
Section 13-01: Figures

• Figure 01-1: Facility Location – Update Provided


Section 13-02: Figures

- Figure 02-1: Facility Location within Five Miles See Original
- Figure 02-2: Proposed Facility and Vicinity Update Provided
- Figure 02-3: Facility Plot Plan Update Provided
- Figure 02-4: Facility Rendering See Original
- Figure 02-5a and 5b: Preliminary Water Balance Update Provided
- Figure 02-6: Preliminary One-Line Diagram See Original
- Figure 02-7: Project Schedule See Original

ESCRIPTION					
EAT RECOVERY STEAM GENERATOR (HRSG) OILER FEEDWATER PUMPS RSG BLOWDOWN TANK, SUMP AND PUMPS					
OMBUSTION TURBINE (CT) OMBUSTION TURBINE GENERATOR (CTG) P RECIRCULATION PUMP					
T FIRE PROTECTION SKID ASH WATER COLLECTION TANK UXILIARY BOILER TEAM TURBINE (ST)					
TEAM TURBINE GENERATOR (S JBE OIL RESERVOIR LOSED COOLING WATER (CCW)					
ONDENSATE COLLECTION TANK ONDENSATE PUMPS ONDENSATE POLISHERS					
TEAM JET AIR EJECTOR (SJAE AIN SWITCHGEAR BUILDING ONTROL ROOM RSG ELECTRICAL BUILDING	·)				
TG GSU STEP-UP TRANSFORME TG GSU STEP-UP TRANSFORME NIT AUXILIARY TRANSFORMER	ER				
ACILITY SWITCHYARD ACILITY SWITCHYARD CONTROL TEAM TURBINE ELECTRICAL BU	ILDING		G		
MERGENCY DIESEL GENERATOR N FAN COOLER ELECTRICAL B R COOLED CONDENSER ELECT	UILDING				
NIT 1 STACK NIT 2 STACK ONTINUOUS EMISSIONS MONITOF JCT BURNER SKID	RING SYSTEM (CE	MS) SHELTER			
MMONIA STORAGE MMONIA INJECTION SKID HEMICAL AREA WITH SUNSHADE					
JEL GAS PERFORMANCE HEATE LECTRIC START-UP HEATER JEL GAS DEW POINT HEATER		AREA			
YDROGEN STORAGE TRAILER ATER TREATMENT BUILDING R COOLED CONDENSER (ACC) N FAN COOLER			F		
TEAM DUCT _ECTRICAL/DIESEL FIRE WATER EMINERALIZED WATER TRAILER	PUMPS				
AW WATER/FIRE WATER STOR. EMINERALIZED WATER TANK DTABLE WATER TANK	AGE TANK				
ASTE WATER TANK ASTE WATER TRAILER TEAM DUCT DRIP POT AND CC TERNAL STEAM DRAINS TANK	NDENSATE FORW	ARDING PUMPS	. 1		
DMINISTRATION BUILDING AINTENANCE\WAREHOUSE BUILD R COMPRESSORS, RECEIVERS, A	AND DRYERS				
RANSMISSION SERVICE PROVIDE SP SWITCHYARD CONTROL BUIL EWAGE HOLDING TANK		I SP)			
<u>S:</u> SSION POINT COORDII	NATES CONV	/FRTED			
E PLANE NAD83(US S	IDE TO OHIC)			
<u>RENCE DRAWINGS:</u> PLAN - 25932-000	-P1-0000-0C	002			
SIONS POINTS					
DESCRIPTION	NORTHING N 344,948.00	EASTING E 2,368,554.00	D		
IRSG STACK 2	N 345,084.00	E 2,368,554.00			
AR COOLED CONDENSER	N 345,418.49 N 345,202.67	E 2,368,162.20 E 2,368,244.13			
AUXILIARY BOILER	N 345,084.00	E 2,368,568.17			
LABELS OF PERCENT FREQUENCY ON	N 344,717.07	E 2,368,323.10			
NNW- ¹² NN					
WSW ' ESE					
SW* SSW SSW SSW SSW SSE	rse Se				
5-24 KNOTS	6-14 KNOTS 1-5 KNOTS				
/			B		
DATE REVISIONS SHOWN DATE 18SEPT14 DESIGNED	BY CHK DE SW DRAWN SW	S SV. ENGR. PROJ ENGR APPR CHIEF			
DEDICATED TO SAFETY EXCEL		CCIDENTS			
FREDERICK, N	1ARYLAND				
Carroll	County				
ENERGY Figure 02-3 Facility Plot Plan					
25932-000	P1-0010-00	002 A			

