean, 18%). These results indicated increased passive Na+ efflux and decreased ATPase-

mediated Na+ efflux in erythrocytes exposed to low-level microwaves at 22-25
0
C (Fisher, 

Poznansky et al. 1982). 

 Liburdy and Vanek have shown that MW-induced protein shedding is oxygen and 

temperature dependent (Liburdy and Vanek 1987). Microwaves (2450 MHz, 60 mW/g) resulted in 

the release or shedding of at least 11 low-molecular-weight proteins (<31,000 Da) from rabbit 

erythrocytes maintained in physiological buffer. This release was oxygen dependent and occured in 

30 min for exposures conducted within the special temperature region of 17-21
0
C, which is linked 

to a structural or conformational transition in the cell membrane. Shedding of 26,000 and 24,000 Da 

proteins was unique to MW treatment, with enhanced release of 28,000 and < 15,000 Da species 

upon MW exposure. Two-dimensional isoelectric focusing revealed that proteins of< 14,000 Da 

shed during microwave treatment exhibited a pI of 6.8-7.3 not seen in sham-treated cells. When 

erythrocytes were maintained at 17-21
0
C in the absence of divalent cations, release of 28,000-

31,000 and < 14,000 Da components was detected. This indicated that cation-bridge stability may 

be important for release of these proteins. The results provided evidence that MW alter erythrocyte 

protein composition at temperatures linked to a transition in the cell membrane and that 

destabilization of salt bridges may play a role in an interaction mechanism for protein release 

(Liburdy and Vanek 1987). 

 The ATPase activity in human red blood cell membranes was investigated in vitro as a 

function of temperature and exposure to 2,450-MHz continuous wave microwave radiation to 

confirm and extend a report of Na
+
 transport inhibition under certain conditions of temperature and 

exposure (Allis and Sinha-Robinson 1987). Assays were conducted spectrophotometrically during 

microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature 

profiles of total ATPase and Ca
+2

 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C 

were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect 

between 23 and 24 degrees C. The difference between the total and Ca
+2

 ATPase activities, which 

represented the Na
+
/K

+
 ATPase activity, was also plotted and treated similarly to yield an 

intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at 

a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity 

change only for the Na
+
/K

+
 ATPase at 25 degrees C. The activity decreased by approximately 35% 

compared to sham-irradiated samples. A possible explanation for the unusual 

temperature/microwave interaction was proposed (Allis and Sinha-Robinson 1987). 
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 Therefore, temperature may be an important variable, which should be taken into account 

while analyzing response of cells to MW. 

Similar to the effects of ELF (Belyaev, Alipov et al. 1999), the MW effects were reported to 

be dependent on concentration of divalent ions (Gapeev, Iakushina et al. 1997). 

In conclusion, physiological parameters such as stage of cell growth, temperature, oxygen 

an divalent ions temperature may be an important variable, which should be taken into account 

while analyzing response of cells to MW. 

 

 

XVII.  ANTIOXIDANTS AND RADICAL SCAVENGERS 

 

 Oxidative stress caused by biological, chemical and physical factors has been associated 

with increased risk of human cancer at various sites. Human cells induce and/or activate several 

oxidant generating enzymes that produce high concentrations of diverse free radicals and oxidants. 

These reactive species can damage DNA, RNA, lipids and proteins, leading to increased mutations 

and altered function of enzymes and proteins, thus contributing to the multistage carcinogenesis 

process. Control of oxidative stress is being explored as an approach to chemoprevention of human 

cancers (IARC 2002). 

 It is well known that endogenous (intracellular) free radicals, which are collectively called 

reactive oxygen species (ROS), arise from mitochondrial oxidative metabolism and 

other reactions in cells (Pollycove and Feinendegen 2003). The estimated average generation 

rate is  ~ 10
9 

ROS per cell per day (Beckman and Ames 1998), which results in 10
6
 oxidative DNA 

damage, 10
5
 SSBs and 0.1 DSBs per cell per day (Pollycove and Feinendegen 2003). 

In their pioneering study, Lai and Singh described the effects of MW on the rat brain cells as 

measured using a microgel electrophoresis assay (Lai and Singh 1996). These effects were 

significantly blocked by treatment of rats either with the spin-trap compound N-tert-butyl--

phenylnitrone or with melatonin, both agents being free radical scavengers and antioxidants (Lai 

and Singh 1997). These data suggested that free radicals might be involved in the effects of MW. 

The ability of scavengers and antioxidants has been tested by many other research groups an in all 

cases, this treatment inhibiter the reported TN MW effects. 

 Oktem andcolleagues exposed rats to MW from GSM900 mobile phone with and without 

melatonin treatment (Oktem, Ozguner et al. 2005). Malondialdehyde (MDA), an index of lipid 

peroxidation, and urine N-acetyl-beta-d-glucosaminidase (NAG), a marker of renal tubular damage, 

were used as markers of oxidative stress-induced renal impairment. Superoxide dismutase (SOD), 
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catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate changes in 

antioxidant status. In the MW-exposed group, while tissue MDA and urine NAG levels increased, 

SOD, CAT, and GSH-Px activities were reduced. Melatonin treatment inhibited these effects. The 

authors concluded that melatonin might exhibit a protective effect on mobile phone-induced renal 

impairment in rats. 

Ozguner and colleagues exposed Wistar-Albino rats to MW from GSM900 mobile phone 

with and without melatonin and analyzed histopathologic changes in skin (Ozguner, Aydin et al. 

2004). MW induced increase in thickness of stratum corneum, atrophy of epidermis, papillamatosis, 

basal cell proliferation, granular cell layer (hypergranulosis) in epidermis and capillary 

proliferation. Impairment in collagen tissue distribution and separation of collagen bundles in 

dermis were all observed in exposed animals as compared to the control group. Most of these 

changes, except hypergranulosis, were prevented with melatonin treatment. The authors concluded 

that exposure to GSM900 MW caused mild skin changes and melatonin treatment could reduce 

these changes. In other studies of the same group, the ability of melatonin to reduce various MW-

induced effects was confirmed and inhibitory potential of the antioxidant caffeic acid phenethyl 

ester (CAPE) was reported (Ozguner, Altinbas et al. 2005; Ozguner, Oktem et al. 2005; Ozguner, 

Oktem et al. 2005; Ozguner, Bardak et al. 2006). 

Ayata et al. analyzed the effects of 900 MHz MW with and without melatonin on fibrosis, 

lipid peroxidation, and anti-oxidant enzymes in rat skin (Ayata, Mollaoglu et al. 2004). The levels 

of MDA and hydroxypyroline and the activities of SOD, GSH-Px, and CAT were studied. MDA 

and hydroxyproline levels and activities of CAT and GSH-Px were increased significantly in the 

exposed group without melatonin and decreased significantly in the exposed group with melatonin. 

SOD activity was decreased significantly in the exposed group and this decrease was not prevented 

by the melatonin treatment. The authors assumed that the rats irradiated with MW suffer from 

increased fibrosis and lipid peroxidation and that melatonin can reduce the fibrosis and lipid 

peroxidation caused by MW. 

Ilhan with co-authors investigated oxidative damage in brain tissue of rats exposed to 

GSM900 MW with and without pretreatment with Ginkgo biloba (Gb) (Ilhan, Gurel et al. 2004). 

MW induced oxidative damage measured as: (i) increase in MDA and nitric oxide (NO) levels in 

brain tissue, (ii) decrease in brain SOD and GSH-Px activities, and (iii) increase in brain xanthine 

oxidase and adenosine deaminase activities. These MW effects were prevented by the Gb treatment. 

Furthermore, Gb prevented the MW-induced cellular injury in brain tissue revealed 

histopathologically. The authors concluded that reactive oxygen species may play a role in the 
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adverse effects of GSM900 MW and Gb prevents the MW-induced oxidative stress by affecting 

antioxidant enzymes activity in brain tissue. 

 Guney et al.examined 900 MHz mobile phone-induced oxidative stress that promotes 

production of ROS and investigated the role of vitamins E and C, which have antioxidant 

properties, on endometrial tissue against possible 900 MHz mobile phone-induced endometrial 

impairment in rats (Guney, Ozguner et al. 2007). The animals were randomly grouped (eight each) 

as follows: 1) Control group (without stress and EMR, Group I), 2) sham-operated rats stayed 

without exposure to EMR (exposure device off, Group II), 3) rats exposed to 900 MHz EMR (EMR 

group, Group III) and 4) a 900 MHz EMR exposed + vitamin-treated group (EMR + Vit group, 

Group IV). A 900 MHz EMR was applied to EMR and EMR + Vit group 30 min/day, for 30 days. 

Endometrial levels of nitric oxide (NO, an oxidant product) and malondialdehyde (MDA, an index 

of lipid peroxidation), increased in EMR exposed rats while the combined vitamins E and C caused 

a significant reduction in the levels of NO and MDA. Likewise, endometrial superoxide dismutase 

(SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased in EMR exposed 

animals while vitamins E and C caused a significant increase in the activities of these antioxidant 

enzymes. In the EMR group histopathologic changes in endometrium, diffuse and severe apoptosis 

was present in the endometrial surface epithelial and glandular cells and the stromal cells. Diffuse 

eosinophilic leucocyte and lymphocyte infiltration were observed in the endometrial stroma 

whereas the combination of vitamins E and C caused a significant decrease in these effects of EMR. 

It is concluded that oxidative endometrial damage plays an important role in the 900 MHz mobile 

phone-induced endometrial impairment and the modulation of oxidative stress with vitamins E and 

C reduces the 900 MHz mobile phone-induced endometrial damage both at biochemical and 

histological levels. 

Koylu et al. studied the effects of MW on the brain lipid peroxidation in rats, and the 

possible protective effects of melatonin on brain degeneration induced by MW (Koylu, Mollaoglu 

et al. 2006). The levels of lipid peroxidation in the brain cortex and hippocampus increased in the 

MW group compared with the control group, although the levels in the hippocampus were 

decreased by combined administration of MW and melatonin. Brain cortex lipid peroxidation levels 

were unaffected by melatonin treatment. The authors concluded that melatonin may prevent MW-

induced oxidative stress in the hippocampus by strengthening the antioxidant defense system. 

Balci et all exposed albino Wistar rats to mobile-phone-emitted radiation and analyzed 

oxidant/antioxidant balance in corneal and lens tissues. The results of this study suggest that mobile 

telephone radiation leads to oxidative stress in corneal and lens tissues and that antioxidants such as 

vitamin C can help to prevent these effects (Balci, Devrim et al. 2007). 
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Sokolovic et al. evaluated the intensity of oxidative stress in the brain of Wistar rats 

chronically exposed to MW from mobile phones (SAR = 0.043-0.135 W/kg) during 20, 40 and 60 

days (Sokolovic, Djindjic et al. 2008). A significant increase in brain tissue malondialdehyde 

(MDA) and carbonyl group concentration was found. Decreased activity of catalase (CAT) and 

increased activity of xanthine oxidase (XO) remained after 40 and 60 days of MW exposure. 

Melatonin treatment significantly prevented the increases in MDA content and XO activity in the 

brain tissue after 40 days of exposure while it was unable to prevent the decrease of CAT activity 

and increase of carbonyl group contents. The authors concluded that exposure to the mobile phone 

MW caused oxidative damage in the brain and that treatment with melatonin significantly prevented 

this oxidative damage. 

 Gajski and Garaj-Vrhovac investigated the radioprotective effect of bee venom against DNA 

damage induced by 915-MHz microwave radiation (SAR of 0.6 W/kg) (Gajski and Garaj-Vrhovac 

2009). Whole blood lymphocytes of Wistar rats are treated with 1 mg/mL bee venom 4 hours prior 

to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase 

(Fpg)–modified comet assays were used to assess basal and oxidative DNA damage produced by 

ROS. Bee venom decreased basal and oxidative DNA damage induced by microwave radiation. The 

difference between the comet assay results in the presence and in the absence of Fpg-enzyme 

suggested that oxidative stress is responsible for the DNA damage induced by microwave radiation.  

Among other possible mechanisms, antioxidant activity of bee venom may likely account for the 

radioporotective effect. 

 Esmekaya et al. analyzed effects of 1.8 GHz GSM  alone and in combination with Ginkgo 

biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (Esmekaya, Aytekin et al. 

2011). RF exposure significantly increased frequency of sister chromatid exchanges (SCE)  and 

inhibited cell viability. No temperature difference was observed between sham control and RF 

exposed cells, so the observed effects may be considered as non-thermal. EGb 761 pre-treatment 

significantly reduced both RF effects. The authors concluded that EGb 761 had a protective role 

against RF induced mutagenesis. 

 Ozgur et al investigated oxidative damage and antioxidant enzyme status in the liver of 

guinea pigs exposed to mobile phone-like radiofrequency radiation (RFR) and the potential 

protective effects of N-acetyl cysteine (NAC) and epigallocatechin-gallate (EGCG) on the oxidative 

damage (Ozgur, Gler et al. 2010). Nine groups of guinea pigs were used to study the effects of 

exposure to an 1800-MHz Global System for Mobile Communications (GSM)-modulated signal 

(average whole body Specific Absorption Rate (SAR) of 0.38W/kg, 10 or 20 min per day for seven 

days) and treatment with antioxidants. Significant increases in malondialdehyde (MDA) and total 
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nitric oxide (NO) levels and decreases in activities of superoxide dismutase (SOD), 

myeloperoxidase (MPO) and glutathione peroxidase (GSH-Px) were observed in the liver of guinea 

pigs after RFR exposure. NAC treatment induced increase in hepatic GSH-Px activities, whereas 

EGCG treatment alone attenuated MDA level. Extent of oxidative damage was found to be 

proportional to the duration of exposure. Authors concluded that the adverse effect of RFR may be 

related to the duration of mobile phone use. NAC and EGCG may protect the liver tissue against the 

RFR-induced oxidative damage and enhance antioxidant enzyme activities. 

Female rats were exposed to a mobile phone signal (900 MHz), the mobile phone plus 

vitamin C group was exposed to a mobile phone signal (900 MHz) and treated orally with vitamin 

C (Imge, Kilicoglu et al. 2010). Malondialdehyde (MDA), antioxidant potential (AOP), superoxide 

dismutase, catalase (CAT), glutathione peroxidase (GSH-Px), xanthine oxidase, adenosine 

deaminase (ADA) and 5'nucleotidase (5'-NT) were analyzed in brain tissues. MW exposure caused 

an inhibition in 5'-NT and CAT activities. GSH-Px activity and the MDA level were also found to 

be reduced in the mobile phone group but not significantly. Vitamin C caused a significant increase 

in the activity of GSH-Px and non-significant increase in the activities of 5'-NT, ADA and CAT 

enzymes. The results suggest that vitamin C may play a protective role against detrimental effects 

of mobile phone radiation in brain tissue. 

To conclude this section, several studies consistently show that supplementation with 

antioxidants and radical scavengers can reduce MW effects. In other words, the level of radicals 

should be considered as  an important parameter for the NT MW effects. Moreover, these studies 

indicate that induction of radicals is one of the key events in  bioeffeds of NT MW. 

 

 

XVIII.  CO-EXPOSURE 

 

Zmyslony et al have studied  effects of  930 MHz continuous wave (CW) electromagnetic 

field, 1.5 W/kg,  on  the reactive oxygen species (ROS) level in rat lymphocytes (Zmyslony, 

Politanski et al. 2004). Acute (5 and 15 min) exposure did not induce ROS. However, this exposure 

increased effect of FeCl2, 10 µg/ml. 

 Co-exposure to RF (global system for mobile telecommunications (GSM) modulated 

900MHz signal at a specific absorption rate (SAR) of 1 W/kg and maximum duration 144 h) 

exacerbated neurotoxic effect of hydrogen peroxide in SN56, but not in primary cortical neurons 

(Del Vecchio, Giuliani et al. 2009).  These data suggest that only under particular circumstances 
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(cell type and type of co-exposure) exposure to GSM modulated, 900MHz signal act as a co-

stressor for oxidative damage of neural cells. 

 

 

XIX.  REPLICATION STUDIES 

 

Obviously, not taking into account the dependences of NT MW effects on a number of 

physical parameters and biological variables may result in misleading conclusions regarding the 

reproducibility of these effects. Especially important might be the observations that NT MW could 

inhibit or stimulate the same functions dependent on conditions of exposure (Pakhomov, Akyel et 

al. 1998). Under different conditions of exposure, MW either increased or decreased the growth rate 

of yeast cells (Grundler, Jentzsch et al. 1988), the radiation-induced damages in mice 

(Sevast'yanova 1981), the respiratory burst in neutrophils of mice (Gapeev, Iakushina et al. 1997), 

the condensation of nucleoids in E coli cells (Belyaev, Shcheglov et al. 1993; Belyaev, Alipov et al. 

1994) and human lymphocytes (Sarimov, Malmgren et al. 2004). Potentially bi-directional effects 

of MW should be taken into account in replication studies. 

In some cases when the conditions were kept in strict control, the effects we reproduced. 

Highly resonant effects of ultra-weak MW (near 70 GHz) on the induction of λ-phage were first 

established by Webb (Webb 1979), and subsequently corroborated (Lukashevsky and Belyaev 

1990). 

Despite of considerable body of studies with NT MW in biology, only a few studies were 

performed to independently replicate the original data on the NT MW effects. It should be noted, 

that these replications are usually not completely comparable with the original studies because of 

either missing description of important parameters of exposure or significant differences in these 

parameters between original study and replication. One well-known attempt to replicate the results 

of Gründler was the study by Gos and co-authors (Gos, Eicher et al. 1997). No MW effects were 

observed in this replication study. However, the deviations from the Gründler’s protocol might be a 

simple reason for poor reproducibility. For example, synchronized cells were used in studies of 

Gründler. Contrary to the Gründler’s original protocol, Gos used exponentially growing cells. If the 

MW effects in yeast cells are dependent on stage of growth, cell density and intercellular 

interactions as it has been described for E. coli cells (Belyaev, Shcheglov et al. 1993; Belyaev, 

Alipov et al. 1994; Belyaev, Shcheglov et al. 1996; Shcheglov, Belyaev et al. 1997), no response 

should be expected in the logarithmic phase of growth. Gos and colleagues used S. cerevisiae strain 

with the auxotrophy mutations for leucine and uracil. Gründler used the wild type strain. It might 
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suggest another cause for the deviations between the data of Gründler and Gos. Despite orientation 

of SMF in respect to electric and magnetic components of MW was the same, the values of SMF 

were different. The stray ELF field was 120 nT in the study by Gos, that is higher than usually 

observed background fields, < 50 nT. The spectral characteristics of the background fields, which 

were described only in the study by Gos, might be also different. In addition, the conditions of cell 

cultivation might vary between studies; for example, the data on oxygen concentration in media 

used in both studies are not available. 

Lai and Singh have consistently reported that circularly polarized MW exposure at 2450 

MHz induced DNA damage in brain cells of the exposed rats (Lai and Singh 1995; Lai and Singh 

1996; Lai and Singh 1997). Replication studies have also tested circularly polarized MW exposure 

at 2450 MHz and no induced DNA damage was reported (Malyapa, Ahern et al. 1997; Malyapa, 

Ahern et al. 1998; Lagroye, Anane et al. 2004). All these replication studies have used another 

exposure system. However, handedness of circular polarization has not been given neither in 

original study, no in replications. If the handedness was different between studies it could 

reasonably account for inconsistency. 

