LARGE FILING SEPARATOR SHEET

CASE NUMBER 13-1129-EL-EEC

FILE DATE MAY 1 5 2013

SECTION: /

NUMBER OF PAGES: 201

DESCRIPTION OF DOCUMENT: APP - STATUS REPORT VOL 1

BEFORE

THE PUBLIC UTILITIES COMMISSION OF OHIO

)

)

In the Matter of the Annual Energy Efficiency Portfolio Status Report of Duke Energy Ohio, Inc.

Case No. 13-1129-EL-EEC

ANNUAL ENERGY EFFICIENCY STATUS REPORT

OF DUKE ENERGY OHIO, INC.

VOLUME 1 OF 3

This is to certify that the images appearing are an accurate and complete reproduction of a case file document delivered in the regular course of business Technician _____ Date Processed MAY 1.5 203

Se Mary Comment

BEFORE

THE PUBLIC UTILITIES COMMISSION OF OHIO

)

In the Matter of the Annual Energy Efficiency Portfolio Status Report of Duke Energy Ohio, Inc.

Case No. 13-1129-EL-EEC

ANNUAL ENERGY EFFICIENCY STATUS REPORT

OF DUKE ENERGY OHIO, INC.

I. Introduction

Pursuant to Rule 4901:1-39-05, Ohio Administrative Code (OAC)., Duke Energy Ohio, Inc. (Duke Energy Ohio or Company) must file an annual status report by May fifteenth each year. The annual status report must contain a section on compliance which includes an update to the benchmark report, an assessment of program performance, and an independent program evaluator report. Following is Duke Energy Ohio's submission demonstrating its compliance with the State's energy mandates for 2012.

II. Fourth Annual Energy Efficiency Portfolio Status Report

This portfolio status report represents the Company's fourth filing of a status report on the load impacts achieved through implementation of its energy efficiency and demand response programs pursuant to Rule 4901:1-39-05 (C), O.A.C. This report is composed of the following two sections: (1) Compliance Demonstration which provides information on load impact achievements relative to the baseline and (2) Program Performance Assessment which summarizes program activities and evaluation, measurement, and verification information.

1

4901:1-39-05 (A) and (B) Initial Benchmark Report

Pursuant to Rule 4901:1-39-05 (A), O.A.C., Duke Energy Ohio must file the following information in a benchmark report:

- (1) The energy and demand baselines for kilowatt-hour sales and kilowatt demand for the reporting year; including a description of the method of calculating the baseline, with supporting data.
- (2) The applicable statutory benchmarks for energy savings and electric utility peakdemand reduction.

In compliance with 4901:1-39-05(B), in preparing the baseline, Duke Energy Ohio is required to adjust the sales and/or demand baseline for normal weather as well as for changes in numbers of customers, sales, and peak demand to the extent such changes are outside its control.

This benchmark update report provides information on two areas. The first area involves the baseline for 2012, including a discussion of adjustments made to normalize for weather and to adjust for changes in numbers of customers, sales, and peak demand, where those changes are outside the control of Duke Energy Ohio. The second area involves an estimate of the statutory benchmarks for energy savings and electric utility peak-demand reduction.

In estimating the baseline for Duke Energy Ohio for the year 2012, the Company uses the three-year average of the actual level of total energy sold (sales plus losses) and peak demand, adjusted for differences from normal weather. Table 1 provides the historical level of total energy (kWh) for the years 2006 to 2011, the amount of the weather adjustment, and the weather normalized level of total energy.

Year	Total Energy (MWh)	Weather Normalization Adjustment (MWh)	Weather Normal Level of Total Energy (MWh)	Baseline: Three Year Average (MWh)	Benchmark Percentage	Benchmark Requirement (MWh)
2006	22,402,660	262,895	22,665,556		Г. -	
2007	23,510,777	(763,963)	22,746,814			
2008	22,321,489	(72,401)	22,249,088			
2009	20,405,122	320,494	20,725,616	22,553,819	0.3%	67,661
2010	22,545,823	(621,454)	21,924,369	21,907,173	0.5%	109,536
2011	20,238,172	(207,407)	20,030,765	21,633,024	0.7%	151,431
2012		$\left\{ \phi_{1}^{(k)}, \phi_{2}^{(k)}, $		20,893,583		167, 149
		Weather Weathe	rNormal Baseline:	three Cumulative	Cumulative	Incremental
Year	eak Liemand /MM/	Normalization Level	f Peak 🔰 Year Ane	rage Benchmark	Sectored	Benchmark

Table 1	-	Duke	Energy	Ohio	Baseline	and	Benc	hmark	for	20	12
		2.5 Q414 W		- ALL -				CARSEN AND AND			

Year	Peak Demand (MW)	Weather Normalization Adjustment (MW)	Weather Normal Level of Peak Demand (MW)	Baseline: Three Year Average (MW)	Cumulative Renchmark Percentage	Cumulative Benchmark Requirement (MW)	Incremental Benchmark Percentage	Incremental Denchmark Requirement (MW)
2006	4,520	71	4,591					
2007	4,607	(279)	4,328					
2008	4,125	337	4,462					
2009	4,002	476	4,478	4,460	1.00%	44.6	1.00%	44.6
2010	4,114	330	4,444	4,423	1.75%	77.4	0.75%	33.2
2011	4,398	(28)	4,370	4,461	2.50%	111.5	0.75%	33.5
2012				4451	3.25%	1460	6.72%	312

The Company employs the following process to normalize kWh and kW for differences in the weather: Using econometric equations for each customer class, from the load forecast process discussed in the Long-Term Forecast Report filing, the adjustment process for kWh is performed as follows:

Let: KWH(N) = f(W(N))g(E)

KWH(A) = f(W(A))g(E)

Where: KWH(N) = electric sales - normalized

W(N) = weather variables - normal

E = economic variables

KWH(A) = electric sales - actual

W(A) = weather variables – actual

Then: KWH(N) = KWH(A) * f(W(N))g(E)/f(W(A))g(E)

= KWH(A) * f(W(N))/f(W(A))

With this process, weather-normalized sales are computed by scaling actual monthly sales for each class by a factor from the econometric equation that accounts for the impact of deviations from monthly normal weather. Similarly, using an econometric equation for peak, the adjustment process for kW is performed as follows:

Let:
$$KW(N) = f(W(N))g(E)$$

$$KW(A) = f(W(A))g(E)$$

Where: KW(N) = electric peak demand - normalized

W(N) = weather variables - normal

E = economic variable

KW(A) = electric peak demand - actual

W(A) = weather variables - actual

Then: KW(N) = KW(A) * f(W(N))g(E)/f(W(A))g(E)

$$= KW(A) * f(W(N))/f(W(A))$$

With this process, weather-normalized peak demand is computed by scaling actual peak demand by a factor from the econometric equation that accounts for the impact of deviations from normal weather.