	Water B	alance Stre	eam Flow	Rate Table	l	1			
	Carroll County Energy Project	CCA 19126	CCA 19126 1% BD	CCA 19127	CCA 19136	CCA 1930	CCA 1931	CCA 19135	
	Fuel	Gas	Gas	Gas	Gas	Gas	Gas	Gas	
	Loading	100%	100%	100%	100%	100%	100%	100%	
	Dry bulb temperature, °F	. 90 .	90	90	100	59	59	0	
	Relative Humidity, %	50%	50%	50%	50%	60%	60%	70%	
	Wet bulb temperature, °F	75.0	75.0	75.0	83.0	52.0	52.0	0.0	
	Evaporative coolers	ON	ON	ON	ON	ON	OFF	OFF	
	Duct burners	ON	ON	OFF	ON	ON	OFF	OFF	
itream No.	STREAM DESCRIPTION	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Flow Rate (gpm)	Notes
1	Total Plant Makeup Water from Village of Carrollton Municipal Water System, gpm	89.3	70.0	75.0	94.0	62.5	47.7	22.6	
2	UF Influent, gpm	95.2	57.1	72.4	95.7	91.8	67.9	68.9	
3	Demineralized Water System Influent, gpm	85.7	51.4	65.2	86.1	82.6	61.1	62.0	
.4	UF Backwash Flow, gpm	9.5	5.7	7.2	9.6	9.2	6.8	6.9	Note 5
5	Demineralized Water to Demineralized Water Storage Tank, gpm	85.7	51.4	65.2	86.1	82.6	61.1	62.0	
6	Demineralized Water to HRSG/Steam Cycle, gpm	85.7	51.4	65.2	86.1	82.6	61.1	62.0	
7	Sampling Losses to Wastewater Collection Tank, gpm	17.1	17.1	13.0	17.2	16.5	12.2	12.4	Note 6
8	HRSG/Steam Cycle Blowdown, gpm	68.6	34.3	52.2	68.9	66.1	48.9	49.6	Note 7
9	Blowdown System Vent Losses, gpm	38.7	19.4	24.4	38.9	37.3	22.5	22.6	
	Blowdown Tank Effluent , gpm	29.9	14.9	27.8	30.0	28.8	26.4	27.0	
11	UF Cartridge Filter Effluent, gpm	9.5	5.7	7.2	9.6	9.2	6.8	6.9	
12	Evaporative Cooler Influent, gpm	67.5	67.5	67.5	73.5	33.6	33.6	0.0	
13	Evaporation from Evaporative Coolers, gpm	50.6	50.6	50.6	55.1	25.2	25.2	0.0	Note 8
14	Evaporative Cooler Blowdown to Wastewater Collection Tank, gpm	16.9	16.9	16.9	18.4	8.4	8.4	0.0	Note 8
15	Service Water to Service Water Users, gpm	5.0	5.0	5.0	5.0	5.0	5.0	5.0	Note 10 & 11
16	Oil / Water Separator Influent, gpm	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
17	Oil / Water Separator Sludge to Off-Site Disposal, gpm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Note 3
18	Oil / Water Separator Effluent to Wastewater Collection Tank, gpm	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
19	Potable Water from Potable Water Supply, gpm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	Note 9 & 11
20	Potable Water to Sanitary Users, gpm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	Note 9 & 11
21	Sanitary Waste to Holding Tank, gpm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
22	Sanitary Sewage to Off-Site Disposal, gpm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
23	Fire Water Users, gpm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Note 3 & 11
24	CTG Wash Water, gpm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Note 3
25	ACC Wash Water, gpm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Note 3
26	Total Discharge to WW Ion Exchange, gpm	78.4	59.6	69.9	80.2	67.9	58.8	51.3	
27	Recycle from WW Ion Exchange to Service / Fire Water Tank, gpm	78.4	59.6	69.9	80.2	67.9	58.8	51.3	

- mally no flow.