Most reviews of the experimental studies do not include analysis of various biological 

variables and physical parameters when comparing the data on the NT MW effects from different 

studies. As result, misleading conclusion is often made that MW at NT levels produce no 

“reproducible” effects. 

 

 

XX.  SIMILARITY OF MICROWAVE AND ELF EFFECTS 

 

 Mobile phones not only expose the user to RF EMF but also to ELF EMF (Linde and Mild 

1997; Heath, Jenvey et al. 1998; Jokela, Puranen et al. 2004; Ilvonen, Sihvonen et al. 2005; Cook, 

Saucier et al. 2006; Perentos, Iskra et al. 2007). Perentos et al. have recently measured and 

characterized the ELF magnetic field from several commercial GSM handsets (the RF 

characteristics being already well understood) using different probes which covered frequency 

range from static magnetic fields ("0 Hz") to  2 GHz. Peak ELF fields at the front sides of 5 

commercial GSM phones were assessed and a maximum of 22.4 µT was reported (Perentos, Iskra et 

al. 2008). The main ELF component at the 217 Hz was about 1 µT at the distance of 3 cm from the 

handset front side. The overall pulse peak was 4.2 times greater than the 217 Hz component. 217 

Hz magnetic field decreased with distance and reached 0.3 µT approximately at 5 cm from the front 

handset side. The overall ELF pulse peak produced by all ELF components was 4.2 times greater 
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than the 217 Hz component. The ELF fields higher 0.3 µT have consistently been shown to 

correlate with increased risk of children leukemia in several studies covering European countries, 

USA and Japan (Kabuto, Nitta et al. 2006; Yang, Jin et al. 2008). Similar to RF, ELF has been 

classified by the IARC as possible carcinogen "2B". It has been known for long time that weak ELF 

fields and NT MW result to similar effects with significant overplaying of molecular biological 

pathways for their appearance (Adey 1981; Blank and Goodman 2009; Davanipour and Sobel 

2009). Multiple data on ELF biological effects at intensities below the ICNIRP standards are 

available showing their complex dependence of the ELF effects on biological and physical variables 

(Belyaev, Alipov et al. 1999; Blank and Goodman 2009; Phillips, Singh et al. 2009; Sarimov, 

Alipov et al. 2011). In particular, stress response, molecular pathways for generation of reactive 

oxygen species (ROS), increased sensitivity of stem cells,  and inhibition of melatonin production 

(Burch, Reif et al. 2000) were suggested as mechanisms which link observed increase in cancer 

risks and effects of exposure at the cellular level. EMF effects in a wide frequency range from ELF 

to MW have been considered in the frames of the same physical models (Chiabrera, Bianco et al. 

1991; Matronchik, Alipov et al. 1996; Chiabrera, Bianco et al. 2000; Binhi 2002; Panagopoulos, 

Karabarbounis et al. 2002; Matronchik and Belyaev 2005; Matronchik and Belyaev 2008). 

In many cases, because of ELF modulation and additional ELF fields created by the MW 

sources, for example by mobile phones, it is difficult to distinguish the effects of exposures to ELF 

and MW. Therefore, these combined exposures and their possible cancer risks should be considered 

in combination. 

 

 

XXI.  CANCER RISK ASSESSMENT FROM MECHANISTIC POINT OF VIEW 

 

 At present, a new situation has arisen when a significant part of the general population is 

exposed chronically (much longer than previously investigated durations of exposures) to NT MW 

from different types of mobile communication including GSM and UMTS/3G phones and base 

stations, WLAN (Wireless Local Area Networks), WPAN (Wireless Personal Area Networks such 

as Bluetooth), DECT (Digital Enhanced (former European) Cordless Telecommunications) wireless 

phones (Joseph, Frei et al. 2010). Multiple sources of mobile communication result in chronic 

exposure of general population to MW at the non-thermal levels. These exposures are characterized 

by low intensities, varieties and complexities of signals, and long-term durations of exposure that 

are comparable with a lifespan. 
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Most of the real signals that are in use in mobile communication have not been tested so far. 

Very little research has been done with real signals and for durations and intermittences of exposure 

that are relevant to chronic exposures from mobile communication. In some studies, so-called 

“mobile communication-like” signals were investigated that in fact were different from the real 

exposures in such important aspects as intensity, carrier frequency, modulation, polarization, 

duration and intermittence. 

Emerging evidence suggests that the SAR concept, which has been widely adopted for 

safety standards, is not useful alone for the evaluation of health risks from NT MW of mobile 

communication. The role of other exposure parameters such as frequency, modulation, polarization, 

duration, and intermittence of exposure should be taken into account. 

IARC has recently classified RF as a ‘Possible Human Carcinogen’ (Class 2B) (Baan, 

Grosse et al. 2011). Contrary to other panels, such as ICNIRP, whose members dismiss the NT MW 

effects based on their "non-reproducibility" and lack of comprehensive mechanisms, the IARC 

working group included scientists, which argued for existence of non-thermal effects and their 

complex dependence on variety of biological and physical parameters which should be included in 

consideration. By its classification, IARC has justified implementation of the Precautionary 

Principle, confirmed the existence of non-thermal effects that can cause health risks, and indicated 

that the current safety standards are insufficient to protect health. 

The data about the effects of MW at super low intensities and significant role of duration of 

exposure in these effects along with the data showing that adverse effects of NT MW from 

GSM/UMTS mobile phones depend on carrier frequency and type of the MW signal suggest that 

MW from base-stations/masts, wireless routers, WI-FI and other wireless devices and exposures in 

common use today can also produce adverse effects at prolonged durations of exposure. 

So far, most laboratory and epidemiological studies did not control important features of the 

NT MW effects and therefore, only limited conclusion regarding health effects of MW from mobile 

communication can be drawn from these studies. The group of Hardell was the first epidemiologic 

studying separately the MW signals from cordless phones, analogue phones and digital phones 

(Hardell, Hansson Mild et al. 2001; Hardell, Hansson Mild et al. 2003; Hardell, Eriksson et al. 

2005; Hardell and Hansson Mild 2005). This approach is valid from the mechanistic point of view. 

Nowadays, it is almost impossible to select control unexposed groups because the whole 

population in many countries is exposed to wide range of MW signals from various sources such as 

mobile phones, base stations/masts, WLAN, WPAN, DECT wireless phones and given that 

duration of exposure (at least 10 years for cancer latency period) is also important for the effects of 

NT MW along PD/SAR. Exposure from downlink sources (base stations etc.) may contribute up to 
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90% of total environmental outdoor-urban exposure in European countries while exposure to DECT 

phone is comparable to exposure to mobile phones (Frei, Mohler et al. 2009; Frei, Mohler et al. 

2010; Joseph, Frei et al. 2010).  In other words, there are no unexposed control groups available for 

epidemiologic studies in the developed countries.  Substantial variation in relative ratio of downlink 

and uplink signals between countries (Joseph, Frei et al. 2010) can at least partially account for 

differences in epidemiologic data because of variation in exposure of control groups to downlink 

signals. 

 While several national registers (Norway, Australia, Finland, Denmark) report increased 

incidence of brain cancer, US and Swedish ones do not.  This inconsistence may be accounted by 

deficit in reporting of tumors to the Swedish Cancer Registry (Hardell and Carlberg 2009). 

Importantly, because the signals are completely replaced by other signals faster then once 

per 10 years, duration comparable with latent period, epidemiologic studies can not provide 

basement for assessment of upcoming new signals. 

As far as different types of MW signals (carrier frequency, modulation, polarization, far and 

near field, intermittence, coherence, etc.) may produce different effects, cancer risks should ideally 

be estimated for each MW signal separately. In other words, one type of MW signal would 

correspond to one chemical compound. That means, for example, that each from 124 signals 

involved in GSM uplink mobile communication should be separately evaluated to fit situation 

accepted for estimation of cancer risks from chemical compounds. 

 It now appears that most, if not all, adult tissues and organs including blood and brain 

contain stem cells (Metcalfe and Ferguson 2008). Almost all hematopoietic and solid neoplasms 

arise from cancer stem cells that are dysfunctional versions of a normal stem cells. Current models 

for radiation carcinogenesis have paid much attention to the stochastic process of energy deposition 

in cells, but accumulating evidences have shown that the nature of the target cells, i.e. tissue stem 

cells and progenitor cells, needs to be taken into consideration (Niwa 2010; Richardson 2011). Stem 

cell self-renewal and progenitor differentiation is regulated by the specialized microenvironment—

or “niche”—in which these cells reside (Alvarez-Buylla and Lim 2004) and which regulate stem 

cells (Morrison and Spradling 2008; Johansson, Cappello et al. 2010; Kim and Shivdasani 2012; 

Sugiyama and Nagasawa 2012)..Importance of stem cells for carcinogenesis, challenges the 

definition of volume for SAR determination in safety standards. Instead of random distribution  of 

targets for carcinogenesis, localized distribution of SAR in stem cells and niches is needed. Because 

very small size of the niches in different tissues including the brain (Kazanis 2012), the SAR 

averaging should be performed at volumes much less then currently accepted 10 g. Decreasing the 

sensitive volume to the stem cell niches with sizes down to 10 μm (Richardson 2011) may likely 
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put almost all mobile phones out of the current safety standards, even given that they are only based 

on thermal effects and do not consider any other parameters except for SAR. From point view of 

stem cell organization, the volume of SAR determination may be especially important for setting 

the safety standards for children. During brain development, most stem cells and their niches are 

spatially ephemeral and temporally transient as the cellular and molecular “puzzle” behind 

neurogenesis and morphogenesis is “assembled” and “disassembled” at a dazzling pace. In contrast, 

in the adult, neural stem cells and their niches are retained in restricted regions with their local 

developmental processes occurring for the life (Alvarez-Buylla and Lim 2004). 

It should be anticipated that some part of the human population, such as children, pregnant 

women and groups of hypersensitive persons could be especially sensitive to the NT MW 

exposures. 

 

XXII.  CONCLUSIONS 

 

Non-thermal effects of microwaves depend on variety of biological and physical parameters 

that should be taken into account in setting the safety standards. These exposures can cause health 

risk. The current safety standards are insufficient to protect from non-thermal microwave effects. 

Emerging evidence suggests that the SAR concept, which has been widely adopted for safety 

standards, is not useful alone for the evaluation of health risks from NT MW of mobile 

communication. Other parameters of exposure, such as frequency, modulation, duration, dose 

should be taken into account. New standards should be developed based on knowledge of 

mechanisms of non-thermal effects. Importantly, because the signals of mobile communication are 

completely replaced by other signals faster then once per 10 years, duration comparable with latent 

period, epidemiologic studies cannot provide basement for cancer risk assessment from upcoming 

new signals. Precautionary Principle should be implemented while new standards are in progress. In 

many cases, because of ELF modulation and additional ELF fields created by the MW sources, for 

example by mobile phones, it is difficult to distinguish the effects of exposures to ELF and MW. 

Therefore, these combined exposures and their possible cancer risks should be considered in 

combination. It should be anticipated that some part of the human population, such as children, 

pregnant women and groups of hypersensitive persons could be especially sensitive to the non-

thermal microwave exposures. 
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I.  INTRODUCTION 

A.  The “kT Problem” 

 
The biological effects of weak extremely-low frequency (ELF) magnetic fields (MFs) have long 

been a subject of controversy, with many expressing skepticism as to their very existence: ELF-MFs 

have lacked a credible mechanism of interaction between MFs and living material.   

 

A prominent conceptual objection has been the “kT problem” (Binhi, 2007). This “problem” can 

be summarized by the very large ratio between the energy available from a quantum of ELF radiation 

(2.47  ×10−13 eV) and the thresholds for ionization of atoms (4.34 eV for potassium), chemical 

activation (~ 0.7 eV), or even the 0.156 eV able to transfer protons across gA channels (Chernyshev, 

2002).  

 

What these numbers show is that ELF MFs are certainly not able to have effects through these 

particular mechanisms, but a detailed theoretical analysis (Binhi, 2007) does not preclude that ELF-MF 

effects could occur in other ways. MFs can alter the shape of the orbitals of particles without 

substantially altering their energies, possibly leading to very low thresholds for MF biological effects. 

Rather than a pure energy problem, as stated above, the true “problem” is to determine if biological 

structures exist that can be disturbed by very low-amplitude ELF MFs. 

 

 

II.  KEY SCIENTIFIC EVIDENCE 

B.  Magnetic Sensors 

 
Modern electronics provides interesting examples, such as the MOSFET, where tiny signals can 

control large energies: a voltage applied to a gate with nominally zero current allows control of 

substantial drain currents.  Biological systems have their own sources of energy, and the MF need only 

contribute a perturbing influence. 

 

In the context of ELF MF effects, it is useful to examine the transducers of MF-measuring 

instruments. Induction coils have long been the item of choice for many such instruments, but they 

suffer from a lack of analogy with possible biological equivalents, in that they gather signal from 
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substantial surfaces (the coil core), and then concentrate the action of the magnetic flux variations 

gathered over that considerable area at a single point, the contact of the winding. 

Hall-effect probes are closer to the mark, in that they detect the potential difference created by a 

MF on a current flowing in a semi-conductor. Here, the MF acts to deflect a current flow that is 

powered by an extraneous source. This device dissociates the energy available from the MF itself from 

the energy it controls. 

Another electronic device even closer to the biological transducer we seek is the Spin Tunnel 

Junction (Micromagnetics, 2012). Such a junction is made of two ferromagnetic metal layers separated 

by an insulating barrier of a few nanometers (Fig. 6). If a small voltage is applied across the junction, 

electrons will tunnel through the barrier, according to the ambient MF. The device’s MF sensitivity is 

based on spin-coherent tunneling: the probability of an electron tunneling across the barrier is 

dependent on its spin, because an electron of a given spin must tunnel to an unfilled state of the same 

spin. Even the simplest free-electron descriptions of Spin Polarization and Tunneling 

MagnetoResistance confirm that junction characteristics  are  determined  not  only  by  the  

ferromagnetic layers, but  depend as well on the properties of the barrier (Tsymbal, 2003). Solid-state 

Spin Tunnel Junctions can detect MFs as low as 0.26 nT at 60-Hz.  What these solid-state devices 

demonstrate is that very small MFs can have effects within the bulk of materials, and that changes in 

the properties of insulating materials can affect electron tunneling. 

 

C.  Magnetic Fields and Incubators  

 
MF experiments with living cells are immediately faced with a practical problem. Cell culture 

incubators have within them relatively large MFs, due to their relatively weak attenuation of 

environmental MFs, and to the necessity of implementing controlled heating, humidity and CO2 

concentration conditions. The first control simulates body temperature, the second avoids osmotic 

imbalance through evaporation, and the third stabilizes pH values within cell culture media. Table 1 

was compiled in a survey of 46 incubators used in research (Su, 2012), and showed that average MFs in 

water-jacketed CO2 incubators range from 0.9 to 13 µT. 

The reaction of many investigators to this situation has been to compensate for the high 

backgrounds by using even larger MFs in their experiments. According to the conventional dose-

responses expected in Toxicology, the effect of an agent can be detected even in the presence of a 

background exposure, since the biological response is expected to rise smoothly with dose. Many 
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investigators must also have felt that more robust data would be obtained using larger exposures, and 

that background MFs in incubators could be tolerated. 

 
 Table 1. Summary MF Table of 46 Surveyed Incubators (in μT). 

 

Brand Model Type Mean Min Max 
Max 

Background 

New Brunswick G-25 Shaker 0.39 0.2 0.81 2.06* 

Chicago Surgical Ele.  N.A. General 0.61 0.25 1.21 3.32* 

Forma Scientific 3956 General 0.76 0.2 2.64 0.22 

Fisher Sci. Isotemp General 0.76 0.05 1.85 0.32 

Fisher Sci. 637D General 0.84 0.22 2.49 0.23 

Forma Scientific 3157 CO2 W 0.91 0.11 2.66 1.77* 

Thermo Electron N.A. Shaker 0.98 0.57 1.58 5.86* 

Nuaire US auto flow CO2 W 0.99 0.4 2.28 1.34* 

Thermo Forma 3310 CO2 W 1.04 0.32 3.75 0.68* 

Innova New Brunswick 4200 Shaker 1.17 0.31 2.97 0.4 

Fisher Isotemp 281 General 1.86 1.2 2.22 0.47 

Baxter WJ501 CO2 W 1.87 0.77 5.27 1.6* 

Sanyo N.A. CO2 2.77 0.85 6.72 0.3 

New Brunswick G-25 Shaker 2.79 0.42 16.13 0.31 

Sanyo O2/ CO2 MCO-18M CO2 2.8 1.48 4.14 0.81* 

Sanyo MCO_19AIC CO2 2.94 1.63 5.17 3.31* 

Sanyo MCO-20AIC CO2 3.12 1.22 6.64 6.68* 

Hera Cell 240 CO2 3.28 2.36 4.62 1.48* 

Baxter Tempcon General 3.36 0.61 7.43 1* 

Innova New Brunswick 4000 Shaker 3.47 1.27 9.53 0.36 

Hera Cell N.A. CO2 3.65 2.68 4.49 0.26* 

Thermo Scientific 370 CO2 3.84 1.9 7.01 0.64* 

New Brunswick C25 Shaker 3.88 0.33 17.74 0.96* 

Thermo Electron 3110 CO2 W 3.91 1.19 8.56 0.92* 

Nuaire Nu4750 CO2 W 3.95 0.77 10.38 0.64* 

Thermo Scientific 370 CO2 3.99 2.03 6.25 0.96* 

Forma Scientific 3130 CO2 W 4.67 1.53 11.14 1.37* 

Forma Scientific 3110 CO2 W 5.44 1.77 12.59 2.42* 

Fisher Sci. 546 CO2 W 6.58 2.36 16.88 0.38 

Forma Scientific N.A.(Old) CO2 6.71 2.32 16.83 1.36* 

Thermo Electron 3130 CO2 W 6.79 1.73 16.97 18.9*** 

Thermo Electron 3110 CO2 7.55 1.83 18.28 3.92* 

Revco N.A.(Old) CO2 7.67 3.57 17.76 1.27* 

Napco 3550 CO2 7.8 3.52 13.42 2.84* 

Thermo Electron Napco 3550 CO2 7.83 3.81 12.13 1.63* 

Fisher Sci. Isotemp 546 CO2 W 9.61 2.34 37.58 0.76* 

Thermo Forma 3110 CO2 W 9.73 2.73 24.14 0.47* 

N.A. N.A. General 10.46 3.57 19.51 0.2 
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Thermo Forma 3110 CO2 W 11.89 3.3 30.41 0.49* 

Gallenkamp N.A. General 11.96 3.06 37.17 2.3* 

Fisher Sci. 610 CO2 12.3 5.15 35.52 1.59* 

Forma Scientific 3158 CO2 W 13.08 2.62 50.64 1.61* 

Labline 3527 Shaker 14.04 3.62 42.74 11.87** 

WWR international 2005 General 15.48 4.92 47.37 1.28 

Forma Scientific 546 CO2 16.5 2.61 74.47 3.45* 

Sanyo MIR152 CO2 26.98 5.67 120 0.34* 

Type “CO2 W” means CO2 incubator with water jacket. “Max Background” refers to measurements outside the incubators. * 

measured at 50 cm or halfway between the incubator and other electric equipment. ** 5 cm to another incubator. *** 10 cm 

to a power outlet panel. For more details, refer to Dong and Héroux, 2012. 