Once total energy and peak demand have been adjusted for normal weather, the computation of the baseline for 2012 is simply the average of the load values for the three years 2009 to 2011. The baseline values for energy and demand are provided above in Table 1.

4901:1-39-05(C)(1)(a)-(c) Portfolio Status Report and Compliance Demonstration

In accordance with 4901:1-39-05(C)(1)(a), with the establishment of the baseline energy and peak demand, the level of the statutory benchmark is computed by applying the appropriate incremental percentage of achievement, as established in S.B. 221, to the baseline. The computation of the benchmark achievement level for 2012 is provided above on Table 1. The baseline for energy is 167,149 MWH and the baseline for peak loads is 33.2 MW.

Duke Energy Ohio respectfully submits that this information is responsive to all of the baseline and benchmark calculations as set forth in Rule 4901:1-39-05(A), O.A.C., and requests that the Commission approve these baseline and benchmark calculations as submitted.

In response to 4901:1-39-05(C)(1)(b), which requires a comparison of the applicable benchmark of actual energy savings and peak-demand reductions achieved, as a result of the Company's 2012 efforts to promote customer participation in its energy efficiency and demand response programs, the Company has achieved incremental energy and demand impacts in 2012 as summarized below in Table 2. Details of impacts for each program are provided in Appendix

A.

Table 2: Incremental Energy E	Efficiency and Demand Respo	nse Program	Impact Summary
	Participants/Measures	MWH	MW
Demand Response Programs			
Power Manager			(4.7)
PowerShare			1.3
PowerShare Generators			(31.4)
Large Transmission Customer			67.5
Total Demand Response Programs		0.0	32.7
Energy Efficiency Programs			
Residential Programs (1)	1,756,306	135,795	27.2
Non-Residential Programs	576,979	126,642	22.9
Total EE Programs	2,333,285	262,437	50.1
Prior Bank per SB-221		490,308	165.3
Adjustments to Prior Years (2)		(60)	6.9
Total Load Impacts		752,685	255

(1) Residential Programs includes Low Income Weatherization 2009-2012 participation and impacts not previously filed.

(2) Bank figures as originally filed were 490,308 MWH and 165.3 MW. MWH changes were due to Smart \$aver Custom and MW changes due to PowerShare.

5

Table 3 provides a comparison of the impacts relative to the benchmarks previously mentioned. This indicates that the Company has complied with the S.B. 221 statutory benchmarks for the year 2012.

Table 3: Comparison of Achieved Impacts to the 2012 Benchmark								
2012 Benchmark Achievement Variance Over/(Und								
MWH	167,149	752,685	585,536					
MW 33.2 255 2								

In addition, since the Company's efforts exceeded the requirement, there is a residual amount of load impacts that carry forward to support achievement of the 2013 benchmarks.

In compliance with 4901:1-39-05(C)(1)(c), an affidavit indicating that the reported performance complies with the statutory benchmarks is provided in Appendix B.

4901:1-39-05(C)(2) Program Performance Assessment

As part of Duke Energy Ohio's Electric Security Plan (ESP) filing in 2008, the Company proposed a set of energy efficiency and demand response programs. These were subsequently approved on December 17, 2008 and reaffirmed (except for the Prepaid Meter Program) in the Commission's Order in Case No. 09-1999-EL-POR. Implementation of the new Save-A-Watt programs began January 2009. On July 20, 2011, Duke Energy Ohio filed for a new recovery mechanism to replace Save-A-Watt due to expire on December 31, 2011. Case No. 11-4393-EL-RDR included the recovery mechanism of shared savings, as well as, three new programs. The recovery mechanism and programs were approved on August 15, 2012. In compliance with the Commission's Order, after reviewing the market potential study conducted for it by Forefront Economics Inc, Duke Energy Ohio filed its three-year portfolio plan for 2014-2016 with the Commission on April 15, 2013. Program descriptions and key activities for its current portfolio are provided below.

4901:1-39-05 (C)(2)(a)(i) Program Descriptions and Key Activities

Residential Programs

Smart Saver[®] Residential Program

The Smart \$aver[®] Residential program offers a variety of programs and measures that allow customers to take action and reduce energy consumption. The program is available to residential customers served by Duke Energy Ohio.

Compact Fluorescent Lamps (CFL) Program

The CFL Program is designed to increase the energy efficiency of residential customers by offering customers CFLs to install in high-use fixtures within their homes. The CFLs are offered through an on-demand ordering platform, enabling eligible customers to request CFLs and have them shipped directly to their homes. Eligibility is based on past campaign participation (i.e. coupons, Business Reply Cards (BRCs) and other Duke Energy Ohio programs distributing CFLs). Bulbs are available in 3, 6, 8, 12 and 15 pack kits that have a mixture of 13 and 20 watt bulbs. The maximum number of bulbs available for each customer is 15, but customers may choose to order less.

Customers have the flexibility to order and track their shipment through three separate channels:

1) Telephone:

Customers may call a toll-free number to access the Interactive Voice Response (IVR) system which provides prompts to facilitate the ordering process. Both English and Spanish-speaking customers may easily validate their account, determine their eligibility and place their CFL order over the phone.

2) Duke Energy Web Site:

7

Customers can go online to complete the ordering process. Eligibility rules and frequently asked questions are also available.

3) Online Services (OLS):

Customers who participate in the Online Services program are encouraged to order their CFLs through the Duke Energy Ohio web site if they are eligible.