- vice water usage is estimated to be 5 gpm.
- vs may be higher.

ter flow rates are based on the specified process conditions for the plant configuration shown on Sheet 1 are shown in gpm unless otherwise specified. These cases may or may not represent the appropriate sign flow for a particular stream. Therefore, it is not appropriate to reference this drawing alone as a basis for ablishing system, equipment or line sizing design flows.

sign based on a 2 x 2 x 1 configuration combined cycle power plant and heat balances titled GE Carroll nty Energy Center 207FA.05 dated 07/11/14 via email.

densate polisher is regenerated off-site.

Backwash is estimated at 10% of the influent flow.

pling losses are estimated at 0.5% of the steam turbine exhaust flow.

SG blowdown is equal to 2% of the steam turbine exhaust flow for all cases except the CCA 19126 1% BD e, in which the HRSG blowdown is equal to 1% of the steam turbine exhaust flow.

porative cooler evaporation is from heat balances referenced in Note 2 above. The evaporative coolers are urned to operate at 4 cycles of concentration (COC) based on GE Power Systems Water Supply

uirements for Gas Turbine Inlet Air Evaporative Coolers, GEK107158A, January 2002. Actual COC may depending on water quality, heat balance case, and ambient temperature.

able water usage (daily average) calculated based on 25 employees each using 35 gpd.

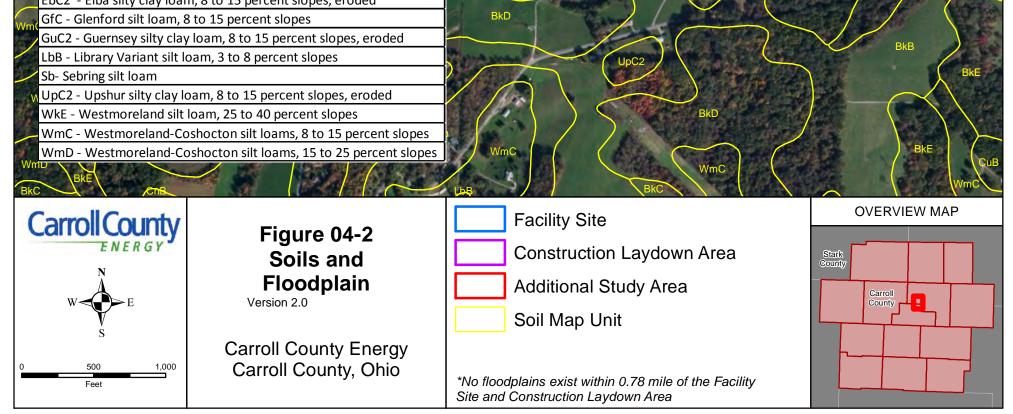
ws referenced by this note are associated with batch processes and represent average flows. Instantaneous

SG blowdown is cooled by the CCW heat exachanger.

quench water temperature for the boiler blowdown tank is assumed to be 70 °F, the Blowdown Tank ent is 212 °F and the quenched blowdown temperature is 140 °F.

		FIGURE 02-5b ARY WATER BALANCE				
[Carroll County Energy Project					
	Water Balance Diagram					
Y DOCUMENT	JOB NO.	DWG. NO.	REV.	Sheet 2 of 2		

- Figure 03-1: Carroll County Site Selection Attributes See Original
- Figure 03-2: Site Selection Constraints within 1 Mile of Facility Area See Original