 
 

D.  Magnetic Shielding 

 
If it is desired to eliminate the background MFs of incubators to low levels, shielding must be 

implemented within the incubators. We achieved this in our own experiments using structural steel 

cylinders 6.3 mm in thickness. As shown in Fig. 1, culture vessels are centered in concentric 

rectangular structural steel pipes 5.1 x 7.6 x 20 cm, 7.6 x 10.2 x 20  cm and 15.2 x 24.5 x 36 cm. This 

configuration reduces 60-Hz MFs by a factor of 144, providing “unexposed” cells with a MF 

environment of 3 nT, slightly below the measurement floor (5 nT at 60-Hz) of our Narda EFA-300 MF 

instrument (Li, 2012a). The shielding weighs about 20 kg, and is subject to corrosion, if used in the 

incubator for long periods of time. Fig. 2 shows the change along the axis of the shielding in the 

triaxially integrated MF. Static MFs within the shields are slightly lower than 50 µT, as structural steel 

is de-magnetized during production, but of random direction. 

 
 
 
 
 
 
Fig. 1. The three layers of magnetic shielding. The Narda EFA-
300’s MF probe is in place of the culture vessel. MF coils for 
exposure are below, but not in contact with the two smaller 
shields, insulated from the outer shield by a layer of rigid foam. 
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Fig. 2. MF density (µT) generated by an exposure coil vs longitudinal distance inside a magnetic shield 
pair. The two red lines show the extent of T-25 and T-12 culture vessels, and the yellow rectangle is the 
smaller shield outline. 
 
 
 

E.  Experiments on Cells  

 
We conducted experiments on 5 cancer cell lines, with the objective of bringing high precision 

to our in vitro determinations. This objective was reached using automated data acquisition and real-

time computer vision, which allowed automated recognition of cells, apobodies and decay particles in 

cell cultures (Héroux, 2004). In order to reduce deviations related to changing cell culture media, our 

work used a single synthetic medium (rather than Fetal Bovine Serum) for all 5 cancer models 

investigated (Li, 2012b). 

We first focused our work on changes in the behavior of our cell models under various levels of 

oxygen. Somewhat surprisingly, all 5 models survived even under anoxic (0 % oxygen) conditions, 

confirming the exceptional flexibility of cancers cells, able to thrive under anoxia, presumably by 

finding glycolysis-based sources of cellular energy even in the absence of oxygen. 

Low oxygen conditions are actually quite representative of the normal environment of many cells in the 

body, and are certainly a better in vitro representation of the environment of tumor cells, which grow in  

oxygen  and  nutrient-restricted environments.   

Withdrawal of oxygen suppresses metabolism, as a major combustible of mitochondrial ATP 

synthesis, oxygen, is eliminated. Metabolism can also be suppressed by a number of chemicals such as 

oligomycin, imatinib and melatonin-vitamin C, which we collectively designated as “metabolic 

restrictors”. 

 

 

 

F.  Karyotype Contraction 

     

When grown under anoxia (as opposed to atmoxia which is 21 % oxygen, and the commonly 

used cell culture condition) our 5 cancer cell models lost 6 to 8 chromosomes from their normal 
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number (Table 3). Further, in  the  presence  of strong doses of antioxidant  metabolic  restrictors,  the  

cell  lines  quickly reverted to almost normal chromosome numbers (47 – 49). The anoxic cells showed 

increases in proliferation rate, and the acquisition of a stable, stem phenotype.  

Using our 5 hyperploid (54 – 69 chromosomes) cancer cell models, we found that our cells 

adjusted their chromosome numbers up or down, to match their micro-environment, through rapid 

mechanisms of  endo-reduplication (unscheduled, extra-mitotic chromosome duplication) or  

chromosome  loss. We called this reversible loss of chromosomes under suppressed metabolism 

“Karyotype Contraction” (KC).  

Anoxic K562 displays a very stable karyotype, with 75 % of the cells having either 61 or 62 

chromosomes. With the knowledge that metabolic changes would change these chromosome counts, 

we then set out to investigate the effects of ELF MFs on this model, while we carefully controlled MFs 

using the shielding techniques described above. We were then using KC as a metabolic scale. 

Starting from cell cultures maintained in a pre-industrial environment (less than 4 nT 60-Hz 

MF), our 5 cancer cell lines were exposed to constant ELF-MFs within the range of 0.025 to 5 µT, and 

the cells were examined for karyotype changes after 6 days.  

As shown in Table 2, all cancer cells lines lost chromosomes from MF exposures, with a mostly flat 

dose-response. It seemed that the number of chromosomes lost was more specifically connected to the 

particular cell type than to the MF level, although the two erythro-leukemia cell types both showed a 

dose-response between 25 and 400 nT. 

Surprisingly, constant MF exposures for three weeks allowed a rising return to the baseline, 

unperturbed karyotypes. From this point, small MF increases or decreases (10 %) were then again 

capable of inducing karyotype contractions (Li, 2012a).  

 

 

 

 

 

Table 2. Karyotype Contraction (mean number of chromosomes lost over 6 days) 

 

Magnetic Field 

(nT) 

Anoxic  

K562 

Erythroleukemia 

Atmoxic  

HEL 

Erythroleukemia 

Atmoxic  

NCI-H460 

Lung cancer 

Anoxic  

MCF-7 

Breast cancer 

Atmoxic 

COLO-320DM 

Colon cancer 

25 2.21         

50 4.92 10.22 7.52 11 5.36 

100 8.18 11.55       

200 11.04         
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400 10.4 12.79 7.55 10.64 5.85 

700 9.52         

1000 7.69     10.68   

1500 9.94         

5000 12.1 13.03 7.46 10.95 5.78 

 
 

 

 

Table 3. Karyotype Contraction (mean number of chromosomes lost over 6 days) 

 

Cell 

Atmoxic Modal 

Chromosome 

Number 

Anoxic KC 
Anoxic to MF 

Saturation KC 
Atmoxic to MF 

Saturation KC 

Atmoxic to 

Anti-Oxidant 

Suppression 

KC* 

K-562 

Erythroleukemia 
69 7 10.12  21.34 

HEL 

Erythroleukemia 
66 7  12.91 18 

MCF-7 

Breast cancer 
82 8 10.82  18 

NCI-H460 

Lung cancer 
57 6  7.51 10 

COLO-320DM 

Colon cancer 
54 6  5.66 7.7 

Average 65.6 6.8 10.47 8.69 15.01 

Condition + O2 - O2 - O2   + MFs O2    + MFs 

O2    +  

Oxidative 

Inhibition 

 
The conclusion from these observations was that MFs act as a metabolic inhibitor, even at very low 

levels commonly encountered in the normal environment. 

 

G.  ATP Synthase 

 
Supplementary tests carried out by comparing MF-exposed cell cultures to cultures exposed to 

various metabolic suppressors showed that the MF-exposed cultures were remarkably similar to those 

exposed to oligomycin A, a specific inhibitor of the Fo segment of the enzyme ATP Synthase (ATPS). 

But how could MFs as low as 25 nT alter the activity of ATPS? ATPS has the structure of a 

motor-generator than normally produces ATP using the energy of a flow of protons through a turbine-

like structure, Fo. MFs apparently impaired the flow of protons through ATPS Fo. 
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Fig. 3. The structure of ATPS Fo: entry and exit channels for the movement of protons (Yoshida, Tokyo 

Institute of Technology). 

 

Russian physicists (Semikhina 1981; Semikhina 1988)  have reported that very low levels of 

ELF MFs (25 nT) can alter the structure of water, and that the effects of the altered water structure 

would be particularly important under high concentrations of protons and water molecules. An 

interesting aspect of these changes in water structure is that the transition between states takes several 

hours.  

As it turns out, the entry and exit channels of ATPS Fo (Fig. 3) are hydrophilic channels, which 

means that they are expected to be filled with water molecules, and the intermembrane potential of 

mitochondria maintains a large electric field (180 kV/cm) which concentrates protons within them. 

These locations seem ideal to embody the low level effects documented by Semikhina and Kiselev. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The many regulatory pathways of 

AMPK, with the hypoxic (1), metformin (2) 

and ATPS suppression sites (3) labeled 

(http://www.cellsignal.com/). 

 
 

H.  AMPK 

 
If the mechanism was indeed as we thought, then MFs would alter the production of ATP in cells. If 

this happened, another important intracellular enzyme, AMP-activated protein kinase (AMPK), would 

http://www.cellsignal.com/
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immediately be activated, as AMPK is extremely sensitive to changes in the level of ATP. We tested 

this hypothesis by two supplementary assays involving metformin and resistin. As expected, MF effects 

were amplified by metformin, an AMPK stimulator, and attenuated by resistin, an AMPK inhibitor (Li, 

2012a). 

 

Our data therefore suggests that the karyotype contractions caused by MFs stem from 

interference with mitochondria’s ATP synthase (ATPS), compensated by the action of AMPK. The 

involvement of AMPK also conveniently explains the slow restoration of karyotypes to their original 

level after 3 weeks, as AMPK is not only fast-acting to restore ATP levels, but slow-acting through its 

numerous metabolic and genetic regulation pathways (Fig. 4). It may also explain the unusual 

observation where increases or decreases in MF exposures can both produce KCs (Li, 2012a). 

 

I.  In the Channels 

 

Some enzymes operate faster than predicted by classical thermodynamics, and their increased speed 

can be explained by tunneling of protons or electrons through activation barriers (Garcia-Viloca, 2004; 

Olsson, 2004). Quantum tunneling for protons over 6 nm through bridging by water molecules has 

been observed in tryptamine oxidation by aromatic amine dehydrogenase, for example, and tunneling 

in enzymatic reactions is now widely accepted in biological models (Masgrau, 2006). 

It is of interest to examine how protons may flow through ATPS Fo channels. The protons 

trickle through a thin pipe of water molecules, propelled by an electric field of about 180 kV/cm. 

Adiabatic tunneling should be more efficient than non-adiabatic coupling, implying that disturbances 

along the channel could result in loss of channel transparency. Proton-coupled electron transfer 

underpins many biological reactions, and may occur as unidirectional or 

bidirectional, and synchronous or asynchronous, transfer of protons and 

electrons (Reece, 2009).  

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Tryptamine


11 
 

Fig. 5.     The ATPS Fo proton hydrophilic channel. Hydrophilic side chains and residues are in green 

and blue. (from Sasada R, Marcey D. ATP Synthase, 2010. 
http://www.callutheran.edu/BioDev/omm/jmolxx/atp_synthase/atp_synthase.html#fig1). 

 

 

It is probable that both electrons and protons tunnel through the channel, making theoretical 

analysis more complex, especially as electrons meet with different protons along a chain. Since protons 

are much heavier than electrons (x1836), their wavelength is 43 times shorter (inverse square root), and 

electrons may transfer over longer distances (Moser, 1992; Gray, 1996). Thus, electron transfer can 

span fractions of nano-meters, while proton transfer occurs mostly within a hydrogen bond (less than 

0.197 nm). The hydrogen bond strength (23.3 kJ/mol) is just 5 times the average thermal fluctuation 

energy. Quantum chemical calculations show that this strength can vary as much as 90 %, depending 

on the level of cooperativity or anti-cooperativity within water molecule chains, which corresponds to a 

bond length change of 9 %, or 0.018 nm (Hus, 2012). 

 

This limited reach of proton tunneling and its delicate dependence on water cluster structure 

may be  major factors underlying the sensitivity of ATPS performance to MF-exposed water. 

 

J.  Water ‘Remanence’  

 

From our observations, particularly the fact that exposed cell culture medium can retain 

memory of past MF exposures (Li, 2012a), it does not appear that biological effects of MFs, as we 

detected them, are based on a direct interaction with electrons or protons, but rather, as suggested by 

Semikhina and Kiselev, on an interaction between MF and the structure of water, which in turn 

influences electron and proton tunneling. The exact structure of the water molecule arrays responsible 

is not known, but may be connected with long-lived hydrogen bond structures which confer particular 

proton transparency to ATPS Fo water channels. This structure seems vulnerable to interference by 

MFs over a wide range of intensities and possibly frequencies (Kiselev, 1988). Perturbations to the 

structure of O-H bond vibrations has even been spectroscopically detected as slow (hours) transitions in 

water exposed to sunlight radiation (Yokono, 2009). 

This would not be the first instance of subtle changes in hydrogen bonds resulting in large 

influences in biology. A contemporary example relates to the selective uptake of phosphorus rather than 

arsenic by bacteria. The discrimination by a factor of 4,500 in phosphorus vs arsenic is based on a 4 % 
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distortion in a unique low-barrier hydrogen bond (Elias, 2012). 

 

 

III.  DISCUSSION 

 

There are similarities as well as differences between semi-conductor tunneling and ATPS 

tunneling. Both involve oxygen; tunneling distances, as well as the voltages applied (Fig. 6) are similar. 

But in semiconductor tunneling, only electrons are mobile, while protons move within ATPS. In the 

semiconductor, magnetic sensing is mainly through shifts in the populations of electrons with a given 

spin, determined by the electrodes. In ATPS, the transparency of the water channel seems determined 

by long-term MF exposures. 

 

 Perhaps least understood is how cells can metabolically compensate for various MF exposures 

over time, as shown by the restoration of their chromosome numbers after three week exposures (Li, 

2012a). Anoxia leads to permanent KCs, but other KCs from MFs or other anti-oxidants are transient. 

Most anti-oxidant and MF KCs are larger than the atmoxic to anoxic transition KCs, possibly because 

some oxygen is still available to cell metabolism, even under anoxic conditions. Anoxia and MFs 

together are effective metabolic suppressors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6      Tunneling in magnetic sensors and in ATPS water channels. 
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IV.  CONCLUSIONS 

 

The particularities of hydrogen bond structures in water can justify the subtle changes detected 

in water structure under MF exposures. Under specific circumstances, such water changes may 

influence the flux of protons in ATPS channels, thus inducing some biological effects of MFs. These 

interactions seem to involve very small energies, and also seem to require hours to establish 

themselves, thus bypassing the celebrated “kT problem”. These results may be environmentally 

important, in view of the central roles played in human physiology by ATPS and AMPK, particularly in 

their links to diabetes, cancer and longevity (Li, 2012a).  The wide range of MF amplitudes and 

frequencies that can potentially disturb ATPS make this effect a global health issue. Although society 

seems to compile diseases with more enthusiasm that longevity (Li, 2012a), it should be remembered 

that MF exposures may have both undesirable and desirable effects on health. 
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I.  Introduction 

 
Electromagnetic fields are widely used in therapeutic medical applications.  Proof of 

effectiveness has been demonstrated in numerous clinical applications of low-intensity ELF-

EMF and RF-EMF, each treatment employing specific characteristics of frequency, modulation 

and intensity to achieve its efficacy.   On the other hand, higher levels of EMFs encountered in 

the environment which are indiscriminately generated by technologies of the 20
th
 and 21

st
 

centuries may result in harm.   EMF levels which are allowable today under thermally-based 

public exposure standards do not take into account these clear indications of the sensitivities of 

the human body to EMFs.  If we are to promulgate public exposure standards that are protective 

of public health, then this body of evidence on healing with EMFs is of primary importance in 

developing biologically-based public exposure standards. 

 

 “Although incompletely understood, tissue free radical interactions may extend to zero field levels.  

Emergent concepts of tissue thresholds to imposed and intrinsic magnetic fields address ensemble or 

domain functions of populations of cells, cooperatively whispering together in intercellular 
communication and organized hierarchically at atomic and molecular levels.” 10 

 

 

 

II.  Therapeutic Uses for Electromagnetic Fields 

 

 

Since EMFs have been shown to be effective in treating conditions of disease at energy levels far 

below current public exposure standards, this body of evidence forms a strong warning that 

indiscriminate EMF exposure is ill advised.  Health concerns from indiscriminate exposure to 

EMF, as opposed to EMF exposures done with clinical oversight, could lead to harm as can the 

unsupervised use of pharmaceutical drugs.   

The consequence of multiple sources of EMF exposure in daily life, with no regard to cumulative 

exposures or to potentially harmful combinations of EMF exposures will pose future difficulties 

in identifying sources of disease (because of multiple and overlapping exposures) and time-

varying and geography-varying differences from person to person.   

Just as ionizing radiation can be used to effectively diagnose disease and treat cancer, it is also a 

cause of cancer under different exposure conditions.  Since EMFs are both a cause of disease, 
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and also used for treatment of disease, it is vitally important that public exposure standards 

reflect our current understanding of the biological potency of EMF exposures. 

 

“there is an abundance of experimental and clinical data demonstrating that exogenous EMFs of 

surprisingly low levels can have a profound effect on a large variety of biological systems.  Both 

electrical and electromagnetic devices have been demonstrated to positively affect the healing process in 

fresh fractures, delayed and nonunions, osteotomies, and spine fusion in orthopedics and for chronic and 

acute wound repair.  These clinical results have been validated by well-designed and statistically 

powered double-blind clinical trials and have survived meta-analyses.  The FDA has approved labeling 

for these biophysical devices, limited at present to these indications.”  “The potential clinical 

applications of EMF therapeutics extend far beyond those considered here and the clinical rewards are 

certain to be huge.”  “Cancer, cardiac muscle regeneration, diabetes, arthritis, and neurological 

disorders are just some of the pathologies that have already been shown to be responsive to EMF 

therapy.  Successful applications of low-frequency EMFs have been reported for treatment of bronchial 

asthma, myocardial infarction, and venous and varicose ulcers.  There is emerging research on EMF 

effects on angiogenesis and the manner in which this may increase stem cell survival in the treatment of 

Altzeimer’s (sic) and Parkinson’s diseases.  There are also many studies that point to the possibility of the 

use of  

EMF for peripheral nerve regeneration” and “ the treatment of cancer.”  “EMF therapy modalities are 

simple, safe and significantly less costly to the health care system.  They offer the ability to treat the 

underlying pathology rather than simply the symptoms. The time is particularly opportune given the 

increased incidence of side effects from the use of pharmacological agents.  EMF therapeutics will have a 

profound impact upon health and wellness and their costs worldwide.” 
1 

 

 

 

 

A.  Bone Repair 

 

Clinical use of pulsed EMF has been demonstrated to achieve bone repair, particularly in 

fractures that do not heal on their own.  Bone healing is stimulated by very weak electromagnetic 

fields that are far lower in strength than would produce tissue heating.  The FDA approved 

pulsed EMF for use in bone healing in 1979.  Since that time, many millions of patients have 
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benefited from this therapy. Since PEMF treatments are non-invasive and clinically effective, it 

has advantages to the patient in terms of reduced pain and suffering, reduction in health care 

costs, and effectiveness where other methods have failed to produce adequate clinical results.  