The benefits of providing these three distinct channels include:

- Improved customer experience
- Advanced inventory management
- Simplified program coordination
- Enhanced reporting
- Increased program participation
- Reduced program costs

Customers continue to utilize the simple ordering process and the convenience of bulbs being shipped directly to their home. Over 114,600 orders were placed in 2012; resulting in over 1,470,000 bulbs distributed. Over 44 percent of the orders were placed by calling the toll free phone number, 25 percent of the orders were placed on the Duke Energy Ohio web site and 31 percent on the OLS platform.

The overall strategy of the program is to reach residential customers who have not adopted CFL bulbs. Duke Energy Ohio will continue to educate customers on the benefits of CFLs while addressing barriers for consumers who have not participated in the program. Additionally, the ease of program participation will also be highlighted to encourage use of the on-demand ordering platform. Direct mail marketing has generated a significant percentage of orders in Ohio. Direct mail campaigns target Prizm segments of Ohio customers with a high propensity to participate in the program. Marketing pieces and personalized letters include the customer account number for easy ordering through the IVR or Web platform.

Duke Energy Ohio will continue to market the CFL program through various channels including Email, Bill Messages, Bill Envelopes, Social Media, Direct Mail, Printed Collateral, Earned Media¹, and other Duke Energy Program collaboration efforts. Response of each channel is tracked and monitored.

CFL Program Potential Changes

Innovative marketing campaigns and tactics will be utilized to improve awareness for hard to reach and late adopter² customers.

Duke Energy Ohio is expanding its lighting offer to include specialty bulbs such as indoor recessed lights, candelabras, three-way bulbs and dimmable bulbs. The web based ecommerce store will provide discounted specialty lights and ship directly to the home. Building on the insights and lessons learned from the current CFL promotion, Duke Energy Ohio will determine best practices and go to market options to inform customers of the specialty bulb offer.

Property Manager Program

The Property Manager Program is an extension of the CFL program and allows Duke Energy Ohio to target multi-family apartment complexes. Eligible units are those Duke Energy Ohio served apartments on a residential rate. Honeywell manages the program and partners with Ohio property managers to enroll multi-family properties.

¹ Earned media refers to favorable publicity gained through promotional efforts other than advertising.

² Customers who are slow to start using or buying a new product, technology, or idea.

The program helps property managers upgrade lighting with energy efficiency 13 watt CFLs, reducing maintenance costs while improving tenant satisfaction by lowering energy bills. Each apartment may qualify for up to 12 bulbs per unit depending on the size.

Once enrolled, the property manager identifies the number of permanent lighting fixtures available. Duke Energy Ohio provides the CFLs but the property manager pays for all shipping costs.

The CFLs are installed in permanent fixtures during routine maintenance visits. The property manager provides tracking for the number of bulbs installed. Honeywell validates this information and provides a report for each individual unit on the property.

A Property Manager CFL promotional and landing page were developed for managers to self-serve and learn more about the program. A contract, installation worksheet and CFL frequently asked question sheet are available for download. Marketing material including information on CFL savings and safety sheets are available in English and Spanish to further support the program.

Honeywell markets the program to Ohio Property Managers through various channels including tradeshows, email, and Apartment Association events. Duke Energy Ohio will continue to support the Property Manager program by updating and maintaining program information on the Web site.

Property Manager Program Potential Changes

To minimize overages, Honeywell will begin subtracting twenty percent of the bulbs ordered by Property Managers. Honeywell will also begin marketing the program through additional channels to increase participation and educate apartment associations about the program. Marketing strategy will include phone solicitation, apartment association functions/networking, onsite meetings and presentations, email blasts and trade shows.

Residential HVAC Program

Duke Energy Ohio served homeowners currently residing in or building a single family residence, condominium, duplex or mobile home are eligible for this program. Installation of a high efficiency heat pump or air conditioner will result in a \$300 incentive. GoodCents administers the program and establishes relationships with home builders and HVAC contractors who interface directly with residential customers. These trade allies adhere to program requirements and submit the incentive application. Once the application is processed, GoodCents disburses the incentive funds. For replacement of an existing system, a Duke Energy Ohio customer receives \$200 and the HVAC contractor receives the remaining \$100. For new home construction, the home builder receives the full \$300 incentive but has the option to pass the incentive on to the customer. Additionally, the installation of attic insulation and completion of air sealing will result in a \$250 incentive, installation of duct insulation will result in a \$75 incentive, and completion of duct sealing will result in a \$100 incentive. All incentives are paid directly to customers upon approval of a completed application. GoodCents disburses the incentive funds to the appropriate party upon application approval. GoodCents also handles calls from trade allies and customers about the program.

The HVAC Program successfully transitioned program administrators from Wisconsin Energy Conservation Corporation (WECC) to GoodCents during the first quarter of 2012 and launched the insulation and sealing measures into the market during the fourth quarter. Over 4,000 participants received an incentive for a completed measure during 2012.

Duke Energy Ohio and GoodCents have formed strong relationships with trade allies across Ohio and continue to develop relationships with trades serving the new measures. These partnerships help application fulfillment and prompt payment of incentives as well as maintain top-of-mind awareness of the program and its benefits.

Residential HVAC Program Potential Changes

Electronic submission of the incentive application is under development at this time as well as an online platform that will allow trade allies to check customer eligibility and confirm incentive status for their customers.

Residential Energy Assessments Program

The Residential Energy Assessments program includes Home Energy House Call (HEHC).

HEHC targets residential customers that own a single family home with at least four months of billing history. HEHC is a free in-home assessment designed to help customers reduce energy usage and save money. An energy specialist completes a 60 to 90 minute walk through assessment of the home and analyzes energy usage to identify energy saving opportunities. The Building Performance Institute (BPI) certified energy specialist discusses behavioral and equipment modifications that can save energy and money with the customer. A customized report is provided to the customer that identifies actions the customer can take to increase their home efficiency. Example recommendations might include the following:

- Turning off vampire load equipment when not in use
- Turning off lights when not in the room
- Using CFLs in light fixtures
- Using a programmable thermostat to better manage heating and cooling usage

- Replacing older equipment
- Adding insulation and sealing the home

Customers receive an Energy Efficiency Starter Kit with a variety of measures that can be directly installed by the energy specialist. The kit includes measures like CFLs, low flow shower head, low flow faucet aerators, outlet/switch gaskets, weather stripping and energy saving tips booklet.