Section 13-04: Figures

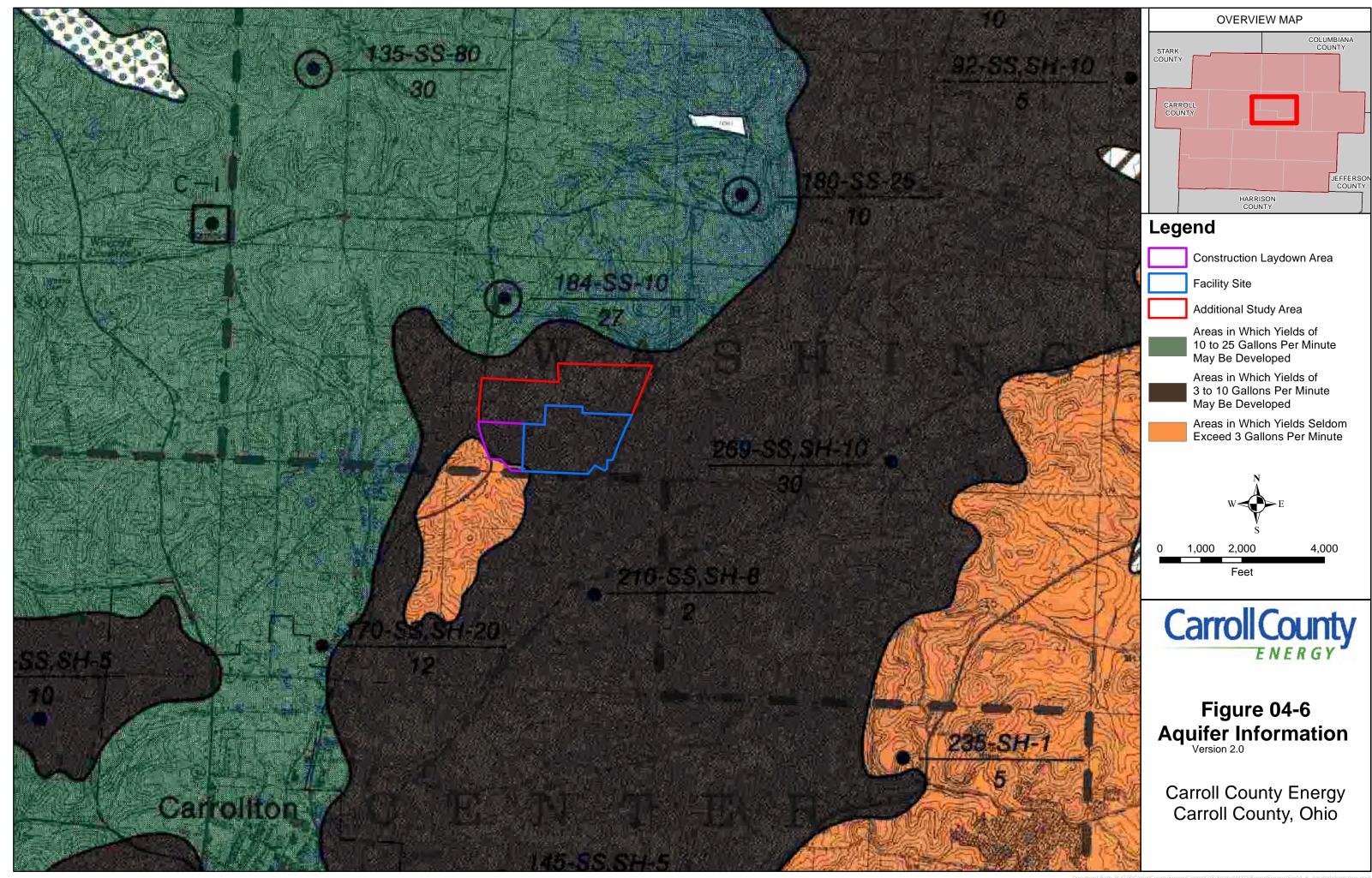
- Figure 04-1: Site Survey Map See Original
- Figure 04-2: Soils and Floodplain Update Provided
- Figure 04-3: Soil Boring Locations See Original
- Figure 04-4: Geological Cross-Section See Original
- Figure 04-5: Wind Rose See Original
- Figure 04-6: Aquifer Information Update Provided
- Figure 04-7: Water Wells, Oil and Gas Wells and Drinking Water Source Protection Areas – Update Provided