 

“It is now commonplace to learn the successful use of weak, nonthermal electromagnetic fields (EMF) in 

the quest to heal, or relieve the symptoms of a variety of debilitating ailments.  This chapter attempts to 

give the reader an introduction and assessment of EMF modalities that have demonstrated therapeutic 

benefit for bone and wound repair and chronic and acute pain.” 
2
 

 

Pilla provides extensive discussion of the “clinical evidence that time-varying magnetic fields 

(EMF) can modulate molecular, cellular and tissue functions in a physiologically significant 

manner.” 
2
   A description of the various waveforms and EMF modalities which are effective in 

bone and wound repair are beyond the scope of this paper, but are well documented. 
2
    In 

addition to documenting that bone repair in fractures is achieved with pulsed EMF at low 

intensities, Pilla also reports that pulsed EMF has been successful in promoting bone repair and 

healing of spine fusions for the treatment of chronic back pain from worn and/or damaged spinal 

discs. 
3
  The FDA has approved pulsed EMFs for bone healing and this is a widely recognized 

treatment, particularly for fractures that are slow to heal, or do not repair with conventional 

medical treatment.  It represents one of the best documented cases in science where the body 

clearly responds to low-intensity EMF signals for healing purposes; these EMF signals are far 

below current public exposure standards and are proof of the bioactivity (in a beneficial form as 

applied). 

 

Liboff describes signal shapes in electromagnetic therapies that contribute greatly to our 

understanding of the various forms of EMF signal delivery that are fundamental to eliciting 

specific bioeffects.   He simply and elegantly describes electric and magnetic signal 

characteristics, their signature shapes and methods of delivery (time-varying, oscillatory, or 

modulated) which create special interactions with human tissues and organs for healing. 
4
 

 

“It is likely that the future will see combinations of such signals in therapeutic applications, especially as more 

information filters back from the laboratory elaborating on the nature of electromagnetic interactions with living 

tissue.” 4 
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B.  Wound Repair 

 

The clinical application of pulsed EMF has been shown to enhance wound repair and healing. 
2,5

    

Devices that use pulsed EMF have been approved for use in the United States by the FDA.  Pilla  

reports “the clear clinical effectiveness of PEMF signals has resulted in significantly increased 

use” in treating wounds that do not heal
. 5

  In Pilla’s extensive summary presented on beneficial 

effects of EMF on wound healing, he reports pulsed EMF has been reported to reduce edema, 

increase blood flow, modulate upregulated growth factor receptors, enhance neutrophil and 

macrophage attraction and epidermal cell migration, and increase fibroblast and granulation 

tissue proliferation.  Most wound studies were conducted on arterial or venous skin ulcers, 

diabetic ulcers, pressure ulcers, and surgical and burn wounds. 
5
  Wound repair under the 

influence of very low level pulsed EMFs is a second solid documentation in science that very 

low level EMFs are bioactive (in this case, beneficial) when applied in very specific clinical 

applications where the exposure variables are carefully selected.   

 

Oschman provides an overview of the evolution of energy medicine and electromagnetic energy 

treatments related to bone repair, wound healing, pain relief, depression, insomnia, inflammation 

of tissues and other medical conditions. 
6 

  He also underscores the counter-intuitive thesis that 

low-intensity EMFs can be more effective in eliciting healing responses than larger intensity 

exposures; and that understanding of the subtle energies and their specific interactions with 

human functioning is imperative.   

 

 (l)iving tissues are far more sensitive to external fields than previously realized.  After a period when physicists 
were certain that observed sensitivities to nonionizing and nonthermal radiations wer physically impossible, we now 

know that biological systems defy the simple logic that larger stimuli should produce larger responses.For many 

living systems, extremely weak fields can be more effective than strong fields.” 6 

 

C.  Pain Management 

Pulsed magnetic field (PMF) devices are also used with FDA approval for “relief of acute and 

chronic pain and the reduction of edema (swelling), all symptoms of wounds from post-surgical 

procedures, musculoskeletal injuries, muscle and joint overuse, as well as for chronic wounds.” 

5
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Pulsed EMF has been shown to be effective in relief of chronic pain associated with connective 

tissue injury (cartilage, tendon, ligaments and bone) and soft-tissue injuries associated with the 

joints.   Both acute and chronic pain may be successfully treated with EMFs as an alternative to 

non-steroidal anti-inflammatory drugs (NSAIDs).  Relief from chronic pain due to osteoarthritis 

has been reported with treatment by EMFs. 
2 
 

 

Markov reports that EMF is used in treatment of pain associated with tendonitis, multiple 

sclerosis, carpal tunnel syndrome and some forms of arthritis.  He discusses the use of pulsed 

EMF for headache and migraine pain relief; neck and whiplash injuries, postoperative pain, 

sprains, chronic pelvic pain, and nerve regeneration.  Pain reduction by clinical application of 

pulsed EMF is achieved with non-thermal levels of exposure, and produces a nonthermal 

biological effect. 
8
 

 

 

 

 

 

D.  Depression,  Anxiety Disorders, Insomnia  

 

“Today (2002) we are at a threshold for the acceptance of electromagnetic therapy as a clinically accepted form of 

therapy for such diverse diseases as unipolar depression, Parkinson’s disease, and sleep disorders and the 

treatment of debilitating chronic and acute pain.” 8 

 

Shealy et al (2007) detail clinical findings for treatment of depression and mood management, 

reduction in anxiety, and treatment of insomnia. 10  Electrical energy stimulators that deliver 

very low-level EMF have been reported to be clinically effective in the alteration of 

neurobioechemicals including serotonin and cortisol.   Depression, mood disorders and insomnia 

have been related to disregulation of serotonin levels.   

Use of EMFs to reduce symptoms of depression, anxiety and insomnia are authorized by the 

FDA, and have been in use since the 1970’s.   Shealy reports that transcranial stimulation by 

EMFs led to a significant relief of depression in 85% of patients who had failed pharmacological 
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agents, and was at least twice as effective as any known antidepressant drugs and without 

complications. 
10

 

 

 

E.  Protection from Anoxia (Protection for the Heart) 

 

The work of  Albertini, Litovitz and di Carlo,  Goodman and Blank, Han, Pipkin, Rasmark and 

Kwee, 11-17 has shown that very weak ELF-EMF and RF-EMF exposures can actually help to 

protect cells against tissue damage.  They can induce an adaptive stress response in cells, which 

in turn helps the cell fight damage.  The response is production of stress proteins (heat shock 

proteins or HSP).  These stress proteins help to protect the cells against injury and death.  A 20-

minute exposure to electromagnetic fields at only 80 mG will start stress protein production, 

which helps to fight cellular damage from lack of oxygen, for example.  Protection from anoxia 

(or lack of oxygen) is important in heart attacks.  Pre-treatment with ELF-EMF (and also RF-

ELF) before blocking oxygen to cells has been shown to be protective against the lack of oxygen 

to heart tissues.  The exposure level is on the order of 80 mG ELF-EMF or far below any 

possible thermal heating.    

 

 

This means that there are clinical applications for protection against heart attack damage that can 

be provided by very low-dose EMF exposures.  Such protection could be vitally important in 

reducing damage from oxygen loss during heart attacks.  It is another line of proof that low-

intensity electromagnetic fields are bioactive, and when applied in specific therapeutic ways, are 

beneficial.  It also underscores that the body can detect and decode these very weak signals, 

providing further evidence that thermally-based standards are incomplete because they do not 

take into account the sensitivity of the human body to non-thermal levels of EMF exposure.   
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IV.  Conclusions 

 

Since EMFs have been shown to be effective in treating conditions of disease at energy levels far 

below current public exposure standards, this body of evidence forms a strong warning that 

indiscriminate EMF exposure is ill advised. 

 

Based on extensive clinical applications of low-intensity EMFs since at least the 1970s, it has 

been demonstrated beyond argument that some forms of EMFs can be medically effective in 

treating a wide variety of human health disorders and injuries.  Since all of these treatments are 

conducted at energy levels that do not involve tissue heating per se, it is convincing proof that 

the human body both reacts to and can be affected by exposures to EMFs.   Exposures can be 

beneficial when EMFs are applied with conscious knowledge of the exposure factors that are 

proven to lead to specific biological (healing) consequences.  The intensity of such therapeutic 

exposures nearly always falls below current public exposure standards as discussed in Section 3.  
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I.  INTRODUCTION 

 

The area of electromagnetic medicine (EM) encompasses the applications of electricity and 

magnetism to medical practice. Although this includes both diagnostic and therapeutic 

applications, the medical community is far more familiar with the former, notably with 

techniques such as magnetic resonance imaging (MRI), electromyography (EMG), 

electroencephalography (EEG), electrocardiography (EKG), and magnetocardiography (MKG). 

There are historical reasons for the medical unfamiliarity (even antipathy) with 

electromagnetically-based therapies. One has only to look at the beginnings of modern medicine 

in the United States, specifically the 1910 Flexner report 
1,2

 that provided the basis for medical 

education today. Prior to this report there was widespread use of electromagnetic techniques in 

medicine, often little more than late 19
th
 century versions of snake-oil cures. In great measure the 

present aversion to electromagnetic therapies built into modern medicine is a direct result of 

Victorian age quackery. 

 

Another reason for this antipathy, apart from the constraint on the teaching curriculum, has been 

the extraordinary success of, first, the germ theories of Pasteur and Koch, and, second, the 

development of molecular biology following the work of Watson and Crick. These have 

engendered a sense of completeness, a feeling that there is no place for alternate, radically new 

approaches to the way that illness is treated. Even when electromagnetically-based therapies 

have proven beneficial, they have been usually ignored. There is little impetus to replace the 

existing approach, since it is firmly believed that nothing is more fundamental than the exist ing 

paradigm, that questions of wellness and illness are ultimately biochemical in nature. 

 

The divisions in electromagnetic medicine are outlined in Fig. 1. Beyond the separation into 

diagnostic and therapeutic applications another distinction is made for applications of weak-field 

ELF magnetic in the treatment of illness. The description non-inductive non-thermal helps 

emphasize that the effects obtained by applying low intensity low-frequency electromagnetic 

fields to biological systems are not the result of either inductive emf generation or the delivery of 

thermal energies through Joule heating.  By contrast, a number of clinical devices that make use 

of Faraday induction or Joule heating are recognized by the medical community not only because 
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they are effective, but also because the applied voltages, currents or heat are fully consistent with 

what is expected biochemically. In sharp contrast, the non-inductive non-thermal category 

includes clinical  applications where this is not true, that is, where the electromagnetic variables 

that are part of the therapy fall outside those permitted by the current medical paradigm. 

 

 
 

Fig. 1.  Divisions comprising Electromagnetic Medicine 

 

 

 

II.  WEAK-FIELD ELF APPLICATIONS:  SCIENTIFIC BASIS  

 

There is a wealth of evidence showing that weakly intense ELF fields affect the metabolic 

responses in cells. It was found in the 1980s that ELF magnetic fields too weak to be considered 

as inductive sources of potential differences are nevertheless capable of affecting DNA synthesis 

in mammalian cell culture
3,4

.  Since that time, there have been numerous reports (Table 1) that 

magnetic fields on the order of several microTesla and in the 3-300 Hz ELF frequency range can 

affect a wide range of biological systems. A short list of such reports, given in Table 1, 

emphasizes both the variety of systems in which these effects have been found, and the difficulty 

in providing an explanation, as evidenced by the fact that these studies have a history extending 

back more than 25 years. The lack of a reasonable explanation is not a trivial distinction, since 

there is great reluctance to accept observational evidence, regardless of replications and the 

number of supportive reports, without a reasonable biomolecular basis 
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Biological Model YEAR Reference 

Rat behavior 1986 Thomas et al
5
 

Diatom motility 1987 Smith et al
6
 

Protein synthesis in salivary gland cells 1988 Goodman and Henderson
7
 

Mitogenesis in lymphocytes 1989 Cossarizza et al
8
 

Production of glycosaminoglycans in cartilage 1991 Smith et al
9
 

Neuroblastoma cell metabolism 1992 Smith et al
10

 

Expression of Insulin Growth Factor II 1995 Fitzsimmons et al
11

 

Regeneration of planarians 1995 Jenrow et al
12

 

Analgesia in snails 1996 Prato et al
13

 

Rat EEG 1998 Vorobyov et al
14

 

Growth Rate in plants 2005 Galland and Pazur
15

 

Stem cell differentiation 2009 Gaetini et al
16 

 
Table 1. List of reports indicating that non-inductive ELF magnetic fields are biologically interactive. 

Note that these reports are by no means isolated. A number of these have been independently replicated, 
for example the studies on rat behavior, lymphocytes, planarians, and plants. 

 

 

In 1998 a group led by Zhadin
17

 discovered that these effects are also found at much lower 

intensities. AC magnetic fields as low as 40 nT can shift the electrical conductivity of polar 

amino acids in aqueous solutions. This work, independently replicated
18,19,20

, is typified by a 

sharp change in conductivity at one specific frequency, as shown in Fig. 2.  The explanation for 

this remarkable effect makes use of quantum electrodynamics to provide a means of reducing the 

viscosity of water sufficiently to allow Lorentz forces to be observed on solvated biological ions, 

thereby establishing a straightforward reason for the many difficult-to-explain magnetic 

stimulation reports claiming a connection to ion cyclotron resonance
21

.  

 

Ion cyclotron resonance (ICR) as it applies to biological systems was first discovered
22,23 

to be a 

critical underlying factor in connection with previously observed
24

 electromagnetically-induced 

changes in free calcium in brain tissue (Ca-efflux experiments). In the presence of a static 

magnetic field the most prominent effects are always observed for parallel AC magnetic fields 

with frequencies very close to the cyclotron frequency of the calcium ion. The majority of 

subsequent ICR cellular studies have focused on the Ca
2+

 ion. As a second messenger it is 

involved in regulation at all stages of growth and development, including proliferation, and in the 

organization of cytoskeletal elements. Indeed some of the results shown in Table 1 are examples 

of Ca
2+ 

ICR stimulation. 
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Fig. 2. Data taken by Pazur

18
 illustrating the Zhadin effect

17
. A very weak AC magnetic field (40 nT) is 

applied to an aqueous solution of glutamic acid and the conductivity of the glu
+
 ions is continuously 

monitored in terms of nA. The magnetic frequency in Hz is slowly ramped upwards. A sharp change in 

conductivity is observed at a frequency (4.25 Hz) close to the ion cyclotron resonance value for glu
+
, (4.8 

Hz).  

 

 

The expression for the ICR resonant angular frequency is given as w = (q/m)Bo , where q and m 

are the charge and mass of the ion, and Bo the DC magnetic field. Confirmation that the charge-

to-mass ratio was explicitly involved in this effect was obtained when isotopic 45Ca was 

substituted for 40Ca in a study on lymphocyte proliferation
25

, showing that the frequency where 

the maximum ICR effect on proliferation occurred was shifted down by a factor of 12%, exactly 

what is to be expected for a change of mass of 5 parts out of 40. 

 

Because these ICR effects appeared to violate simplistic analysis involving magnetic induction at 

first they evoked much suspicion in the scientific community. Many subsequent confirmations, 

however, performed on different model systems in diverse experimental situations , in part listed 

in Table 1, proved that these weak low-frequency effects are indeed real. It is clear that magnetic 

field combinations when tuned to ion cyclotron resonance, can act to regulate the flow of 

biological information, a conclusion that has important ramifications for electromagnetic 

medicine. Consider the following, from a recent review
26

 of this subject: 
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The inescapable conclusion…is that the ICR mechanism, whatever its molecular basis, is of 

enormous biological significance. We are able to make reproducible and consistent physiological 

changes of various sorts in the widest imaginable range of genera simply by applying weak 

magnetic fields tuned to the charge-to-mass ratio of various biological ions. It is very clear that 

[this] must be part of a heretofore unknown system that carries physiological 

information/instructions, and that better understanding will open the way to providing a radically 

new means of controlling wellness. 

 

In addition to medical applications already initiated using ICR techniques there are also a 

number of potential advances that are likely to be further developed in the future. Consider for 

example the observations found in a number of ICR studies that indicate merely changing the 

resonance condition from one ion to another will result in the opposite result. This phenomenon 

was first observed by S D Smith in his studies on diatom motility
6
 and later reported by 

others
9,27-31

 (Table 2). One explanation is that this effect likely reflects the endogenous nature of 

bioresonance, wherein multiple ion resonances are occurring simultaneously giving rise to a 

balanced physiologic outcome. If this is true then it should be possible in principle to selectively 

reduce the undesirable in favor of the desirable. There is evidence
32

 indicating
 
that ICR 

applications can increase the rates of proliferation in neuroblastoma cell culture. Is It possible 

that there exist yet-to-be-tried ICR conditions that would have the opposite effect, namely to 

reduce the rates of proliferation in cancer cell lines, thereby opening the way to new cancer 

fighting techniques? 

 

MODEL SYSTEM FREQ, Hz Bo, mT ION RESPONSE 

Diatom motility
6
 16 

16 

20.9 

41.0 

Ca
2+

 

K
+
 

Motility 

Motility 

Embryonic bone
9
  16 

16 

20.9 

40.7 

Ca
2+ 

K
+
 

Growth 

Growth 

Embryonic bone
27

  16 

16 

20.9 

40.7 

Ca
2+ 

K
+
 

Growth 

Growth 

Plant growth
28,29 

 60 

60 

78.3 

153.3 

Ca
2+

 

K
+
 

Growth 

Growth 

Rat behavior 
30

 63 

38 

50 

50 

Mg
2+

 

Ca
2+

 

More Active 

More Passive 

Gravitropic response
31

  35.8 

54.7 

46.5 

46.5 

Ca
2+

 

K
+
 

Up 

Down 

 

Table 2. Ionic tuning can drastically alter physiological outcome. Note that specific outcomes are observed for 

different magnetostatic fields at the same resonant frequency, or equivalently, for different frequencies at the same 

static magnetic intensity. 
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II.  PRESENT CLINICAL ELECTROMAGNETIC PRACTICE   

 

A number of diagnostic techniques based on electromagnetic principles, such as Magnetic 

Resonance Imaging (MRI), are universally accepted by physicians, to the point where 

objections are heard concerning the costs to the health care system because of overuse
33

. 

Neurologists universally use Electromyography  (EMG) in their practice no less than 

Electrocardiography (EKG) is used by cardiologists and internists. It also should be understood 

that there are efficacious electromagnetic diagnostic tools that are used outside of the United 

States but not permitted in the US. The US Food and Drug Administration (FDA) oversee the 

introduction and use of medical devices with as much zeal as it supervises pharmaceuticals. The 

prospect of very expensive and time-consuming procedures for new devices tends to discourage 

the introduction of foreign devices, regardless of their efficacy and safety. This applies to both 

diagnostic and therapeutic devices.  