Duke Energy Ohio partners with several key vendors in support of the HEHC program: WECC, ProtoType, CustomerLink and AM Conservation. WECC administers the assessment component of the program. Additional key vendors include ProtoType for mailing services, CustomerLink for customer care support and scheduling (call center and back office), and AM Conservation for fulfillment of the Energy Efficiency Starter Kits.

HEHC Program Potential Changes:

Some program enhancements to increase program impacts and raise participation satisfaction levels being considered include:

- Evaluating other measures for the Energy Efficiency Start Kit. Current analysis is taking place to determine market opportunities.
- Removing the geographic limitation and begin to mass promote utilizing our delivery channels and possibly adding new channels through Duke Energy's online services home page. Expected implementation is early 2013.
- Creating a separate customer wait list for those willing to accept last minute appointments.
- Redesigning the program to better suit market needs and adoption rates.

Energy Efficiency Education Program for Schools

The Energy Efficiency Education Program for Schools Program is an energy conservation program available in Ohio. The Energy Efficiency Education Program is available to K-12 students enrolled in public and private schools and who reside in households served by Duke Energy Ohio.

The Program provides principals and teachers with an innovative curriculum that educates students about energy, electricity, ways energy is wasted and how to use our resources wisely. Education materials focus on concepts such as energy, renewable fuels, and energy efficiency through classroom and take home assignments, enhanced with a live 25 minute theatrical production performed by two professional actors.

School principals are the main point of contact and will schedule the performance at their convenience for the entire school. Once the principal has confirmed the performance date and time, two weeks prior to the performance, all materials are delivered to the principal's attention for distribution. Materials include school posters, teacher guides, classroom and family activity books.

Students are encouraged to complete a home energy survey with their family (found in their activity book), so they can receive an Energy Efficiency Starter Kit. The kit contains specific energy efficiency measures to reduce home energy consumption.

The current program is developed to educate kindergarten through eighth grade students. Duke Energy Ohio partners with a third party vendor, The National Theatre for Children to administer the program.

14

Energy Efficiency Education Program Potential Changes:

The National Theatre for Children has been the program administrator since October 2011. NTC is working closely with Duke Energy to enhance the program by

- Partnering with Duke Energy Account/District Managers to leverage existing relationships for additional acquisition channel.
- Leveraging give-a-aways to stir additional excitement in the schools/classrooms.
- Developing an alternative kit for those customers who have already participated in the Energy Efficiency Education Program.
- Enhancing all data processing methods.

As the program evolves in 2013, there will be additional enhancements to be made and improve the customer's experience when participating in the Energy Efficiency Education Program.

Low Income Services Program

The Low Income Services Program provides assistance to low income customers through several measures. The upfront costs of high efficiency equipment are an especially difficult barrier for low income customers to overcome. The Weatherization and Refrigerator Replacement program is available to any low income customer up to 200% of the federal poverty level who has not participated in this program within the past 10 years.

An Electric Maintenance Service program is available for low-income elderly and disabled customers up to 175% of poverty level. This program offers low-cost solutions for energy efficiency. Customers may receive energy efficiency products and services such as compact fluorescent bulbs, low flow showerheads and aerators, water heater wraps, HVAC cleaning, HVAC filters, and energy efficiency education.

These programs are promoted through, but not limited to, Community Action Agencies, Non-Governmental Organizations (NGO's), and direct mail to customers.

Low Income Services Program Potential Changes:

Duke Energy Ohio continues to evaluate opportunities to provide new offers to low income customers in the most cost effective manner. Duke Energy Ohio is currently negotiating a contract with a new vendor to provide its refrigerator replacement services. Additionally, on March 15, 2013, Duke Energy filed an application with the Commission to establish a new energy efficiency pilot program for low income customers. The proposed pilot program will allow Duke Energy Ohio to purchase and recognize the energy and demand savings that are achieved through whole-home weatherization in the Duke Energy Ohio service territory that are currently funded by leveraged funds. The proposed pilot is intended to allow the Company to recognize efficiency impacts that were previously unrecognized, achieve these impacts in a cost-effective manner, and create a new funding stream for additional whole-home weatherization to be performed in the Duke Energy Ohio Service Territory.

Home Energy Comparison Report (HECR) Program

My Home Energy Report (MyHER) formerly known as, Home Energy Comparison Report (HECR) is a periodic comparative usage report that compares customers' energy use to similar residences in the same geographical area based upon the age, size and heating source of the home. Specific energy saving recommendations are included in the report to encourage energy saving behavior.

The reports are distributed in printed form up to 12 times per year and may not be delivered during the off-peak energy usage months in the fall and spring. The report's energy analysis content for each home is compared to the energy use of neighbors in similar home types for the same period. Customer's usage is compared to the average home (top 50%) in their area as well as the efficient home (top 25%). Suggested energy efficiency improvements given the usage profile for that home are also provided. In addition, measure-specific coupons, rebates or audit follow-ups from other Company Programs are offered to sample customers, based on the customer's energy profile.

Target customers reside in individually-metered, single-family residences with active account and 12 months of usage history. Analyzing only single-family residences eliminates the possibility of erroneous data caused by thermal transfer between adjacent units in multi-family structures. Currently customers on payment plans are not included in the target audience.

MyHER Program Potential Changes:

Analysis is underway to assess the benefits of offering this program to Budget Bill customers.

Power Manager[®] Program

The Power Manager Program provides incentives to residential consumers who allow the company to cycle their air conditioner's outdoor compressor and fan during peak energy periods between May and September. Participating customers of the Company who have a functioning outdoor A/C unit are eligible for the program.

Participants in the Power Manager program allow Duke Energy Ohio to control their air conditioners during peak summer demand periods. Customers receive a one-time enrollment incentive of \$25 or \$35 depending on the Power Manager option they choose. In addition, they receive credits for each Power Manager event. Following the end of the event season, which runs from May through September, if warranted, customers receive a credit that ensures their total credit for the season is a minimum of \$5 or \$8 depending on the option in which they enrolled.

Due to the record heat and subsequent high electric demand during the summer of 2012, Power Manager was activated on seven different days in Ohio. During these events, Duke Energy cycled customers' air conditioning units off and on, helping shift demand and lower the afternoon peak.