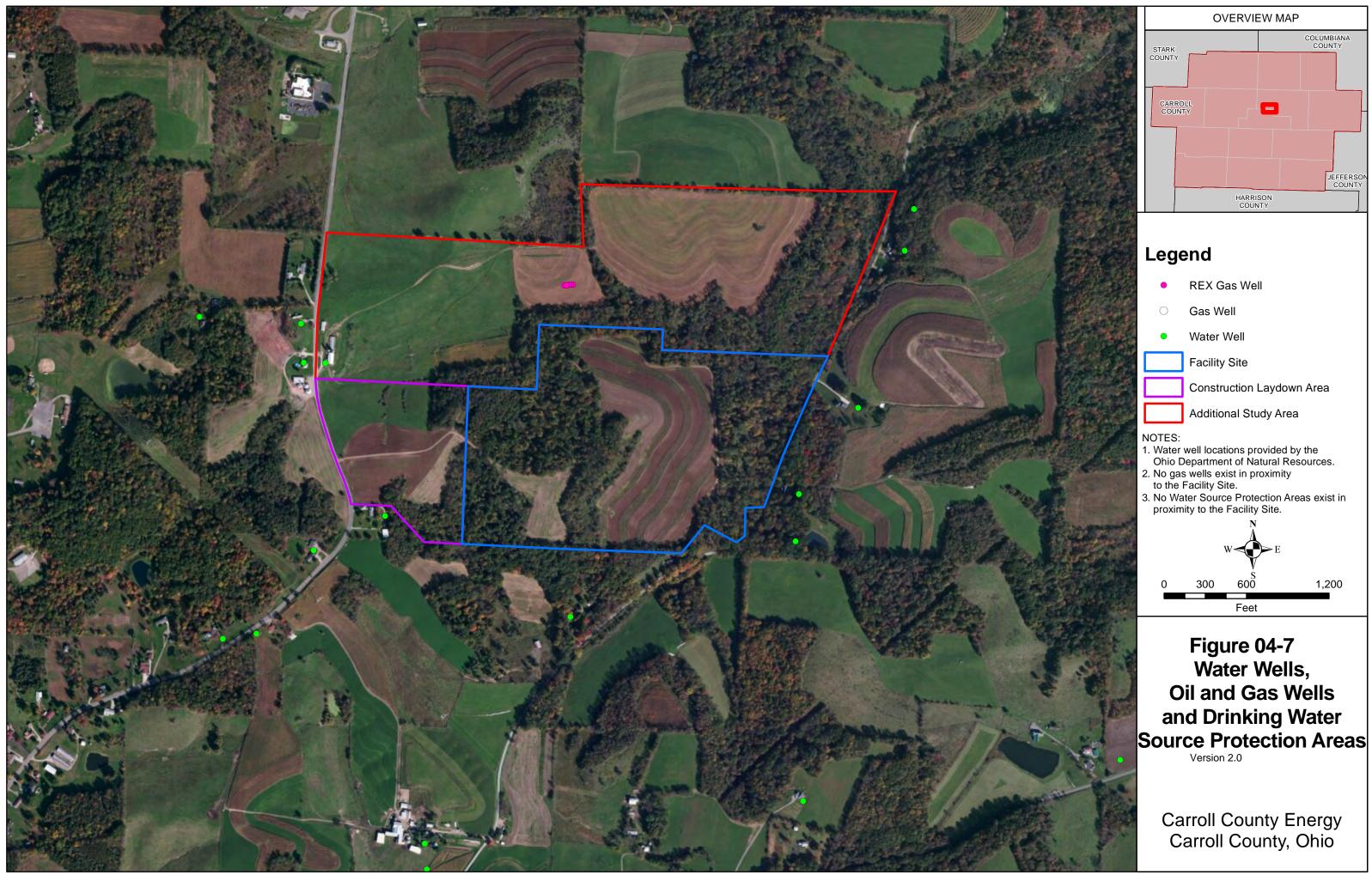
MAP UNIT NAME

b

BkB - Berks shaly slit loam, 3 to 8 percent slopesBkC - Berks shaly slit loam, 8 to 15 percent slopesBkD - Berks shaly slit loam, 15 to 25 percent slopesBkE - Berks shaly slit loam, 25 to 40 percent slopesCnB - Coshocton slit loam, 3 to 8 percent slopesCoB - Coshocton-Keene silt loams, 3 to 8 percent slopesCuB - Culleoka silt loam, 3 to 8 percent slopesEbB - Elba silty clay loam, 3 to 8 percent slopesEbC2 - Elba silty clay loam, 8 to 15 percent slopes, eroded

_bE


CuB


WkE

BkC

GfC

GfC

Document Path: P:\GIS\CarrollCountyEnergyCenter\GIS\Spatial\MXD\ReportFigures\Fig04_7_WellLocations.mxd