 

One example of a foreign diagnostic device that is presently in clinical trials in the US is the  

Tissue Resonance Interferometer (TrimProbe)
34

, invented by Clarbruno Vedruccio.  Following 

its original use as an electromagnetic device for the remote detection of land mines and for 

airport screening, he discovered that microwave signals in the range 400 to 1350 MHz reflect 

differently from cancers as compared with healthy tissue. A hand-held non-invasive probe 

measures the degree of interference between the incoming and reflected signals, providing 

instant determinative results. It has been highly successful in prostate diagnosis, proving 

effective in distinguishing malignancies from prostate hyperplasia and prostatitis. This technique 

has also been used to detect bladder cancer. Because of its non-invasiveness, its speedy 

application and rapid diagnosis, all within a matter of minutes, this device has great potential as a 

tool for screening populations at risk. 

It is clearly the case that the highly specific electrical nature of the nervous system should 

predispose it to exogenous electrical influence. This is shown in the great variety of electric 

medical procedures
35 

presently in use as neurotherapies. Devices such as heart pacemakers and 

defibrillators are so widely known that they need no description. Vagal nerve stimulation 

(VNS) is widely used as an anti-convulsant therapy. Deep brain stimulation (DBS) uses 
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electrodes in the brain to treat Parkinson’s disease and other movement disorders. Chronic pain 

is treated using the non-invasive Transcutaneous electrical nerve stimulator (TENS) directly 

on the back or the Cranial electrothermal stimulator (CES) on the head. Insomnia is treated 

with Low-energy emission therapy (LEET) using an electrode positioned in the mouth. In 

general these devices are employed as surrogates for already existing physiological endogenous 

mechanisms that require a boost or improvement, with the cardiac pacemaker serving to regulate 

the timing  of heart contractions as an illustrative example. Presently there is an extension of this 

concept, with widespread ongoing research aimed at mimicking the electric signals needed to 

restore eyesight and muscle function that may have been lost because of disease or accident. 

Less well known are a number of medical accepted EM therapies that are sufficiently energetic 

to be acknowledged as based either on Faraday induction or Joule heating. Transcranial 

Magnetic Stimulation (rTMS)
36,37 

 is used to treat depression.  In this procedure, approved by 

the FDA as efficacious and safe, a large pulsed current is sent through a coil placed strategically 

over the head, thereby inducing a current through the brain. In part, this serves as a modern 

alternative to the much older (1938) use of applied currents to treat depression, namely 

ElectroConvulsive Therapy (ECT), wherein pulses or sinusoidal voltages are applied to the 

scalp through electrodes, producing power levels of several hundreds of watts directly into the 

brain. 

Another purely inductive device, Pulsed Magnetic Field therapy (PMF), has found great success 

in treating bony nonunions, a rather common problem in which fractures do not knit properly. 

This device was introduced by Bassett and Pilla
38

  following a long history showing that living 

bone enjoys remarkable electric properties
39

 that can be used to advantage in growth and repair 

processes
40

. In a very real sense, the PMF work on bone in the 1970s was the springboard for the 

development 25 years later of rTMS. 

Electromagnetically-induced hyperthermia (Oncotherm)
41

 and Electrochemical Treatment 

(EChT)
42

 have both been found useful in treating late-stage cancers, the former mostly in Europe 

and Asia, and the latter in China. The Oncotherm device applies carefully directed 

radiofrequency devices to tumor sites, slightly elevating the local temperature, which has the 
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interesting effect of killing off cancer cells without affecting healthy tissues. Neither procedure 

has as yet been approved by the FDA. 

A much older device, dating back to the 1930s, Diapulse, applies radiant Joule heat deep into 

tissues. Because this device was introduced prior to the establishment of the FDA, its acceptance 

was ”grandfathered”, that is, allowed to be advertised and marketed on the basis of earlier 

widespread use. Electromagnetic energy is directed to specific areas of the body in the form of 

600 pulses/s with each pulse lasting 65 ms. Although it was originally used to provide pain relief 

the extent of the therapeutic claims now includes “neurologically associated problems”. Along 

with a number of other devices making therapeutic claims related to radiofrequency use, the 

prominent frequency employed was 27.15 MHz, which has no special biological qualities, but is 

merely a frequency of choice permitted by the Federal Communications Commission (FCC). 

 

This 27.15 MHz frequency has also appeared as the carrier wave in a similar arrangement to that 

used in the LEET insomnia device mentioned above, where one electrode is again placed in the 

mouth, in this case to treat cancer
43

. A much lower frequency, in the tens of Hz, modulates the 

27.25 MHZ carrier. Presumably this ELF component represents the active anti-oncogenic 

component in this device. 

 

Even higher frequencies, at 50 GHz and larger have also been reported as therapeutic aides. 

These devices, generally described as Microwave Relaxation Therapy (MRT)
44

 machines are 

widely used in Russia and the Ukraine for mood behavior, and (anecdotally) to strengthen the 

immune system. 

 

The author has previously attempted
45

 to characterize neuroelectromagnetic therapies as falling 

into three categories: subtle, gross, and disruptive. The procedures of rTMS and ECT can be 

regarded as disruptive, considering that seizures have been associated with both, either 

deliberately or by accident. Similarly gross neurotherapies properly describe the great number of 

neural stimulators in use today. The term subtle is meant to convey the great difficulty in 

understanding how vanishingly small electric and magnetic signals are able to affect biological 
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systems. It is abundantly clear that such signals cannot be the result of either Faraday induction 

of voltage or thermal changes due to Joule heating. 

 

 

III.  NON-INDUCTIVE NON-THERMAL MEDICAL APPLICATIONS 

The question of subtle electromagnetic effects in biology is not new. Observations indicating that 

minutely small electric currents, at levels far weaker than allowed by simple energetic estimates, 

are capable of profound biological effects. These were first reported in connection with living 

bone. Electret applications
46

, likely supplying no more than a few hundred nanoAmperes, were 

found to significantly affect growth rates in bone. This fact was subsequently used in a number 

of orthopedic devices operating at 1-2 mA to repair bony non-unions
47

. The great advantage of 

the PMF techniques mentioned above was that currents at this level could be introduced at the 

repair site in a completely non-invasive way.  

More recently, the FDA-approved application of ion cyclotron resonance magnetic fields to the 

problem of bone repair
48

 has all but replaced the use of both weak electric currents and PMF 

pulses. Magnetic fields from a portable coil tuned jointly to Ca
2+

 and Mg
2+ 

are applied for 30 

minutes a day over a period of weeks. It should be emphasized that the efficacy of this 

application, achieving repair rates of 70% or more, remains unexplained, except insofar as one 

considers ion cyclotron resonance phenomena as empirically factual. 

Adey also recognized the fact that such signals caused effects that were not readily explained. In 

attempting to understand results obtained in his laboratory showing a distinctly nonlinear 

response in connection with the calcium-efflux experiments, he suggested that low-energy 

transmission occurs at cell membranes by means of solitonic waves
49

. 

The results listed in Table 1 for effects related to ELF magnetic fields have their counterparts in 

experiments conducted with AC electric fields. In some ways these are unexpected. Unlike the 

transparency of biological matter to low-frequency magnetic fields polarization effects in the 

extracellular medium and the large electric field at the cell membrane make it difficult to apply 

AC electric fields to cells. Some of the weak AC electric-field clinical approaches involve the 
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use of invasive electrodes. Nonetheless these are noteworthy, considering the poor prognoses 

attached to illnesses such as glioblastoma. 

Thus, one recent very promising therapy entails the use of electric fields at frequencies equal to 

or less than hundreds of kHz (Tumor-Treating Fields, or TTF) to treat aggressive glioblastoma 

and lung cancer
50,51

. Low-intensity electric fields, on the order of 1-2 V/cm, are found to slow 

the proliferation of all cells, cancer cells included. This is particularly advantageous in the 

treatment of brain cancer, because healthy brain cells tend not to proliferate in any case. 

Therefore the application of such fields is effective in slowing the increases in cancer cell 

production while leaving healthy cells unaffected. A somewhat similar effect has been 

discovered, but for applications at 50 Hz instead of hundreds of kHz. In this approach
52

, a weak 

applied AC electric field is also used to fight cancer, not by reducing the proliferation of cancer 

cells, but by reducing their resistance to multidrug chemotherapy.  

It is important to point out that these findings on the effectiveness of AC electric fields on cancer 

cell proliferation help illuminate why possible similar results that might be obtained using 

magnetic fields are so interesting. For one thing, there are problems related to AC electric field 

polarization effects that add constraints on how the cells are stimulated.  By contrast because of 

tissue transparency to ELF magnetic fields, their clinical use will not only always be non-

invasive, but also capable of being applied in more general ways.  

Comparable effects of the sort observed using AC electric fields have already been observed 

using weak ELF magnetic fields.  A number of reports have found changes in cell proliferation
8 
, 

particularly in lymphocytes, as a result of weak magnetic field stimulation. Further, in direct 

contrast to the electric-field reduction in chemotherapeutic resistance Liburdy discovered
53

 that 

the resistance of breast cancer cells to tamoxifen was increased using 60 Hz magnetic fields.  

Two interesting reports by Novikov highlight the clinical potential of weak magnetic fields. In 

the first case
54

 he found that Ehrlich ascites cancer in rats can be dramatically reduced through 

the use of combined, ostensibly cyclotron-resonance tuned magnetic fields. In the second case
55

 

he demonstrated that these fields can also be used to hydrolyze, that is, break down, polypeptides 

by merely tuning to the charge-to-mass ratios of the constituent amino acids. One obvious 
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clinical direction suggested by this work is to use this approach to break down the b-amyloid 

plaque protein associated with Alzheimer’s disease. Experiments have indicated that this is 

indeed possible in animal models, but it is not yet clear if this plaque is a cause of this disease or 

simply one of its symptoms. 

The last entry in Table 1 indicating that weak ELF magnetic fields can play an important role in 

stem cell applications
16

 is particularly exciting. The most difficult aspect to treating heart failure 

is the inability of damaged heart muscle to regenerate, leading when possible to heart transplants. 

Stem cell regeneration of heart tissue is an obvious remedy to this problem but the results to date 

have in general been slow. This stalemate has been dramatically changed through the use of 

weak ICR magnetic fields.  It was demonstrated that cardiac stem cells from humans when 

exposed for five days to ELF resonance fields tuned to Ca
2+ 

enjoyed significantly greater 

proliferation and differentiation, perhaps paving the way for a minimally manipulative means of 

regenerating diseased hearts. Because of this result there is now heightened interest in the use of 

ELF magnetic fields to enhance the implementation of regenerative medicine and tissue 

engineering. 

A very different approach to ICR medical therapy is found in the Seqex device
56

 which applies 

an oscillating magnetic field to the patient’s entire body while simultaneously taking advantage 

of the local parallel vertical component of the earth’s magnetic field to achieve resonance. Its 

most celebrated use has been to treat the debilitating depression that often accompanies 

chemotherapy following cancer remediation
57

, but there have also been numerous anecdotal 

reports claiming success in treating other diseases, for example multiple sclerosis. There is 

reason to believe that the efficacy of this device may be related to its dramatic effect on 

antioxidants. In addition to the fact that this device employs holistic application of the combined 

fields, it is unique in that the applied ICR frequency is not calculated from ionic charge-to-mass 

ratios, but is determined by first finding in a prior separate evaluation the specific frequency 

conditions that sharply alters the whole-body bioimpedance.  Once determined this frequency 

information is stored on a “smart card” for future treatments on that patient. It is worth noting 

that the change in whole-body bioimpedance at resonance is consistent with the sharp changes in 

ionic conductivity that were observed by Zhadin and others. This device has not as yet been 

introduced into the United States for clinical evaluation. 
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IV.  WELLNESS AND ILLNESS:  THE ELECTROMAGNETIC PERSPECTIVE 

 

The medical community continues to regard therapeutic regimens based on weak magnetic fields 

with great suspicion. This fact is best illustrated by contrasting the interest shown in the use of 

AC electric fields to treat cancer while similar results using magnetic fields have all but been 

ignored. We do not seek to diminish the potential importance of these electric field effects, but it 

is apparent that ELF magnetic field research is still thought of as too far outside the mainstream. 

One useful rationalization in trying to explain the AC electric field effects has been to implicate 

voltage-dependent ion channels as the key interaction site. This allows one to avoid the thorny 

question surrounding the intrinsic difficulty in the lack of penetration of AC electric fields into 

the cell. By contrast, even though there appears to be no such thing as magnetically responsive 

ion channels, ELF magnetic fields are not impeded by the large electric field of the cell 

membrane, reaching all compartments inside the cell equally.  

 

One alternate view, when looking at electromagnetic effects, may be to regard a common 

parameter found in both the electric and magnetic cases, perhaps involving frequency or some 

function of frequency, as the key distinction.  This has already been hinted at in connection with 

ICR biological interactions. 

 

Recently the author and colleagues
26

 advanced a radical new view of electromagnetic effects in 

biology, suggesting that these strange new electromagnetic interactions can be explained in terms 

of an endogenously available substrate resonantly coupled to biological ions that enables 

information transfer for purposes of regulation. In this approach the tweaking of biological 

systems with weakly energetic electromagnetic signals reveals an underlying order to organisms, 

one in which the electromagnetic is elevated above the biochemical. 

 

However, even if this generalized concept of systemic electromagnetic wellness is correct, there 

still remains unexplained the molecular basis that might tell us why nanoAmpere currents can 

help initiate bone formation or why nanoTesla magnetic fields can hydrolyze proteins. These 

fully replicated observations are well outside the simplistic electrical engineering that is so often 

used to discuss such effects. For example, it is inappropriate to express this work in terms of 
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Specific Absorption Ratio (SAR), because a different yardstick is required. The low levels of 

power absorbed by the biological system are literally many orders of magnitude below the 1 

Watt/kg prescribed as safe. We know that very low levels of electromagnetic can affect 

biological systems, but do not know how this happens. One clearly obvious truth yet to be 

generally accepted, yet of vital importance to everyone, is that these effects are profoundly 

quantum mechanical in nature
17-21

, and have little connection to the traditional safety limitations 

imposed by electrical engineers. 

 

V.  CONCLUSIONS 

There can be little doubt that weakly energetic electromagnetic fields are biologically interactive 

to the point where they can be usefully applied in medically relevant therapeutic procedures. Not 

only does this fact suggest a bright future for the role of electromagnetism in medicine, but it 

also underscores the need to be very cautious when examining the effects of low-level 

electromagnetic fields on people. This conclusion, slightly rephrased, was expressed by the 

author when he wrote
58

:  

 

In the long run, [weak-field exposures for medical purposes] may be the only way to prove the 

case for biological plausibility among those who presently choose to deny that weak field low 

frequency magnetic fields do indeed interact with biological systems. 
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I.  INTRODUCTION   

Electromagnetic fields and radiofrequency radiation (RFR) interact with human tissues and 

may have adverse effects on fertility and reproduction. This review presents evidence for 

ELF-EMF and RFR effects on many parameters of male sperm function; leading to questions 

about the genotoxicity and carcinogenicity of such exposures on fertility and reproduction in 

men. Much of the evidence comes from human and animal studies on sperm and male 

fertility factors, but there are also studies showing adverse effects on fertility and miscarriage 

in women.  

 

During the last four decades or so there has been a growing concern on the effects of 

electromagnetic radiations on biological systems in general. This is because of the global 

introduction of electronic devices on a massive level for communications and data 

transmission, personal wireless devices, air surveillance systems, industry applications, 

medical/diagnostic and therapeutic purposes that are now new sources of electromagnetic 

fields (ELF-EMF) and radiofrequency microwave radiation (RFR). This has added another 

layer of pollutant (electropollution) to a growing list of environmental contaminants in air, 

water, soil and from noise pollution which can adversely affect human health. 

 

There are many sources of EMF in our environment and this non-ionizing radiation interacts 

with the human body.   Use of electronic household items and cell phones are reported to 

decrease fertility potential in men by decreasing sperm count, motility, viability, inducing 

pathological changes in sperm and testes morphology, and so on (Erogul et al. 2006). In 

accordance with this, several authors (Agarwal et al. 2008, 2009; Kumar et al. 2010, 2011a; 

Pourlis 2009; Kesari et al. 2010, 2011, 2012) focused mainly on the male reproduction 

patterns. It involves the development from undifferentiated diploid stem cells to highly 

differentiated haploid stem cells. Spermatogenesis is a complex process and it is influenced 

by many genes and hormones. It takes place in the testis, which may be exposed to various 

microwave frequencies which are currently in use (Behari and Kesari 2006). Among various 

factors of infertility, oxidative stress has become the main focus of interest as a potential 

cause of male infertility (Agarwal and Said 2003; Aitken and Roman, 2008; Kumar et al, 

2010, 2011a). Male infertility is commonly associated with high rates of DNA 

(deoxyribonucleic acid) damage in the spermatozoa and such damage is correlated with a 

wide range of adverse clinical outcomes. Several studies, especially at power frequency 50/60 
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Hz magnetic field have found an association of exposure to human health, with emphasis on a 

range of clinical conditions including childhood leukaemia, brain tumours, genotoxicity and 

neurodegenerative disease, infertility, birth defects, increased risk of miscarriage, childhood 

morbidity and de novo mutations (Hardell and Sage 2008; Gharagozloo and Aitken 2011; 

Garcia et al. 2008; Huss et al. 2008; O’Carroll and Henshaw 2008; International Agency for 

Research on Cancer (IARC) Monographs of the Evaluation of Carcinogenic Risks to Human 

2002; California Health Department Services (CHDS) Report 2002). Sperm DNA damage is 

therefore regarded as a potential risk factor to the development of normal human embryos 

leading to impaired embryonic development. 

 

II.  THE BIOPHYSICS OF EXTREMELY LOW FREQUENCY FIELDS 

Whenever a body having finite conductivity (biological body) is intercepted by EMF it 

induces electric fields and circulating electric currents, which in turn competes with 

endogenous current and voltages, thus disturbing normal physiological balance. The depth of 

penetration within the body depends upon its frequency and the electric properties of the 

exposed portion in the body. If the current density exceeds a certain threshold value, 

excitation of muscles and nerves due to membrane depolarization is possible. The mode of 

interaction of non-ionizing radiation with biological systems can be broadly divided into two 

parts: extremely low frequency and radiofrequency/microwaves. 

Whenever an electric field interacts with a biological body the incident field will be distorted, 

such that the external field will be nearly perpendicular to the boundary surface. At 60 Hz  

 Einternal / Eexternal  ≈ 4(10
-8

 ).    (1) 

Thus a 60 Hz external field of 100 kV/m will produce an average internal E field of the order 

of 4mV/m.  

As far as the magnetic components of the extremely low frequency fields are concerned, 

magnetic permeability  of most biological materials is practically equal to that of free space 

(4.10
-7

)
 
H/m. This signifies that ELF H field ‘inside’ will be practically equal to the H field 

‘outside’. Only exceptions could be those biological materials that have magnetic particles 

inside. A time varying magnetic field (also electric field) can also induce electric currents 

into stationary conducting objects. Thus, all modes of interaction of time varying E fields 

with living matter may be triggered by time-varying (not by static) magnetic field. According 

to Faraday’s law of electromagnetic induction time varying magnetic flux will induce E fields 

with resulting electrical potential differences and “eddy” currents through available 
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conducting paths. Sources generating low frequency electric and magnetic fields are more 

likely to produce physiologically significant internal E fields through the mechanism of 

magnetic induction. If an erect person is targeted by a vertical electric field it will be 

considerably “enhanced” at the top of the person’s head and shoulder, and one would predict 

therefore that the field in the tissue would also be enhanced above that of a flat slice exposed 

to the same field (Deon, 1982). In a 60 Hz electric field of 1kV/m in air, the current densities 

(Am/m
2
) in neck, waist and ankle turn out to be 0.591x10

-3,
 0.427 x

-3 
and 3.35x10

-3
 

respectively (Polk 1986).   