In addition, two shorter duration tests were conducted – one at the beginning of the summer season to ensure systems were working properly, and one near the end of the season in conjunction with regional transmission organization PJM.

A third party installs the device on customers' A/C units.

The program is promoted through but not limited to;

- Zip code specific direct mail
- o Telemarketing
- o Company website

Power Manager Program Potential Changes:

There are no plans to change the operation of the Power Manager program. We do plan on continuing with refinements made in the marketing of the program in 2012. Telemarketing was used with success in the latter part of 2012 resulting in over 500 enrollments. Telemarketing calls will continue in 2013 as long targets and key metrics are met. A new direct mail offer and reminder were introduced in 2013.

Non-Residential Programs

Smart Saver[®] Non-Residential Prescriptive Program

The Smart \$aver[®] Non-residential Prescriptive Incentive Program provides incentives to commercial and industrial consumers for installation of energy efficient equipment in applications involving new construction, retrofit, and replacement of failed equipment. The program also uses incentives to encourage maintenance of existing equipment in order to reduce energy usage. Incentives are provided based on Duke Energy Ohio's cost effectiveness modeling to assure cost effectiveness over the life of the measure.

Commercial and industrial consumers can have significant energy consumption, but may lack knowledge and understanding of the benefits of high efficiency alternatives. Duke Energy Ohio's program provides financial incentives to customers to reduce the cost of high efficiency equipment. This allows customers to realize a quicker return on investment. The savings on utility bills, allows customers to reinvest in their business. The Smart \$aver[®] program also increases market demand for high efficiency equipment. Because of the increased demand, dealers and distributors will stock and provide high efficient alternatives as they see increased demand for the products. Higher demand can result in lower prices.

The program promotes prescriptive incentives for the following technologies – lighting, HVAC, motors, pumps, variable frequency drives, food services and process equipment. Equipment and incentives are predefined based on current market assumptions and Duke Energy's engineering analysis. The eligible measures, incentives and requirements for both equipment and customer eligibility are listed in the applications posted on Duke's Business and Large Business websites for each technology type. Prior to January 1, 2013, Duke Energy contracted with Wisconsin Energy Conservation Corporation (WECC) to handle the fulfillment responsibilities of the program and to provide training and technical support to our Trade Ally (TA) network. Prior to January 1, 2013, CustomerLink provided call center services to customers who call the program's toll free number. Effective January 1, 2013, Duke Energy contracted with Ecova to handle both the fulfillment responsibilities and call center services for the Smart Saver[®] program.

All non-residential customers served by Duke Energy in Ohio are eligible for the Smart \$aver[®] program. Although customers may choose to opt-out of the Duke Energy program and energy efficiency rider, all customers are opted in at this time.

Getting the Trade Allics (TA) to support the program has proven to be the most effective way to promote the program to our business customers. At program rollout, Duke Energy and the WECC Trade Ally team took an aggressive approach to contacting trade allies associated with the technologies in and around Duke Energy's service territory. Trade ally company names and contact information appears on the TA search tool located on the Smart \$aver[®] website. This tool was designed to help customers who do not already work with a TA, to find someone in their location who can serve their needs. WECC manages the Trade Ally database where contact information and participation is reported. Effective January 1, 2013, Duke Energy contracted with Ecova to provide the outreach functions and trade ally database. Existing members of the outreach team transferred from WECC to Ecova which resulted in continuity of service for trade allies.

Duke Energy continues to look for ways to engage the Trade Allies in promotion of the program, including the utilization of focus groups. Duke Energy developed a collateral tool kit

to allow trade allies to use the Smart \$aver[®] logo along with white papers, case studies, and other types of collateral developed by Duke Energy. Originally, a tool kit was available for Variable Frequency Drives. Toolkits are now available for Lighting and HVAC. In 2013, Duke Energy plans to offer co-funding to trade allies for approved marketing supplies and activities for promoting the Smart \$aver program. Funds will be available on a first come first serve basis.

As part of the contract with Ecova, Duke Energy has also added an outreach team member to focus on the unassigned small and medium business customers. This team member splits time between Ohio, Kentucky, and Indiana and will focus on marketing and program support.

Duke Energy's website is a great source of program information. Customers and trade allies can visit the website and learn about the program, program benefits, search for participating vendors, ask questions on-line, and complete application forms. The website includes a video for programmable thermostats. An HVAC calculator is available in addition to the lighting and VFD calculators.

Duke continues to develop case studies and testimonials from customers who have participated in the program to be used to help promote the program – showing actual savings and benefits for each technology type.

In accordance with new federal standards, Duke Energy Ohio is phasing out the incentives for T5 fixtures replacing T12s and for standard 4 foot T8s replacing T12s. Duke Energy continues to offer incentives for reduced wattage (RW) and high performance (HP) T8 lamps.

21

Smart \$aver[®] Non-Residential Prescriptive Program Potential Changes:

Standards continue to change and new, more efficient technologies continue to emerge in the market. The Company expects to continue to add new measures to provide incentives for customers to take advantage of a broader suite of products. The Company undertakes an annual review of technologies and efficiency levels through internal sources and with the assistance of outside technical experts. The review includes the existing technology categories as well as other emerging areas for energy efficiency such as IT.

Smart \$aver[®] Custom Rebate Program

Duke Energy's Smart \$aver[®] Nonresidential Custom Incentive Program offers financial assistance to qualifying commercial, industrial and institutional customers (that have not opted out) to enhance their ability to adopt and install cost-effective electrical energy efficiency projects.

The Smart \$aver[®] Custom Incentive program is designed to meet the needs of Duke Energy customers with electrical energy saving projects involving more complicated or alternative technologies, or those measures not covered by standard Prescriptive Smart \$aver[®] Incentives.

The Custom Incentive application is for projects that are not listed on the applications for Smart \$aver[®] Prescriptive Incentives. Unlike the Prescriptive Incentives, Custom Incentives require approval prior to the project implementation. Proposed energy efficiency measures may be eligible for Custom Incentives if they clearly reduce electrical consumption and/or demand.

Currently there are the following application forms that are located on the Duke Energy website under the Smart \$aver[®] Incentives (Business and Large Business tabs).