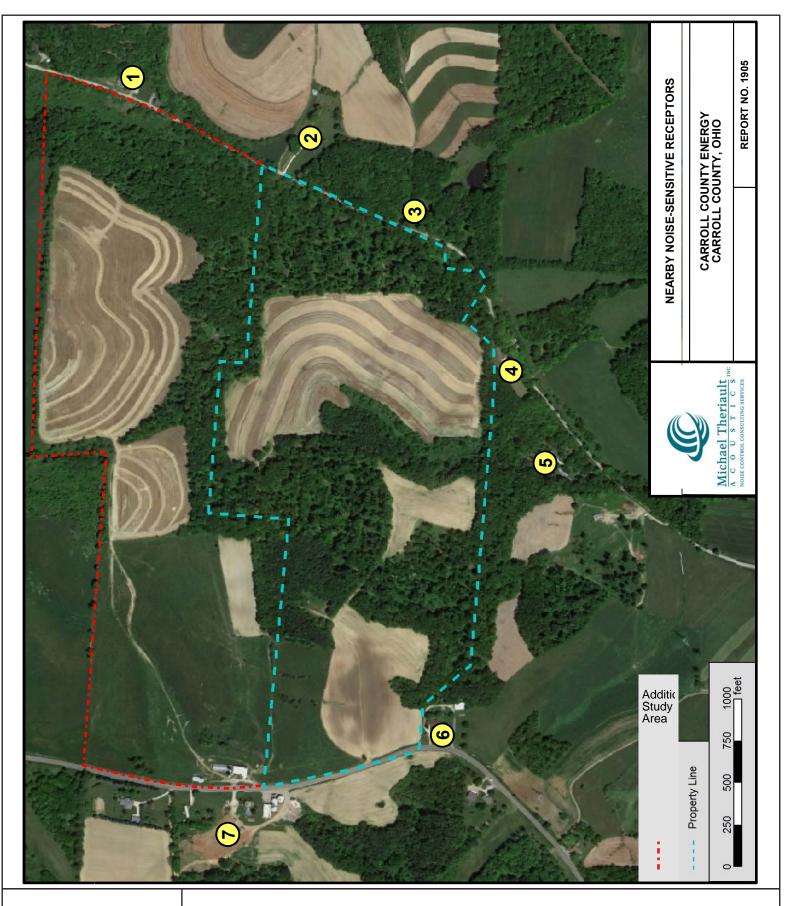
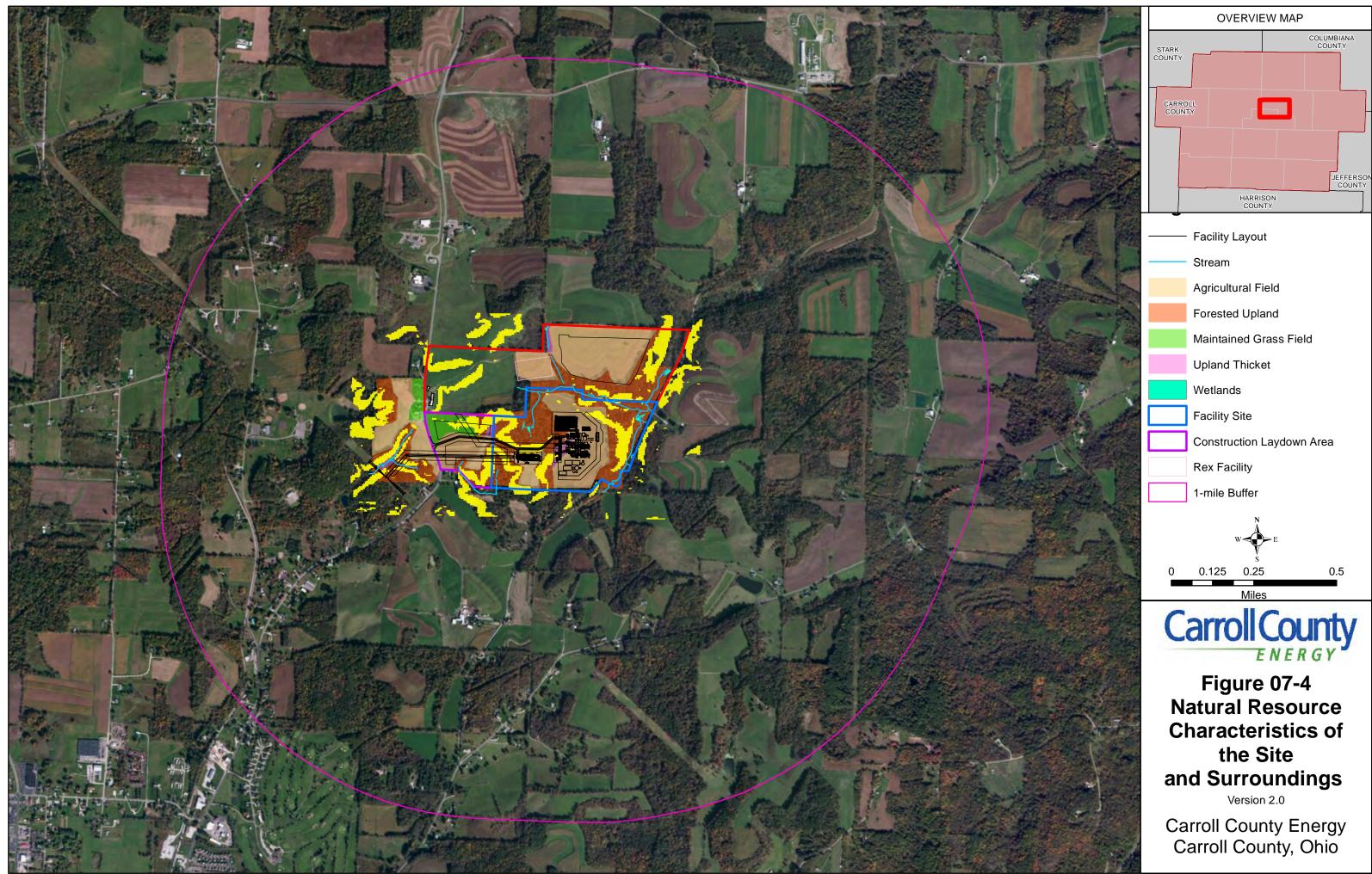