 

 

III. THE BIOPHYSICS OF RADIOFREQUENCY AND MICROWAVE FIELDS 

 

The biological bodies are inhomogeneous, having tissue-specific dielectric properties and the 

complexity of the shape; which make the computations of the induced field difficult. The 

fields induced inside the body act differently depending upon the frequency and more 

particularly on (L/λ), (where L is the length of the biological body and λ the wavelength of 

the incident field) upon, but are not limited to the following parameters: 

(i) The location of the field with respect to the surroundings, e.g. if there are metallic 

objects around, the person is grounded or otherwise.  

(ii) Polarisation of the incident wave with respect to the orientation of the human 

body. 

(iii)  Size of the human body (L) with respect to the wavelength (λ) of the incident 

radiations (L/λ). 

(iv) The portion of the human body. 

(v) The electrical properties of the tissue in question. 

 

In free space propagation of electromagnetic field the power density is given by 

 

   Power density  = E
2
/1200 Π  mW/cm

2                      
(1)

 

Where, E is the electric field strength. 

  The frequency in the radio frequency-microwave region are somewhat penetrated inside the 

biological body interacting with the tissues inside.  
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From simple biophysical considerations, it follows that each body has a characteristic 

resonant frequency depending upon the length of the long axis. Correspondingly, for the 

same level of incident exposure the average value of power absorbed is dependent upon the 

length of the body, the degree of decoupling decreasing the average value of SAR by more 

than an order of magnitude. It is suggestive that absorbed RF energy can be converted into 

other form of energy and can cause interference with the functioning of the biological 

systems. A significant portion of this energy is converted into heat (absorption). The 

biological effects are frequency dependent. Well below 100 KHz, the induced fields can even 

stimulate nervous tissue. 

 

 

IV.  FERTILITY AND REPRODUCTION EFFECTS: ELF-EMF FIELD EXPOSURE 

 

Since the biological body is diamagnetic it is transparent to the static magnetic field. It can 

therefore interact with the motional activity of paramagnetic materials. Amara et al (2006) 

has shown that adult male rats exposed to such fields (128 mT, 1hr/day for 30 days) show a 

decrease in testosterone levels and induced DNA oxidation. Subchronic exposure failed to 

alter spermatogenesis in rat testis. In a similar study Hong et al (2005) also concluded that 50 

Hz EMFs (0.2 mT or 6.4 mT, exposed for a period of 4 weeks) may have the potential to 

induce DNA strand breakage in testicular cells and sperm chromatin condensation in mice. 

Al-Akhras et al (2006) also treated male adult rats to 50 Hz sinusoidal magnetic field (25T 

or 250 mg) for 18 consecutive weeks. They reported no significant effects on the absolute 

body weight and the weight of the testis of the exposed rats. However the weight of the 

seminal vesicles and preputial glands were significantly reduced in the exposed male rats, 

along with significant reduction in sperm count of the exposed rats. There was no significant 

effect on the serum levels of male follicle stimulating hormone (FSH) during the 18 weeks of 

exposure period. On the other hand there was a significant increase in the serum levels of  

male luteinizing hormone (LH) after 18 weeks of exposure (p<0.005) while testosterone 

levels were significantly decreased after 18 weeks of exposure period. These results suggest 

that long term exposure of ELF could have adverse effects on mammalian fertility and 

reproduction.  

Different results have been presented by Chung et al (2005) where animals exposed in-utero 

and subsequent neonatal exposure to a 60 Hz EMF(field strength 500 T or 5000 mG) from 
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day 6 of gestation to day 21 of lactation, did not produce any detectable alteration in 

offspring spermatogenesis and fertility.  

Akdag et al (2006) examined the effects of ELF magnetic fields (1.35 mT) on sperm count, 

malondialdehyde concentration, the histology of organs as: testes, brain, liver, and kidney 

tissues, p53 immunoreactivity of bone marrow and the serum concentrations of Cu
2+

, 

Zn
2+

,Mn
2+ 

and Fe
3+ 

in rats. These authors found no statistically significant alteration except in 

Mn
2+

 concentrations (p<0.001).  

Influence of ultrasound (frequency 2,4 and 8 MHz) and constant magnetic field (7T) on 

gametes, zygotes and embryos of the sea urchin were studied by Drozdov et al (2008). 

Magnetic field exposure interrupts the process of the gamete fusion but did not influence 

gametes, embryos, or embryonic development. The nature of these two stimuli is of different 

type. Ultrasound may heat up the water if is of sufficient power, by way of increase in water 

temperature and cavitation temperature, which may also break the cellular structure. The 

effect of magnetic field is connected to the response of the cortical cytoskeleton, which 

consists of bundles of actin microfilaments. The rearrangement of the cortical cytoskeleton 

occurs during the first 20 minutes after the contact of sperm with the egg. 

Kim et al (2009) examined the effect of a 16-week continuous exposure to ELF magnetic 

field (MF) of 14 or 200 T (140 or 2000 mG) on testicular germ cell apoptosis in mice. They 

reported no significant adverse effects of MF on body weight and testosterone levels in mice. 

In TUNEL staining (in situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick 

end labelling), germ cells show a significantly higher apoptotic rate in exposed mice than in 

sham controls (P<0.001). TUNEL-positive cells were mainly spermatogonia. In an electron 

microscope study, degenerating spermatogonia showed condensation of nuclear chromatin 

similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic 

cells in mice by continuous exposure to 60 Hz of 14 MF T (140 mG). 

Roychoudhury et al (2009) examined the effects of 50 Hz extremely low frequency 

electromagnetic field on in vitro rabbit spermatozoa motility. These authors also studied the 

effects after insemination. Pooled semen samples and a control were exposed to 50 Hz ELF 

EMF. The difference of the test groups G1 and G2 with the control group CG (75.56%) for 

spermatozoa motility were found to be significant (P<0.01). Differences were significant 

(P<0.01) for curvilinear velocity (VCL) between the test group G3 (122.38 µ/s). Hormonally 

simulated adult (9-12 months) females (n=140) were inseminated with semen samples from 

G1, G2, G3 and G4 (0.88 x10
9
 spermatozoa /0.5 ml average insemination portion) 
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immediately after ELF EMF exposure and fertilization (kindling) rates were calculated. For 

the G2 it was 54.28% data indicate 50 Hz ELF EMF induced alterations of spermatozoa 

motility and kindling rate in rabbits, therefore influencing fertility. 

Cao et al (2009) also reported that magnetic fields at 1000 Hz or 2000 Hz may damage the 

testis by inducing injury to seminiferous tubules and Leydig cells, thickening the basal 

membrane, derangement, exfoliation, massive apoptosis and necrosis of spermatogenic cells 

in the lumen, epididymis, and consequently result in the absence of sperm. 

Bernabo et al (2010) assessed the effect of acute (1hr) exposure of boar spermatozoa to an 

extremely low frequency electromagnetic field (ELF-EMF) (50 Hz, MF 0-2 mT) on early 

fertility outcome. They examined morpho-functional integrity of capacitated spermatozoa in 

vitro and reported in vitro ELF-EMF >0.5 mT induced a progressive acrosome damage, thus 

compromising the ability of spermatozoa to undergo acrosomal reaction after zona-pellucida 

stimulation and reducing the in vitro fertilization outcome. These effects became evident at 

0.75 mT and reached the plateau at 1 mT. Under in vivo conditions, ELF-EMF intensity of 1 

mT was able to compromise sperm function, significantly reducing the fertilization rate. In 

addition, the exposure of oviducts field 0.75 mT in the absence of spermatozoa was able to 

negatively affect early embryo development. In fact it was found to cause a slowdown in the 

embryo cleavage. It is apparent that at mentioned intensities the fields has negative effect on 

early fertility outcome in a predictive animal model. 

Earlier these authors (Bernabo et al 2007) reported that MF-ELF influence negatively by 

dramatically effecting sperm morphology and function.  

The blood-testis barrier is sensitive to environmental stimulation, which can affect its 

permeability and then result in antisperm antibody (AsAb) generation, which is a key step in 

male immune fertility. Wang et al (2010) reported the results of male mice exposed to 

electromagnetic pulse (EMP) by measuring the expression of tight-junction of associated 

proteins(ZO-1 and Occludin), vimentin microfilaments, and mice were sham exposed or 

exposed to EMP at two different intensities (200 kV/m and 400 kV/m) for 200 pulses. The 

testes were collected at different points after EMP exposure. Immunofluorescence 

histochemistry, western blot, laser confocal microscopy and RT-PCR were used in this study. 

Compared with sham group, the expression of ZO-1 and TGF-beta3 were significantly 

decreased accompanied with unevenly stained vimentin microfilaments and increased serum 

AsAb levels in EMP-exposed mice. These results are indicative of a potential BTB injury and 

immune infertility in male mice exposed to certain intensity of EMP.   
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Lorio et al (2011) studied the functional relationship between the energy metabolism and the 

enhancement of human sperm motility induced by ELF-EMF was investigated. Sperm 

exposure to ELF-EMF resulted in a progressive and significant increase of mitochondrial 

membrane potential and levels of ATP, ADP, and NAD(+) associated with sperm kinetic 

parameters. However no significant effects were detected on other parameters such as 

ATP/ADP ratio and energy change. When carbamoyl cyanide m-chlorophenyllhydrazone 

(CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values 

of energy parameters and motility in the sperm incubated in the presence of glucose and 

exposed ELF-EMF did not change, thus indicating that the glycolysis was not involved in 

mediating ELF-EMF stimulatory effect on motility. By contrast, when pyruvate and lactate 

were provided instead of glucose, the energy status and motility increased significantly in 

ELF-EMF-treated sperm. Under these culture conditions, the inhibition of glycolytic 

metabolism by 2-deoxy-D-glucose (DOG) again resulted in increased values of energy and 

kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose 

for use in glycolysis. These authors concluded that the key role in mediating the stimulatory 

effects exerted by ELF-EMF on human sperm motility is played by mitochondrial oxidative 

phosphorylation rather than glycolysis. Earlier these authors (Lorio et al 2007) reported that 

ELF-EMF exposure can improve spermatozoa motility and that this effect depends on the 

field characteristics. ELF-EMF with 50 Hz and square wave shape (amplitude 5 mT),while 

that of a sine wave of the same amplitude (also of 2.5 mT) and the same frequency had no 

such effect. Further a three hour exposure in the first case had the effect on sperm motility 

persisting for 21 hours. 

People connected to local area networks wirelessly (Wi-Fi) were examined for human 

spermatozoa. These authors (Avendano et al 2012) selected sperms from 29 healthy donors 

for their capability to swim. This study using a laptop as a source contributed both ELF-EMF 

and RFR to the exposure conditions. Each sperm suspension was divided into two aliquots. 

One sperm aliquot (experimental) from each patient was exposed to an internet connected lap 

top by Wi-Fi for 4 hours, whereas the second aliquot (unexposed) was used as control and 

incubated under identical conditions without being exposed to the laptop. These authors 

evaluated sperm motility, viability, and DNA. These authors reported that normozoospermic, 

exposed ex vivo during 4 hour to a wireless internet –connected laptop showed a significant 

decrease in progressive sperm motility and an increase in DNA fragmentation. Level of dead 

sperm showed no significant differences between the two groups. They concluded that the 

effect (which is non-thermal) decreased motility and induced DNA fragmentation. It is 
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therefore speculated that keeping a laptop connected wirelessly to the internet on the lap near 

the testes may result in decreased male fertility. 

 

 

Sage et al (2007) reported that personal and occupational use of personal digital assistants 

(PDAs or palm-held wireless units) produce high intensity bursts of ELF-EMF exposure in 

persons that carry a PDA close to the body (i.e., in a pocket or in a belt); or held to the head 

for cell phone conversations. ELF-EMF emissions of 10T (100 mG) were recorded on 

PDAs during normal office use over a 24 hr test period. Results of ELF-EMF measurements 

show that email transmit and receive functions produce rapid, short duration ELF-EMF 

spikes in the 2-10T (20 to 100 mG) range, each lasting several seconds to over a minute, 

depending on the download size. Switching the PDAs produced continuously elevated ELF-

EMF pulses of over 90 T on two units. Thus the user who wears the PDA may be receiving 

high-intensity ELF-EMF pulses throughout the day and night. 

 

Avendano et al (2012) investigated the effect of laptop computers connected to internet 

through Wi-Fi on human sperm motility. Donor sperm samples, mostly normozoospermic, 

exposed ex vivo during 4 hours connection showed a significant decrease in progressive 

sperm motility and an increase in sperm DNA fragmentation due to nonthermal effect, thus 

showing  potential risks to male fertility.  

Bellieni et al (2012) has investigated a much wider issue of reproduction relating to that of 

fetal growth and the effect of emissions from lap top computers (LTC). Such wireless and 

ELF-EMF exposures may have adverse effects on the offspring. They measured magnetic 

field in the range 1 Hz -400 kHz range as emitted from LTC. These field have the advantage 

that being quasi static can penetrate inside the body and thereby induce voltage and induce 

currents. The authors reported that the magnetic field at dominant frequencies ranged from 

1.8-6 T (18 to 60 mG), where from the power supply ranges from 0.7 to 29.5 T (7 to 295 

mG). They found that the power supply produces strong intracorporal electric current in the 

fetus and in the mother, higher than ICNIRP (1998) basic restriction recommend to prevent 

adverse health effects. The field emissions from video terminals are reported to be low 

(0.1T or 1 mG) and the effect of higher exposures needs to be investigated (Bellieni et al 

2012) 
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Sun et al. (2005) investigated the effects of EMR emitted by computers on human sperm 

quality and did not find any adverse effect. 

An observation that women who use video display terminals suffers miscarriages has led to 

the beginning of diagnosing the possible adverse effects of electric and magnetic fields 

Extremely low frequency electromagnetic fields are likely to produce greater damage to the 

body systems for several reasons. One that these frequencies are close to those of 

physiological range and hence any overlap of these can perturb on-going biological 

processes. When in close contact with the body the generation of eddy currents and 

accompanied heating are added parameters. To differentiate their respective contributions on 

biological system is an impossible demand. 

Extremely low frequency EMF effects induced due to electric(E) blankets generate eddy 

currents in the body.60 Hz magnetic field exposure generate about 3-4 mG for waterbeds (W) 

and about 15 mG for E (Electric Blankets),as reported by (Wertheimer and Leeper 1986). 

They have estimated that electric fields are of the magnitude 100 V/m. E and W both have the 

potential for providing excessive body heating, which may have adverse effect on sperm 

(Van Demark and Free 1970), leading to adverse effect on the process of embryogenesis 

(Edwards et al 1974,Lacy et al 1981). This high temperature could also be teratogenic in 

humans too (Miller et al 1978, Fraser and Skelton 1978).It is obvious that either the heat or 

the electromagnetic fields produced by electric or bed heating might affect the fetus. These 

authors concluded that E or W use has a direct effect on fetal development. It is argued that 

heat or electromagnetic field exposure is he seasonal. Both prolonged gestation and fetal loss 

have been shown to be associated with high blanket settings used by the mother, but not those 

used by the father. Earlier workers have also pointed out that electromagnetic exposure may 

cause abnormal fetal development (Delgado et al 1982).Marx (1981) pointed out that current 

and field distribution in embryos, responsible for normal fetal development are disturbed due 

to the presence of externally imposed fields .  

Li et al (1995) studied the effect of prenatal electromagnetic field exposure on the risk of 

congenital urinary tract anomalies (CUTAs) among women with a history of subfertility as 

well as in general population. These authors found no consistent relation between the risk of 

CUTAs and prenatal exposure to electromagnetic fields from E,W ,and video display 

terminals among all cases of controls. The risk appeared to increase with increasing duration 

of use and was greatest among women who used Es during the first trimester .CUTA cases 
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exposed to Es prenatally appeared more likely to have anomalies of the ureter, bladder than 

unexposed cases. However there is  an absence of association with  the risk of electrically 

heated water beds and video display terminals and demands further investigations. They 

further pointed out  that only women with a history of subfertility were subject to said 

exposure ,since the positive association between potential E use and risk of CUTAs was 

observed in this group. They concluded that out of the three E,W and video terminals, E has 

the maximum capacity,keeping in view the proximity with all parts of the body and duration 

of exposure. Women with subfertility history are more prone to adverse pregnancy outcome. 

Juutilainen et al (1993) carried out case control study, although on a small number ,on 

women .They measured magnetic field at the front door and reported a five-fold increase in 

preclinical miscarriage. Lee et al (2001) conducted a case control study nested in a 

miscarriage study. They defined cases as women who had a clinical miscarriage before 20 

weeks of gestation and controls as women who had a live birth. They observed a gradient in 

miscarriage risk as the number of environmental parameters increased above the 50th 

percentile. Their findings are not consistent with the results of mechanistic and mammalian 

studies (Portiere and Wolfe 1987) ,while some laboratory results supports alterations in the 

development of chick embryos exposed to EMF.(Farrell et al 1997). While numerous data 

have been generated but are inconclusive and the possibility of more funding seems remote. 

In summary the possibility of immediate abortion has not found favour with the researchers. 

However a weak link is possible. A temperature rise causing adverse effect on sperm is 

possible and certainly avoidance is recommended more so for pregnant women. Another 

point of interest would be to see if any adverse effects are reversible. 

The area certainly demands more investigations.   

A summary of these data is presented in Table 1 (Studies on Effects of ELF-EMF on Fertility 

and Reproduction). 
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Table  1: Table showing the overall Effect of Extremely Low frequency electromagnetic field 
effects on  reproduction and fertility 

 

 

 

Organism used  Mode of 

exposure 

Parameters 

studied 

Conclusion Reference 

Human  sperm internet-
connected laptop 
by Wi-Fi for 4 
hours 

sperm motility 
and an DNA 
fragmentation 

Decrease in motility 
and increase in  DNA 
fragmentation 

Avendano et 
al, 2012 

Human sperm ELF -EMF Sperm 
kinematics 
 

Increase in 
mitochondrial  
membrane  potential 

Lorio et al 
2011 
 

Mice 
 

4h d 2 m at 3 mT 
EMF with 
Polygonum  
aviculare 

Sperm motility 
and 
morphology 
 

Motility affected. 
With P. aviculare is 
sperm quality 
increased 
 

Milan et al. 
2011 
 
 

Boar  
spermatozoa 
 

Acute (1h) 50 
Hz ELF  
 

Early embryo 
development 
 
 

Reduction in 
fertilization rate, 
Affect embryo 
development 

Bernabo et al. 
2010. 
 