- Application Part 1 Administrative Information
- Applications Part 2 Worksheets Energy Savings Calculations & Basis
 - Variable Frequency Drives
 - Energy Management Systems
 - Compressed Air
 - Lighting
 - General

The program is promoted through but not limited to the following;

- Trade ally outreach
- Duke Energy Ohio Business Relations Managers
- Duke Energy segment specific workshops
- Company website

Smart Saver[®] Custom Rebate Program Potential Changes:

While no significant changes to the program were made this year, program management continues to look for improvements that will enhance participation and program efficiency. These changes may include calculation assistance for customers that have proposed energy efficiency projects of sufficient value, as determined by Duke Energy, but that lack internal or other resources to perform the engineering calculations required by the Custom Incentive program.

Mercantile Self-Direct Rebates Program

The Duke Energy Ohio Mercantile Self-Direct program was enacted in accordance with Public Utilities Commission of Ohio (Commission) Rule 4901:1-39-05(G).A.C., and the Commission's Opinion and Order in Case No. 10-834-EL-POR. Mercantile and national/regional accounts customers are eligible for the program.

These customers may elect to commit energy savings or demand reductions from projects completed in the prior three calendar years that did not receive Smart \$aver[®] incentives to Duke Energy's benchmark achievements. In return, Duke Energy will assist the customer in filing an application with PUCO for approval of a portion of the incentive the customer would have received had they participated in Duke Energy's standard Smart \$aver[®] Non-Residential programs.

Where applicable, customers that accept a Self-Direct rebate and were opted out of the energy efficiency rider or that paid a lesser rider rate at the time of project completion will be invoiced for the differential in rider charges from the point in time of project completion to present and will continue paying the full rider amount going forward.

The marketing channels for Mercantile Self-Direct project applications closely resemble those of the Smart \$aver[®] Prescriptive and Smart \$aver[®] Custom programs, based on applicability, as described in previous sections of this filing.

Rebates for Self-Direct projects eligible for a cash rebate reasonable arrangement will be a percentage of the dollar amount that would apply to the same project if evaluated in the Smart \$aver[®] Prescriptive & Custom programs. Where measures are ineligible for a cash rebate arrangement, customers may receive a commitment payment, as defined by the Commission.

<u>Self Direct Prescriptive Program</u> - The Self-Direct Prescriptive program provides rebates for mercantile customers who implement energy efficiency and/or demand reductions projects to install higher efficiency equipment. Major categories include lighting, motors, pumps, VFD's, food service and process equipment. Eligible measures are reflective of the Smart \$aver[®] Prescriptive Incentive portfolio. Additionally, projects completed for measures that were removed from the Prescriptive portfolio due to changes in market standards, minimum code requirements and federal/state minimum efficiency legislation will be eligible for rebate if the projects were completed before the measure was removed from the Prescriptive portfolio. While many of the measures recorded under the Smart \$aver[®] Prescriptive program will remain Prescriptive in nature under the Self-Direct program, in accordance with Commission rules and orders on the mercantile program, certain measures must be evaluated under the Self-Direct Custom program to enable the use of as-found baseline.

<u>Self Direct Custom Program</u> - The Self-Direct Custom program offers rebates for completed mercantile projects involving more complicated scopes, unique technologies or measures not covered by Self-Direct Prescriptive rebates but that resulted in improvements upon facility electrical energy efficiency. A proposed energy efficiency measure may be eligible for a Self-Direct Custom rebate if it clearly reduces electrical consumption and/or demand. Unlike the Smart \$aver[®] Custom program, measurable and verifiable behavioral and operational measures are eligible in the Mercantile Self Direct program.

Non-Residential Energy Assessments Program

The purpose of the Non-Residential Energy Assessment program is to assist nonresidential customers in assessing their energy usage and providing recommendations for more efficient use of energy. The program will also help identify those customers who could benefit from other Duke Energy Ohio Energy Efficiency non-residential programs.

Duke Energy Ohio offers several different types of assessments to help customers identify energy efficiency opportunities. The Online Assessment tool is available for all non-residential customers through the Duke Energy website. This tool is available free of charge. For customers with a peak demand over 500 kW, Duke Energy Ohio offers a Telephone Assessment free of charge to the customer. The assessor will gather basic data from the customer and provide recommendations over the phone based on experience and information provided during the interview. Lastly, Duke Energy Ohio offers an On-Site Assessment wherein an assessor will spend one or more days at a customer's site identifying opportunities for increased energy efficiency. After the audit is completed, the customer receives a written report of the audit findings. The cost of the On-Site Assessment varies depending on the length of time an assessor spends at a customer's facility. The cost of the audit is shared by Duke Energy Ohio and the customer. The customer pays 50% of the cost, and Duke Energy Ohio pays 50%, but the customer's cost can be further reduced if they proceed with adopting the recommendations made in the audit.

After evaluating the success of the current audits, Duke Energy Ohio is employing new approaches to higher drive adoption of energy efficiency through audits. One such approach is a comprehensive audit that addresses the entire operation of a building in great detail. In a similar vein, Duke Energy Ohio is testing technology specific audits. The purpose is to help customers identify strategies targeted at their most energy intensive processes, provide them with concrete cost estimates to implement the recommendations, and connect the customer with vendors that deliver the energy efficiency improvements.

Impacts captured as a result of Energy Assessment recommendations are recorded in Duke Energy Ohio's non-residential incentive programs. As a result, they are not presented for this section.

Non-Residential Energy Assessment Program Potential Changes:

Duke Energy is considering design assistance efforts to aid in the development of high efficiency designs in planned new construction and major renovation.

PowerShare[®] Program

The PowerShare[®] program is Duke Energy Ohio's demand side management (or demand response) program geared toward Commercial and Industrial customers. The primary offering under PowerShare[®] is named CallOption and it provides customers a variety of offers that are based on their willingness to shed load during times of peak system usage. These credits are received regardless of whether an event is called or not. Energy credits are also available for participation (shedding load) during curtailment events. The notice to curtail under these offers is between 6 hrs (emergency) and day-ahead (economic) and there are penalties for non-compliance during an event.