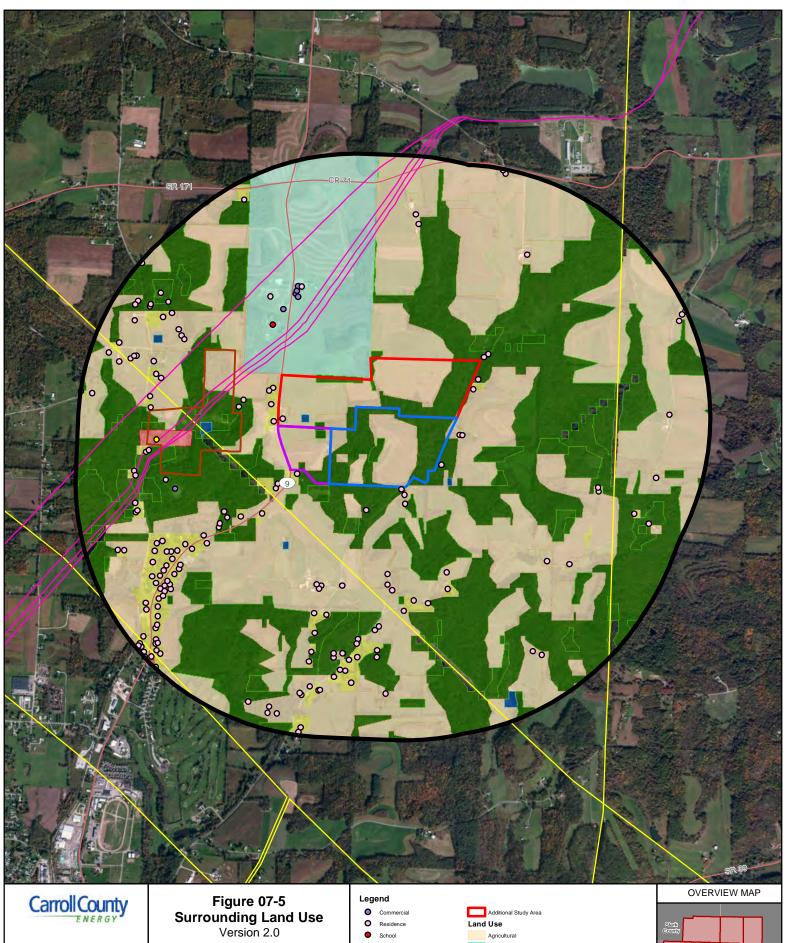
Section 13-05: Figures