NMRI mice  
(Naval Medical 
Research 
Institute) 

50 Hz, 0.5 mT 
EMF 4 h for 2 
weeks 
 

Fertility and 
height of 
epithelial cells 
 

Decrease in 
blastocyte and 
increase in the height 
of epithelial cells 
 

Rajaei  et 
al.2010  
 

Rabbit 
spermatozoa 

50 Hz ELF  
 

Spermatozoa 
motility 

Change in motility 
and kindling rate 

Roychoudhury 
et al.2009 

ICR mice 
 

X- ray,  
1000 Hz and 
2000Hz  

Sperm motility 
 
 

Affect testis function 
 
 

Cao et al. 2009 
 
 

BALB/c mice 
 

ELF  60 Hz ,0.1 
or 0.5 mT 
14 or 200 mT  

Apoptosis 
 

Induced apoptosis 
 

Kim et al. 2009 
 

Balb C mice 
 

 
Electromagnetic 
pulse (EMP)  
 

Tight-junction-
associated 
proteins,transfo
rming growth 
factor-beta  and 
AsAb level in 
serum 

Decrease in 
expression of protein 
 

Wang et al 
2010 
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Table 1 continued … 

human 
spermatozoa  

 

ELF-EMF  5 
mT and 
frequency of 50 
Hz. 

sperm motility Square waveform of 
5 mT amplitude and 
frequency of 50 Hz 
increase sperm 
motility.No change 
in  5 mT sine wave 
(50 Hz) and a 2.5 
mT square wave (50 
Hz 

Lorio et  al  2007 

Sprague –
Dawley rat 
 
 

ELF 2hour for 2 
months 
 

Sperm count,  
histology, p53 
immunoreactivity 
of bone marrow 

No adverse effect. 
Increase in Mn2+.  
 

Akdag et al 2006 

Rat  
 

static magnetic 
field (SMF) and 
cadmium  

Antioxidant 
enzymes activity  

SMF with  Cd 
disrupt antioxidant 
response 

Amara et al 2006 

Mice 

 
50 Hz .02,3.2or 6.4 
mT for 2 weeks or 
4 weeks 
 

Testicular 
histology, weight 
quantity and 
motility of sperm 

 

Reduced testicular 
weight, decreased 
sperm motility. High 
rate of deformity in 
sperm 

 

Hong et al 2003 

 

Pregnant 
women 
 

Case control 
study (Magnetic 
field) 

Miscarriage  
 

Miscarriage before 
20 weeks of 
gestation 

Lee et al 2001 
 

Sperm 12.5, 25, 50 and 
100 cGy X-rays 

DNA damage Increase in DNA 
migration 

Singh and 
Stephens 1998  

Pregnant 
women  
 

Electric blanket, 
electric heated 
water bed, and 
video display 
terminal 

Congenital 
urinary tract 
abnormality(CUT
A) 

Increased risk of 
CUTA 
 

Li et al 1995 
 

Human  
 

Extremely low 
frequency 
EMF(60Hz) 

Abortion rate, 
Fetal 
development  

Excess abortion  
 

Wertheimer and 
Leeper(1986) 
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V.  FERTILITY AND REPRODUCTION EFFECTS REPORTED FOR RADIO-  

      FREQUENCY AND MICROWAVE EXPOSURE  

 

Nakamura et al. (2000) found that exposure to 2.45 GHz continuous wave (CW) microwave 

at 2mW/cm
2
 power density for 90 min decreased uteroplacental blood flow, increased 

progesterone and PGF2 in pregnant rats. Dasdag et al. (2003) reported the decrease in 

seminiferous tubule diameter in male rat testes after exposure. They used commercially 

available 890-915 MHz GSM (global signal module) with 0.141 W/kg whole body SAR. 

More recently, Aitken et al. (2005) found significant damage to mitochondrial and nuclear 

genome in epididymal spermatozoa of mice, when exposed to RF 900 MHz EMW, 12 hr a 

day for 7 days. Several authors (Fejes et al. 2005; Ji-Geng et al. 2007; Kesari and Behari, 

2008) have also observed that carrying the mobile phones near reproductive organs for longer 

time may have negative effects on the sperm motility and male fertility.  

 

Aitken et al (2005) exposed mice to 900 MHz radiofrequency electromagnetic radiation at a 

SAR of 90 mW/kg inside a waveguide for 7 days (12 hr/day). Following exposure DNA 

damage to caudal epididymal spermatozoa was assessed. These authors reported no gross 

evidence of single-or double strand DNA breakage in spermatozoa taken from treated 

animals. However an analysis of DNA integrity revealed significant damage to both the 

mitochondrial genome (P<0.05) and the nuclear beta-globin locus (P<0.01). This study 

suggests that while RF EMR does not have a dramatic impact on male germ cell 

development, a significant genotoxic effect on epididymal spermatozoa is seen. 

 Kilgalton and Simmons (2005) report decreased semen quality with prolonged use of cell 

phones with negative effects on sperm motility characteristics (Fejes et al, 2005). It has been 

shown that sperm DNA damage is not repaired, because of chromatin structure (Singh and 

Stephens 1998). 

 

Yan et al (2007) studied the effects of cellular phone emissions on sperm motility in rats. 

Rats were exposed to two 3-hr periods of daily cellular phone emissions for 18 weeks, sperm 

samples were then collected for evaluation. These authors concluded that exposed group of  
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rats exhibited a significantly higher incidence of sperm cell death than control group rats. In 

addition, abnormal clumping of sperm cells was present in rats exposed to cellular phone 

emissions and absent from control group rats. A study carried out in Poland (Wdowiak et al 

2007) on the population using mobile phone (GSM equipment), spread over a period (1-2 

years) indicates sperm quality is lowered. The authors report a decrease in the percentage of 

sperm cells with normal motility in the semen. The decrease in motility correlates with the 

frequency of using mobile phones. These two finding seem to be mutually supportive. 

However there are also reports indicating no effects (Panagopoulos and Margaritis 2008, 

2009, 2010). 

 

Overall, the evidence from various laboratories studying fertility and reproduction effects 

over the last ten years is important enough raise questions about possible public health 

consequences of chronic, long-term exposure to mobile phone use, and when carried on the 

body close to the reproductive organs. While assessing the biological implications of mobile 

phone radiofrequency exposures, field based experiments are not possible. Sham exposure 

controls cannot be obtained. Therefore it is imperative to fall back upon laboratory 

experiments performed in a variety of situations (e.g. animals at different distances from the 

mobile phone and head) while also simulated variable distances and angles for the mobile 

phone variation while in actual use.  

Gutschi et al (2011) studied human sperm obtained from 2110 patients attending clinics from 

1993 to 2007. Semen analysis was performed in all patients. Serum free testosterone (T), 

follicle stimulating hormone (FSH), luteinising hormone (LH) and prolactin (PRL) were 

collected from all patients. Information on cell phone use from each patient was collected and 

the subjects were divided into two groups according to their cell phone use. Group A: cell 

phone use (n=991), Group B: no use (n=1119). Patients with cell phone use showed a 

significant higher T and lower LH levels than those who did not use a cell phone. However 

no significant difference was observed regarding FSH and PRL values. These authors 

concluded that cell phone use had a negative effect on sperm quality in men.  

Kesari et al (2011) assessed free radical formation due to mobile phone exposure (2 hr a day 

for 35 days) and examined fertility patterns in 70-days old male Wistar rats. The specific 

absorption rate of the mobile phone was 0.9 W/kg. An analysis of anti-oxidant enzymes 

glutathione peroxidise(p<0.001) and superoxide dismutase (p<o.007) showed a decline, while 
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an increase in catalase (p<0.005) was observed. Malondialdehyde (p< 0.003) showed an 

increase and histone kinase (p=0.006) showed a significant decrease in the exposed group. 

Correspondingly, micronuclei also showed a significant decrease (p<0.002). A change in 

sperm cell cycle of G0 –G1 (p=0.42) and G2/M (p=0.022) was recorded. These authors 

concluded that changes occurred due to overproduction of ROS and oxidative damage, 

leading to infertility. 

Yan et al (2007) studied the effects of cellular phone emissions on sperm motility in rats. 

Rats were exposed to two 3-hr periods of daily cellular phone emissions for 18 weeks. After 

the exposure period, sperm samples were collected for evaluation. The authors concluded that 

exposed group of rats exhibited a significantly higher incidence of sperm cell death than 

control group rats. In addition, abnormal clumping of sperm cells was present in rats exposed 

to cellular phone emissions and absent from control group rats.  

A related issue is the corresponding effect on male infertility.  

 

Sommer et al (2009) undertook a very exhaustive study where male and female mice were 

chronically exposed (life-long, 24 hr/day) to mobile phone frequency EMF at 1966 MHz 

(UMTS). They studied their development and fertility patterns over four generations by 

investigating histological, physiological, behavioural and reproductive functions. They tested 

SAR from the time of mating at 0 (sham), 0.08, 0.4 and 1.3 W/kg. Power densities were kept 

constant for each group (0, 1.35, 6.8 and 22 W/m
2
), resulting in varying SARs due to 

different number of adults and pups. The results show no harmful effects of exposure on the 

fertility and development of the animals. The number and the development of the pups were 

not affected by the exposure. These authors concluded no harmful effects occurred with long- 

term exposure of mice to UMTS mobile phone frequency radiation over several generations.  

DeIuliis et al (2009) used purified human spermatozoa for exposure to electromagnetic 

radiation at 1.8 GHz with specific absorption rates varying from 0.4 to 2.75 W/kg. These 

investigators reported that motility and vitality were significantly reduced after RFR 

exposure, while the mitochondrial generation of reactive oxygen species and DNA 

fragmentation was significantly elevated (P<0.001). They also found a highly significant 

relationship between SAR, the oxidative DNA damage biomarker 8-OH-dG, and DNA 

fragmentation after exposure. These results have bearing on safety of people of reproductive 

age, and wellbeing of their offspring. Erogul et al (2006) also support these finding by 

showing effect on sperm motility and that long-term exposure may lead to behavioural or 
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structural changes of the male germ cell. These may appear later in life and need 

investigation on a longer term basis.  

As a follow up of the above, Otitoloju et al (2010) exposed male mice to radiofrequency 

radiations at mobile phone (GSM) base station-level RFR. Sperm head abnormalities 

occurred in 39% to 46% of exposed mice, but in only 2% of the controls (P<0.005). The 

major abnormalities observed were knobbed hook, pin head and banana-shaped sperm head. 

The abnormalities were also found to be dose-dependent. This may have severe consequences 

for the off spring.  

Gul et al (2009) investigated toxicity of microwaves (as emitted by cellular phones on ovaries 

in rats. In this study 82 female rats of aged 21 days (43 in the study group and 39 in the 

control group) were used. Pregnant rats exposed to mobile phones that were kept underneath 

the cages during the whole period of pregnancy. A mobile phone in a standby position for 11 

hr and 45 min was turned on to speech position for 15 min every 12 hr and the battery was 

charged continuously. On the 21st day after the delivery , the female rat pups were killed and 

the right ovaries were removed. The volumes of the ovaries were measured and the number 

of follicles in every tenth section was counted. These authors found that the number of 

follicles in pups exposed to mobile phone microwaves suggest that intrauterine exposure has 

toxic effects on ovaries.  

Salama et al (2010) examined the accumulating effects of exposure to electromagnetic 

radiation emitted by a conventional mobile phone (800 MHz, standby position, kept opposite 

to the testis) on the testicular function and structure. The animals were exposed 8 hr daily for 

a period of 12 weeks in a specially designed cage. Semen analysis and sperm function tests 

were conducted weekly. Other parameters examined were histological testicular sections and 

serum total testosterone. When compared with other two groups (stress control and ordinary), 

the exposed animals showed a drop in sperm concentration at week 6, which became 

significant at week 8. Mobile sperm population showed similarity amongst the three study 

groups until week 10 when it declined significantly, and thereafter in phone and stress control 

groups, with more significant decline in the exposed animals (50.6% and 72.4%, 

respectively). Histological examination showed a significant decrease in the diameter of 

seminiferous tubules in the exposed group vs the stress and ordinary controls (191 m vs. 

206 and 226 m, respectively). The authors concluded that the pulsed radiofrequency emitted 

by a conventional mobile phone kept in the standby position could affect the testicular 

function and structure in the adult rabbit.  
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Falzone et al (2011) evaluated the effect of RF-EMF on sperm characteristics to assess the 

fertilizing potential of sperm. They exposed highly motile human spermatozoa to 900 MHz 

for an hour (SAR =2.0 W/kg) and examined effects at various time after exposure. The 

acrosome reaction was evaluated using flow cytometry. They did not find any effect on 

sperm propensity for the acrosome reaction. They obtained significant reduction in sperm 

head area (21.5±4% vs 35.5±11.4%) was obtained when compared among exposed and 

unexposed samples. Sperm zona binding was assessed directly after exposure. The mean 

number of zona-bound sperm of the test hemizona and controls was 22.8±12.4 and 31.8±12.8 

(p<0.05) respectively. They concluded that though the radiation exposure did not adversely 

affect the acrosome reaction, it had a significant effect on sperm morphometry. They also 

observed a significant decrease in sperm binding to the hemizona. These data point toward 

sperm fertilization potential. These studies are in contradiction that fertility impairment was 

not caused by the induction of apoptosis in spermatozoa (Falzone et al 2010).   

In a study undertaken by Ribeiro et al (2007), while experimenting with male Wistar rats, 

they exposed testis in the frequency and in the range of intensity (1835-1856 MHz, 0.04-1.4 

mW/cm
2
). The authors reported that the total body weight and absolute and relative testicular 

and epididymal weight did not change significantly, nor did the epididymal sperm count. 

Human spermatozoa are known to be known to be vulnerable to oxidative stress because of 

abundant availability of substrates for free radical attack, and the lack of cytoplasmic space to 

accommodate antioxidant enzymes. The ROS generation does DNA damage, besides 

reducing fertility. The former has been linked with poor fertility, incidence of miscarriage 

and possible morbidity in the offspring, including childhood cancer.  

 

There are other reports showing lack of effect on testicular function in experimental animals 

in the non-thermal range. They concluded that the responses are identical to those produced 

by hyperthermia caused by mere heating(Ribeiro et al 2007, Sommer et al 2009).  

 

Comparison between non-modulated (DTX) and Modulated (Talk Signal) GSM 

Radiation  

In an experimentation with insects, Panagopoulos (2011) divided these into two groups: a)the 

exposed (E) and b) the sham exposed (control) group (SE). Each of the two groups consisted 

of ten female and ten male newly emerged adult flies. The sham exposed groups had identical 

treatment as the exposed ones, except that the mobile phone during the “exposures” was 

turned off. The duration of exposure was 6 min per day in one dose extending over a period 

of 5 days.  
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In the first part of the exposure (1A) the insects were exposed in non-modulated GSM 900 

MHz radiation (TDX-discontinuous transmission mode –signal ) while in the second part 

(1B) they were exposed to modulated GSM 900 MHz radiation (or GSM talk signal). In both 

cases, the exposures were performed with the antenna of the mobile phone in contact with the 

walls of the glass vials containing the insects.  

The difference between the modulated and the corresponding non-modulated GSM radiation 

is that the intensity of the modulated radiation is about ten times higher than the intensity of 

the corresponding non-modulated from the same handset (mobile phone) and additionally 

that the modulated radiation includes more and larger variations in its intensity within the 

same time interval, than the corresponding non-modulated one (Panagopoulos and Margaritis 

2008). The power level of exposure for the modulated signal was 0.436±0.060 mW/cm
2 

and 

the corresponding mean value for the non-modulated emission was (0.041±0.006) mW/cm
2
. 

The measured ELF mean values of electric field intensity of the GSM signals excluding the 

ambient fields of 50 Hz were 6.05±1.02 V/m for modulated signal and 3.18±1.10 V/m for the 

non-modulated signal. 

Experiments with the non-modulated GSM 900 MHz radiation (non-speaking mode of 

transmission) showed that this radiation decreased insect reproduction by an average of 

18.24%. Correspondingly experiments with modulated GSM at 900 MHz (GSM “talk” 

signal) exposure shows that the radiation decreases reproduction by an average of 53.01 %. 

Above results indicate that the decrease in population is linked with intensity of the radiation. 

These authors concluded that between 900 MHz and 1800 MHz, the former is more bioactive 

owing to the difference in radiation intensity. Performing experiments at various distances (0 

to 100cm) from mobile phone, Panagopoulos (2011) reported that the distance dependence is 

not linear. At the distances at 0 and 30 cm (intensity 378 W/cm
2 

and 10 W/cm
2 

respectively
 
) show a maximum of decrease in reproductive capacity (window of maximum 

bioactivity). Correspondingly for GSM 1800 MHz at 0 and 20 cm (intensity 252W/cm 
2 

and 

11W/cm
2 

respectively) bioactivity is maximum (decrease in reproduction, window of 

maximum bioactivity) i.e. in the vicinity of free space wavelength of the corresponding 

radiation. For distances greater than 20 cm (up to 80 cm) the effect decreases rapidly and 

becomes very small for distances longer than 40 cm, but it is still evident for distances up to 

80 cm (intensity down to 1.1W/
2 

). These authors have further pointed out that it is the 

intensity which is primarily important rather than the frequency or the distance as such. 
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These distances (30 and 20 cm from GSM 900 MHz and GSM 1800 MHz correspond to the 

same RF intensity (10W/cm
2
) and also to the same electric field intensity of about 0.6-0.7 

V/m. Maximum bioactivity is attributed to a distance of 0 cm or at approximately the two 

nodes of the wavelength, after which the effect declines. These authors reported no 

temperature increase inside any of the vials. They further concluded that the ELF components 

of digital mobile telephony signals that play a key role in their bioactivity, alone or in 

combination with the RF carrier signal . This also suggest that low frequency signals are 

more bioactive than higher frequency ones. Accordingly, electric field of the order of 10
-3

 

V/m are able to disrupt cell function, perhaps by irregular gating of electrosensitive ion 

channels on the cell membranes. We conclude that both the GSM signal at 900 MHz and 

1800 MHz fields appear to possess sufficient intensity for this for distances up to 50 cm from 

the antenna of a mobile phone (or about 50 m from a corresponding base station antenna). 

Therefore the restrictions being imposed on emission standards are with respect to continuous 

wave frequencies, but not with respect to a pulsed type, the latter being important in 

transmitting any intelligent information. Moreover real GSM signals are not constant in 

frequency and intensity. This distance of 20-30cm from the mobile phone corresponds to a 

distance of 20 to 30 m from a base station antenna. Panagopoulos et al (2010) showed that the 

bioactivity of GSM radiation in regard to short-term exposure is evident for radiation 

intensities down to 1W/cm
2
. This value of radiation intensity is encountered at about 1m 

distance from a cell phone or about 100 m distance from a corresponding base station 

antenna. This radiation intensity is 450 times and 900 times lower than the ICNIRP limits for 

900 and 1800 MHz respectively (ICNIRP,1998). It has been estimated by Panagopoulos 

(2011) that people may be exposed to this level of radiation for long distances so, a factor of 

ten could be added as a safety factor, thereby bringing down the above figure to 0.1 W/cm
2 

, 

suggesting a limit for public exposure. These results support the findings that GSM radiation 

caused increased permeability of the blood –brain barrier in rat nerve cells and the strongest 

effect was produced by the SAR values which correspond to the weakest radiation intensity 

(Eberhardt et al.2008). The concept of window has earlier been described by Bawin et al 

(1978), Blackman et al (1980,1989). They have reported that the reproductive capacity 

decreases as the duration of exposure (1-21 minutes) increases(almost proportionally), for 

either of the two radiation types. Using statistical analysis they have confirmed that this 

variation is not because of the randomness of the subject, but because of the radiation 

exposure. 
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Several other authors have echoed a wide range of damaging effects on the male reproductive 

system and sperm parameters and cause significant changes in the sperm cell cycle (Derias et 

al 2006; Ji-Geng. 2007; Gutschi et al, 2011). 