- The program is promoted through but not limited to the following;
 - o Duke Energy Ohio Business Relations Managers
 - o Email to customers
 - o Duke Energy Ohio website

Customer targets in 2012 continued to be large manufacturers, water/wastewater facilities school systems. Program changes due to Duke Energy's move to PJM in 2012 provided minor challenges and most customers chose to continue participation in PowerShare[®] much as they did in 2011. In addition, 2012 was the first year of a test Duke Energy Ohio has conducted with Automated Demand Response technologies that could simplify the ways for commercial customers to curtail. The preliminary results are positive: the technologies work and participating customers have provided no negative feedback. The biggest challenge is the initial installation costs, which needs to decrease before wide-scale implementation will make economic sense.

27

PowerShare[®] Program Potential Changes:

Changes for 2013 involve a heightened level of competition being demonstrated by some Curtailment Service Providers in the market that became evident in late Summer 2012. On the whole, Duke Energy feels that it has a competitive offer for customers and the program offering in 2013 has stayed very similar to that in 2012.

On July 20, 2011, Duke Energy Ohio filed to include three new programs to the portfolio, Appliance Recycling, Low Income Neighborhood Program and Home Energy Solutions. An Order in Case No. 11-493-EL-RDR approving these programs was received on August 15, 2012.

Appliance Recycling Program

The Ohio Appliance Recycling Program (ARP) launched on October 4, 2012. ARP encourages customers to responsibly dispose of older, functional but inefficient refrigerators and freezers. These are typically second or third units in the home. Customers will have the old unit picked up at their home at no charge and will receive an incentive for participating. Disposed units will have up to 95 percent of material recycled with approximately 5 percent entering landfills. Program marketing will consist of direct mail, bill inserts & messages, digital media, social media, and community presentations and publications like newsletters. Point of sale messaging may be piloted with prominent appliance retailers.

JACO Environmental, Inc. was selected as the ARP Supplier based on responses to the RFP. Customer participation was lower than planned for a program launching in January 2012 due to October 2012 launch completely, missing the April through May peak, as well as, occurring at the start of holiday season.

Low Income Neighborhood Program

The Low Income Neighborhood Program ("Program") assists low-income customers in reducing energy costs through energy education and by installing or providing energy efficient measures for each customer's residence. The primary goal of the Residential Neighborhood Program is to empower low income customers to better manage their energy usage.

The Company will target neighborhoods with a significant low income customer base using a grassroots marketing approach to interact on an individual customer basis and gain trust. Participation is driven through a neighborhood kick-off event that includes trusted community leaders explaining the benefits of the Program. The purpose of the kick-off event is to rally the neighborhood around energy efficiency and to educate customers on methods to lower their energy bills. Customers will have the option to sign-up for an energy assessment at the time of the event.

In addition to the kick-off event, the Company plans to use the following avenues to inform potential customers about the Program:

- Direct mail
- Door hangers
- Press releases
- Community presentations and partnerships
- Inclusion in community publications such as newsletters, etc.

Customers participating in the Program will receive an energy assessment to identify energy efficiency opportunities in the customer's home and one-on-one education on energy efficiency techniques and measures. Additionally, the customer receives a comprehensive package of energy efficient measures. Each measure listed is installed or provided to the extent the measure is identified as energy efficiency opportunity based on the results of the energy assessment.

The Program is available only to individually-metered residential customers in neighborhoods selected by the Company, at its sole discretion, which are considered lowincome based on third party data, which includes income level and household size. Areas targeted for participation in this Program will approximately have 50% of the households with an income equal to or less than 200% of the federal poverty level established by the U. S. Government.

Duke Energy has selected GoodCents, Inc. as the administrator for the Program and is currently preparing for the Program to launch in the second quarter of 2013.

Home Energy Solutions (formerly called Home Energy Management)Program

Home Energy Solutions is an approach to delivering energy efficiency solutions to customers in a way that combines a number of energy efficient measures into more valuable solutions. Home Energy Solutions will combine energy usage information and recommendations with the ability to leverage potential pricing options and energy management offerings into convenient in-home solutions.

Upon notification of portfolio approval in August 2012, Duke Energy Ohio immediately launched an RFP process to select a vendor. In anticipation of receiving approval, the RFP was designed in advance to ensure getting it into the market quickly. Given the fact that this is for a commercialized program, the RFP was very comprehensive and required substantial detail on the part of participating vendors. This included live access to their current product for Duke Energy Ohio evaluation/testing. The objective through the entire process has been to ensure that the solution is tested, scalable, and will deliver the intended features/value for Ohio customers and Duke Energy Ohio. The RFP went out to 11 vendors, all of whom agreed to participate.

Over the last few months, each vendor has been through extensive reviews and testing. This includes lab and employee home testing of their solutions, interviews with each vendor's current customers (utilities), financial risk assessments, etc. As of May 15th, we are now down to two finalists. A vendor will be selected in second quarter 2013.

Once the vendor has been selected, Duke Energy Ohio will work with the vendor to integrate data feeds and finalize the HES solution for launch in the Ohio market. We have established the development/launch timeline with the requirements for this program as well other internal IT work we must align with (such as Ohio meter interval data feed integration work). Given these factors, we are targeting an official program launch of Q1 2014.

4901:1-39-05(C)(2)(a)(i) Cont'd... Number and Type of Participants and Comparison of Forecasted Savings to Achieved Savings

The number of participants or measures installed by customer type is summarized above in Table 2. Details on participation by measure are provided in Appendix A.

The Company's programs are approved for implementation through December 31, 2013. A new portfolio filing seeking program approval for January 1, 2014 – December 31, 2016 was filed on April 15, 2013³. Table 4 provides a comparison of achieved impacts through 2012 as well as the forecasted impacts. The forecasted impacts for 2013 have been updated to align with the portfolio filed in Case No. 13-0431-EL-POR.