• No Figures

- Figure 06-1: Air Monitoring Stations and Major Source Mapping See Original
- Figure 06-2: Air Modeling Isopleth: Annual NO₂ See Original
- Figure 06-3: Air Modeling Isopleth: 1-hour NO₂ See Original
- Figure 06-4: Air Modeling Isopleth: 8-hour CO See Original
- Figure 06-5: Air Modeling Isopleth: 1-hour CO See Original
- Figure 06-6: Air Modeling Isopleth: Annual PM_{2.5} See Original
- Figure 06-7: Air Modeling Isopleth: 24-hour PM_{2.5} See Original
- Figure 06-8: Air Modeling Isopleth: 24-hour PM₁₀ See Original
- Figure 06-9: Air Modeling Isopleth: 1-hour SO₂ See Original
- Figure 06-10: Air Modeling Isopleth: 3-hour SO₂ See Original
- Figure 06-11: Air Transportation Facilities See Original

Section 13-07: Figures

- Figure 07-1: Ambient Noise Monitoring Locations See Original
- Figure 07-2: Noise Sensitive Receptors Update Provided
- Figure 07-3: Mitigated Noise Impact Contours See Original
- Figure 07-4: Natural Resource Characteristics of the Site and Surroundings Update Provided
- Figure 07-5: Surrounding Land Use Update Provided
- Figure 07-6: Cultural and Recreational Areas See Original
- Figure 07-7: Agricultural Land Update Provided

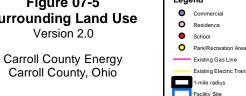


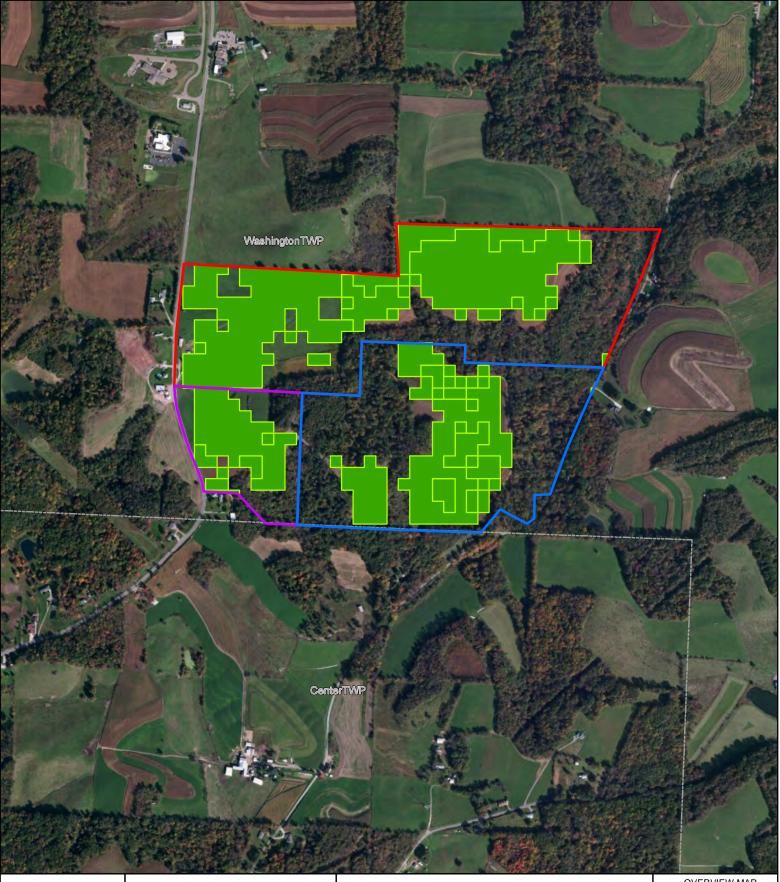
Figure 07-2 Noise Sensitive Receptors Version 2.0

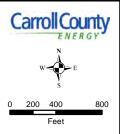
> Carroll County Energy Carroll County, Ohio

0

0.125


Miles


0.25



Source: National Landuse Cover Dataset, refined using Carroll County property mapping

Figure 07-7 Agricultural Land Version 2.0

Carroll County Energy Carroll County, Ohio

Legend

*There are no Agricultural Districts in Carroll County, Ohio

OVERVIEW MAP

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

11/26/2014 3:40:17 PM

in

Case No(s). 14-2085-EL-BGA

Summary: Application - Figures electronically filed by Mr. Michael J. Settineri on behalf of Carroll County Energy LLC