 

Non-genotoxic effects of Radiofrequency Radiation 

Several studies reported no effect of RF fields on cell cycle kinetics (Vijayalaxmi et al 2001, 

Higashikubo et al 2001; Zeni et al, 2003; Miyakoshi et al, 2005; Lantow et al, 2006c). 

Alteration in cell proliferation was described only in a few reports (Pacini et al, 2002, Capri 

et al, 2004b). 

Apoptosis is an important mechanism of protection against cancer. Several studies have 

reported RF field effects on human peripheral blood mononuclear cells (Capri et al, 2004a), 

lymphoblastoid cells (Marinelli et al, 2004), epidermis cancer cells (Caraglia et al 2005), and 

human Mono Mac 6 cells (Lantow et al, 2006c) and in Molts4 cells (Hook et al, 2004). No 

difference in apoptosis induction was detected between sham exposed and RF field exposed 

cells by Hook et al (2004). On the other hand, Marinelli et al (2004) have reported better 

survival rate of T lymphoblastoid leukaemia cells exposed to 900 MHz non-modulated RF 

fields and Carglia et al (2005) found apoptosis induction in human epidermoid cancer cells 

after exposure to 1.95 GHz fields. The European REFLEX study (Nikolova et al, 2005) 

reported no effects of RF fields on cell cycle, cell proliferation, cell differentiation, apoptosis 

induction, DNA synthesis and immune cell functionality. These authors described some 

findings after RF exposure on the transcript level of genes related to apoptosis and cell cycle 

control; however these responses were not associated with detectable changes of cell 

physiology. Analysis on whole genome cDNA arrays show alterations in gene expression 

after various RF exposure conditions using different cell types, but no consistent RF-

signature such as stress response could be identified (Remondini et al, 2006).  

Heat shock proteins act primarily as molecular chaperones to eliminate unfolded proteins, 

which can also appear from cellular stress. This stress response can be induced by many 

different external factors, including temperature, chemicals, oxidative stress, heavy metals, 

ionizing and non-ionizing radiation and ultrafine carbon black particles. Hsp70 has been 

shown to interfere with post mitochondrial events to prevent free radical mediated apoptosis 

(Gotoh et al 2001). An increased expression level of Hsp70 can thus offer protection against 

stress. Heat shock proteins are also involved in oncogenic processes (Jolly et al, 2000; Inoue 

et al, 1999; French et al, 2001).Some investigators have described increased heat shock 
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protein level after RF exposure (Leszczynski et al, 2002; Kwee et al, 2001). However, these 

results are controversial, because there are negative findings also (Cotgreave 2005).  

Nikolova et al (2005) described modulation in gene regulation after RF field’s exposure at a 

SAR of 1.5 W/kg in p53-deficient embryonic stem cells. Proteomic analyses of human 

endothelial cell lines showed RF fields induced changes in this expression and 

phosphorylation state of numerous proteins including the hsp27. 

 

Mitochondrial generation of ROS : DNA fragmentation and Effects 

Free radical formation and their interaction with biological system is a matter of major 

concern for it has health implications. There is evidence of free radical generation after RF-

microwave exposures (Phillips et al 2009; De lullis et al 2009;Kesari and Behari 2012,Kesari 

et al 2012). 

Mitochondrial respiratory chain is the major site for the generation of superoxide radicals (O2 

and H2O2). It is possible that EMF may affect the mitochondrial membranes to produce large 

amount of radicals ROS under experimental conditions. EMF may disturb ROS metabolism 

by increasing the production of ROS or by decreasing the activity of antioxidant enzymes. 

From the data presented here it is obvious that such a change in testes that is highly 

dependent on oxygen to drive spermatogenesis and yet highly susceptible to the toxic effects 

of reactive oxygen metabolites, activity of anti-oxidant enzymes, and increases in ROS 

production. Reactive oxygen species (ROS) such as superoxide anions (O¯), hydroxyl 

radicals (OH¯) and hydrogen peroxide (H2 O2) may influence the structural integrity and 

function of sperm, such as motility, capacitation, and sperm-oocyte fusion (Griveau et al 

1995). Spermatozoa are particularly vulnerable to oxidative stress because their plasma 

membrane is rich in polyunsaturated fatty acids (PUFAS) and membrane bound NADPH 

oxidase. Increased ROS production has been shown to correlate with reduced male fertility 

(Iwasaki and Gagnon 1992), to cause perioxidative damage to the sperm plasma membrane 

(Hughes et al 1996), and induce both DNA strand breakages and oxidative base damage in 

human sperm (Kodama et al 1997). A decrease in total antioxidant capacity of seminal 

plasma has been correlated with a reduction in sperm quality, such as concentration, motility 

and morphology (Smith et al 1996).  

Since the most abundant molecule in biological cells is that of water (H2O) microwave 

radiation can generate free radicals like OH
-
, O

-
2, H, and H

-
. These molecules are extremely 

reactive, having a tendency to react with different biomolecules including DNA, because of 

an unpaired electron that they comprise, which try to give up this extra charge and go into the 
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paired mode. Also hydrogen peroxide (H2O2), a product of oxidative respiration in the 

mitochondria, which can be converted by electromagnetic radiation(EMR)into hydroxyl free 

radical via the Fenton reaction catalyzed by iron within the cells: 

H2O2 + (EMR)-----OH
-
+OH

-
 

ROS generated by mobile phone exposure if not scavenged may lead to widespread lipid, 

protein, and DNA damage (Jajte et al 2002). 

A summary of these results on Effects of Radiofrequency Microwave Radiation on Fertility 

and Reproduction is presented in Table 2. 

 

The sequence of events leading toward infertility  

A wide range of studies extending up to 50 GHz (Kesari and Behari 2009)) suggest that the 

DNA interaction with EMF is similar in nature across wide frequency ranges. DNA appears 

to possess the two structural characteristics of fractal antennas, electronic conduction and 

self- symmetry (Blank and Goodman 2011). These properties contribute to greater reactivity 

of DNA with EMF in the environment. The DNA damage could account for cancer 

promotion.  

 

While damage to DNA has been confirmed in numerous scientific studies, it is argued that 

DNA repair is an on-going process and the damaged chromosomes can be reconstituted. 

However, this proposition is not without risk. There is no guarantee that these will replicate 

in the manner they were originally present. Pieces may be left out (deletions), joined in the 

backwards (inversions), swapped between different parts of the chromosomal (translocations)  
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Table 2: Overall effect of microwave radiation on reproduction and fertility 

Organism used  Mode of 

exposure 

Parameters 

studied 

Conclusion Reference 

Fetus in the 

womb 

laptop 

computers 

(LTCs) 

induced currents 

in the body 

power supply 

produces strong 

intracorporal 

electric current 

in the fetus and 

in the mother 

Bellieni et al 

2012 

Sperm  Cell phone 
 

Serum free 
testosterone (T), 
follicle 
stimulating 
hormone (FSH), 
luteinizing 
hormone (LH) 
and prolactin 
(PRL)  

Higher T and 
lower LH 
levels No 
change in FSH 
and PRL values 

Gutschi et al, 
2011 
 

Male Wistar rats  
 

2.45 GHz 
 

Creatine and 
caspase 
 

Increase in  
caspase and 
creatine kinase ; 
decreases in 
testosterone and 
melatonin  

Kesari et al, 
2011 
 

human 
spermatozoa 
 

900-MHz 
 

Acrosomal  
reaction,  
Morphometric 
parameters 

affect sperm 
morphometry 
decrease in 
sperm 

Falzone et al, 
2011 
 

Male Sprague 
Dawley rat 
 

1.95 GHz 5 h/d 
for 5 weeks 
 

SOD, CAT, GPx, 
histone 
kinase,Apoptosis 

No testicular 
toxicity.  
 

Imai et al. 2011 
 

male mice 
 

mobile phone 
base stations 
 

sperm 
head 
abnormalities 

knobbed hook, 
pin-head and 
banana-shaped 
sperm head 

Otitoloju et al, 
2010 
 

Drosophila 
melanogaster 

GSM 900MHz 
and DCS 
1800MHz 

Reproductive 
capacity  

cumulative 
effects on living 
organisms. 

Panagopoulos 
and Margaritis, 
2010 
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Table 2 continued .. 

Drosophila 
melanogaster 
 

900 MHz 
 

ovarian size 
 

Significant 
reduction in size 
of ovary 

Panagopoulos 
and Margaritis  
2010 
 

Male Wistar rat 
 

900 MHz 2 h d 
for 45 day 
 

Sperm count, 
apoptosis 
 

Reduced sperm 
count and 
increased 
apoptosis 

Kesari et al 2010 
 

Male Wistar rat 
 

50GHz 
 

SOD, CAT, GPx, 
histone 
kinase,Apoptosis 

 
 

Decreased 
SOD,GPX and 
Histone kinase, 
increased  CAT 
and apoptosis 

Kesari and 
Behari 2010 
 

Male rabbit 
 
 

800 MHz  8 h /d 
12 weeks 
 

Sperm count, 
weights of testis, 
epididymis, 
seminal vesicles, 
and prostate 

Drop in sperm 
count 
 

Salama et al 
2010 
 

Male and female 
mice (C57BL) 
 

1966 MHz 
(UMTS) 
 
 

Semen analysis 
and sperm 
function tests 
 

No change 
 

Sommer et al 
2009 
 

Rat 
 

mobile phones 
 

volumes of the 
ovaries and 
follicles 

reduction in 
number of 
follicles 

Gul et al, 2009 
 

human 
spermatozoa 
 

1.8 GHz 
 

 
motility and 
vitality 

mitochondrial 
reactive oxygen 
species 
generation 

De Iuliis et al , 
2009 
 

Wistar albino 
male  
rats 

900 MHz 2 
h/day (7 
days/week) for 
10 months 

Apoptosis of 
testes  

No effect on 
caspase-3 levels  

Dasdag et al. 
2008 
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Table 2 continued… 

Male Wistar rat  
 

50-GHz 
microwave 
radiation  2 h a 
day for 45 days 
at a power level 
of 0.86  µW/cm2 

DNA strand 
break, 
Apoptosis 

Increased 
apoptosis and 
DNA strand 
break 

Kesari & 
Behari, 2008 
 

Male Sprague-
Dawley rats 
 

cellular phone 
emissions 
 

sperm motility, 
sperm cell 
morphology, 
total sperm cell 
number, and 
mRNA levels 

abnormal 
clumping of 
sperm cells 

 

Yan et al 2007 
 

Male Sprague-
Dawley rats 
 
 

cellular phone 
emissions for 18 
weeks 
 
 

sperm motility, 
sperm cell 
morphology, 
total sperm cell 
number, and 
mRNA levels  

sperm cell death 
and , abnormal 
clumping of 
sperm cells  

Ji-Geng et al , 
2007 
 

Mice 
 

1800 MHz 
 

Serum 
testosterone  

No detectable 
changes 

Forgács et 
al.2006 

Human semen 
 

cell phone  
 

Semen analyses negative effects 
on the sperm 
motility 

Fejes, et al  
2005 

Male NMRI 
mice 

1800 
MHz(100µW 
2 h  

Steroidogenic 
Leydig cells 

No change 
 

Forgács et al 
2005 

Drosophila 
melanogaster 
 

900-MHz Reproductive 
capacity 

decrease cellular 
processes during 
gonad 
development 

Panagopoulos et 
al 2004 

Pregnant rats 
 

915MHz 
microwaves  
 

uteroplacental 
circulation, and 
in placental 
endocrine and 
immune 
functions 

   
 No  effects on 
blood estradiol 
and 
progesterone,  

Nakamura et al, 
2000 
 

Sprague-
Dawley rats 
 
 

cellular phones 
20 min per day 
(7 days a week) 
for 1 month 
 

malondialdehyde 
,p53 immune 
reactivity, sperm 
count, 
morphology,  

No significant 
alteration 

Dasdag et al, 
2003 
 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Forg%C3%A1cs%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=16434166
http://www.ncbi.nlm.nih.gov/pubmed?term=Forg%C3%A1cs%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=16434166
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or even attached to the wrong chromosome. The effect may also be frequency dependent. In 

most cases, the new arrangement can work for a while if most of the genes are still present 

and any metabolic deficiencies can often be made good by the surrounding cells. However, 

things may be different if it comes to meiosis. During meiosis, the chromosomes line up in 

pairs (one from each original parent) along their entire length so that corresponding parts are 

adjacent and can be exchanged. Malformed pairs are torn apart in the later stages of meiosis 

so that eggs or sperms have an incomplete or unbalanced set of genes, may not function 

properly and so reduce fertility and other physiological functioning. There is a possibility that 

this may lead to permanent genetic damage, which though may not be visible in the first 

generation but may be thereafter. A summary of these results on Effects of Radiofrequency 

Microwave Radiation on Fertility and Reproduction is presented in Table  3.  

 

Table 3: Overview of effects of Microwave radiation on  reproductive patterns 

↑ Indicates significant increase                                                             ↓ Indicate significant decrease 

(PKC: Protein kinase C; ODC:  Ornithine decarboxylase; SOD: Superoxide dismutase; CAT: Catalase;  GPx: 
Glutathione peroxidase; H1K: Histone kinase, CK: creatine kinase, ROS: reactive oxygen species)                            
*   Some  studies have reported that there is no significant changes in reproductive system.                                            
*   Forgács et al 2005,2006 (1800 MHz)                                                                                                                                 
*   Dasdag et al. 2008 (900 MHz)                                                                                                                                              
*   Imai et al. 2011  (1.95 GHz)                                                                                                                                                   
*   Sommer et al 2009 (1966 MHz, UMTS) 

 

Parameter studied  900 MHz 2.45GHz 10GHz 50GHz 

PKC ↓ - - - 

SOD ↓ ↓ ↓ ↓ 

CAT ↑ ↑ ↑ ↑ 

GPx ↓ ↓ ↓ ↓ 

H1K ↓ - ↓ ↓ 

DNA damage ↑ ↑ ↑ - 

ROS ↑ ↑ ↑ - 

CK ↑ ↑ ↑ - 

Testosterone* ↓   ↓ ↓ - 

Caspase* ↑   ↑ ↑ - 

http://www.ncbi.nlm.nih.gov/pubmed?term=Forg%C3%A1cs%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=16434166
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VI.  PRUDENT AVOIDANCE AND GUIDANCE FOR SAFETY LIMITS 

 

While it appears to have been convincingly established that electromagnetic fields have 

adverse biological effects on fertility and reproduction, the emphasis is on ‘use with caution’ 

rather than no use at all. Children in the age 12 years and younger are more prone to the  

 

damage because of their developing nervous system. Senior citizens and persons who are ill 

should also exercise caution and use wireless devices only in a most demanding situation. 

Mobile phones should thus be carried in close proximity of the body only in an OFF position 

(not ON and transmitting on standby). This is so because in an “standby” mode the phone 

emits signal intermittently - every few minutes they emit a periodic signal lasting a few 

seconds long - to maintain connection with the nearest base station antenna. These periodic 

signals are as powerful as the usual “talk signal” during a conversation. The user must make 

use of mobile phone speaker mode and keep the handset at least 40 cm away from their heads 

and other most sensitive organ like the head, heart and reproductive organs. Another method 

of protection (e.g. wired ear phones) are less effective, because of the existence of intensity 

window. The base station antennas should not be located within or near residential areas or 

near heavily populated areas. If antenna placement in the vicinity of residential zones is 

essential, they should be made to operate at substantially lowered power. Powerful wireless 

antennas should be placed on the hilltops and far from populated areas . The focus thus then 

shifts to prudent avoidance i.e. on to reduce the frequency and length of phone calls and keep 

away from these devices when not in use.  

Bellieni et al (2012) have quoted that levels of exposure from “laptop” computers are higher 

than exposures that can be found in the proximity of high-voltage power lines and 

transformers or the domestic video screens .It has been observed that the magnetic field  

strength from power supplies is higher than that recommended by ICNIRP (1998) guidelines 

but that from LTC are within safe limits. It is thus suggested that use of LTC in an inclined 

position below the table level be avoided because it may cause increase in genital temperature 

,besides causing back pain and fatigue. Moreover ‘laptop’ is a misnomer for its use in close 

proximity to the body is harmful. 
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Guidelines for Safety Limits  

 While considering the far field exposures, there are two sources: one is the microwave 

exposure from the base stations. While mobile phone exposure is localized, intermittent and 

is under voluntary control of the user, radiation from base towers is involuntary, whole-body 

and occurs 24 hours a day. While both the exposures may involve the same carrier frequency, 

the exposures are basically different in type and duration. On the whole it can be concluded 

that long term exposure near base stations can affect well-being of populations around them. 

Symptoms mostly associated with such exposures are headaches, tremor, restlessness and 

sleeping disorders.  

  

The question of laying down the criteria for safe exposure is a problematic one, because the 

dose needs to be assessed not just as external field frequency (and spectrum), intensity, but 

also as cumulative exposure, as well as SAR, for whole body and specific anatomical sites. 

Accurate knowledge of RF exposure in a given scenario is needed for several parameters. 

The effect is not immediately visible but acts as silent killer. Any epidemiological studies for 

a long period (ten years or more) are difficult to carry under controllable situation, and few 

unexposed populations can serve as controls (non-exposed). Moreover the basic restrictions 

are expressed in quantities that are internal to the body and are not measured such as SAR. 

On the other hand, the reference levels are expressed (measured) in the free space situation, 

such as electric field.  It is evident that SAR-concept alone is insufficient to define the safety 

guidelines for chronic exposure from mobile communications. 

 

VI.  CONCLUSIONS 

 Though causal evidence of one or more mechanism(s) are not yet fully refined, it is generally 

accepted that oxidative stress and free radical action may be responsible for the recorded 

genotoxic effects of EMFs which may lead to impairments in fertility and reproduction.  Free 

radical action and/or hydrolytic enzymes like DNAase induced by exposure to EMFs may 

constitute the biochemical actions leading to adverse changes in hormones essential in males 

and female reproduction, DNA damage, which in turn causes damage to sperm motility, 

viability, and sperm morphology. Such exposures are now common in men who use and who 

wear wireless devices on their body, or use wireless-mode laptop computers. It may also 

account for damage to ovarian cells and female fertility, and miscarriage in women (ELF-

EMF at 16 mG intermittent exposure). 
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