³ Case No. 13-0431-EL-POR

Table 4: Compa	rison of Achie	vement to Fo	precasted imp	acts and Tren	d Projection	Through 2013		
	Achieved Loa	ad Impacts			Forecasted Lo	ad Impacts		
	MWH	MW	MWH	MWH	MWH	MW	MW	MW
	2012	2012	2012	2013	Total	2012	2013	Total
Other Programs								
Low Income Weatherization	3,787	1	-		0	-	-	-
Large Transmission Customer	-	67	-	-	0	-	-	
Powershare Generators	-	(31)	-	-	0	-	•	-
Residential Programs								
Appliance Recycling Program	883	0	5,639	7,296	12,935	1.5	2.0	3.5
Home Energy Solutions	-	-	843	-	843	1.8	-	1.8
Low Income Neighborhood Program	-	-	1,262	1,377	2,638	0.3	0.4	0.7
Energy Education Program for Schools	1,149	o	3,385	875	4,260	0.9	0.1	1.0
Home Energy Comparison Report	42,397	15	25,714	(806)	24,908	8.4	(0.2)	8.2
Low Income Services	-	-	176	108	284	-	0.0	0.0
PowerManager	-	(5)	-	-	0	8.6	2.9	11.6
Residential Energy Assessments	4,740	1	9,122	7,388	16,511	1.3	1.0	2.3
Smart Şaver® Residential	82,839	10	35,772	15,157	50,929	6.1	3.7	9.8
				-			-	
				-			-	
Non Residential Programs				-			-	
Smart Saver Non Residential Custom	24,904	3	34,120	27,784	61,905	3.9	3.2	7.1
Smart Saver Non Residential Prescriptive	54,214	11	65,844	55,938	121,782	14.2	11.8	26.0
PowerShare	-	1	•	-	0	(0.4)	(2.8)	(3.2)
Mercantile Self-Direct	47,524	9	•	-	0	-	-	-
Total for All Programs	262,437	83	181,878	115,118	296,995	47	22	69

1. Low Income Weatherization reflects 2010 thru 2012 incremental impacts.

2. Low Income Services includes refrigerator replacement only.

3. 2012 forecasted impacts from previous filing.

4. 2013 forecasted impacts have been updated with more recent estimates than what was originally filed.

5. HECR and DR are shown as incremental to be consistent with achievements.

This table indicates that the achieved MWH and MW impacts through 2012 are above the

2012 forecast.

4901:1-39-05(C)(2)(a)(ii) Energy Savings Counted Toward Benchmark as a Result of Mercantile Customers

The energy savings counted towards the benchmark for 2012 as a result of energy efficiency improvements and implemented by mercantile customers and committed to the Company are 47,524 MWH.

4901:1-39-05(C)(2)(a)(iii) Peak Demand Reduction Counted Toward Benchmark as a Result of Mercantile Customers

The peak-demand reductions counted towards the benchmark for 2012 as a result of energy efficiency improvements and implemented by mercantile customers and committed to the Company are 9 MW.

4901:1-39-05(C)(2)(a)(iv) Peak-Demand Reductions Claimed Due to Transmission and Distribution Infrastructure Improvements

The Company is not claiming any impacts from transmission and distribution infrastructure improvements at this time.

4901:1-39-05(C)(2)(b) Evaluation, Measurement, and Verification (EM&V)

Energy savings and peak-demand reduction values are documented in the individual program EM&V studies in the appendices. The following studies have been completed:

٠	Smart Saver® Custom Incentive (Sept 28, 2012)	Appendix D
٠	Smart Saver® Residential CFL (Sept 28, 2012)	Appendix E
٠	2011 Power Share Impact Review	Appendix F
•	Smart Saver® Residential CFLs: Property Manager Channel	Appendix G
•	Energy Efficiency Education Program for Schools (NTC)	Appendix H
•	Residential Energy Assessments (Home Energy House Call)	Appendix I
٠	Smart \$aver [®] Residential – HVAC (January 2013)	Appendix J
٠	Smart Saver® Non-Residential Prescriptive (Other Measures)	Appendix K
٠	Power Manager Process Evaluation Report (April 24, 2013)	Appendix L

Appendix C provides an up-to-date summary EM&V methodologies and protocols.

Table 5: Cost Effectiveness Tes	st Results of Current Pro	grams		
	Utility Test	TRC Test	RIM Test	Participant Test
RESIDENTIAL CUSTOMER PROGRAMS	······································			
Appliance Recycling	3.59	4.25	1.99	NA
Energy Efficiency Education Program for Schools	2.35	3.64	1.52	NA
Home Energy Comparison Report	2.48	2.48	1.53	NA
Home Energy Solutions	1.59	2.35	1.44	4.29
Low Income Neighborhood Program	1.33	2.31	1.02	NA
Low Income Services	1.26	4.69	0.92	NA
Powe rManage r	3.98	4.75	3.98	NA
Residential Energy Assessments	2.83	3.04	1.68	NA
Residential Smart Saver® Products and Services	3.00	2.61	1.82	3.88
NON-RESIDENTIAL CUSTOMER PROGRAMS				
Smart Saver® Prescriptive	5.80	2.59	3.41	2.68
Smart Saver® Custom	4.90	1.23	2.81	1.45
Power Share®	4.05	7.83	4.05	NA

The cost effectiveness of the current programs is provided below in Table 5.

1. Home Energy Comparison Report is now the My Home Energy Report

4901:1-39-05(C)(2)(c) Continuation of Programs

Based on the success experienced and feedback from customers and trade allies, Duke Energy Ohio proposes continuing with the existing suite of offers, as well as, including additional measures and programs upon approval of Case No. 13-0431-EL-POR into the current portfolio. The portfolio is subject to annual adjustments for changes in efficiency levels or market conditions.

With respect to future program expansion or modification, the Company did not offer any piloted programs in calendar year 2012. However, the following program was submitted for approval for 2014 in Case No. 13-0431-EL-POR⁴:

Energy Management and Information Services (EMIS)

Duke Energy Ohio's proposed Energy Management and Information Services program is a systematic approach to reducing energy usage at qualified commercial or institutional customer

⁴ The program listed in this section will be implemented upon an approval by the Commission.
facilities and persistently maintaining those savings over time. In order to achieve these goals, the program will deploy an energy management and information system and perform a remote or light onsite energy assessment. The EMIS will be software-as-a-service (SaaS) hosted by a third party vendor. The EMIS SaaS will use next day interval meter data from the customer's meter. The customer commits to implementing a bundle of energy-saving low cost operational based measures that meet certain financial investment criteria. Both the customer and Duke Energy also commit to periodic energy monitoring, analysis and reporting.

This program has the potential to encourage customers to be more proactive in their management of energy. Their interaction with the software and with the energy analysts will likely evolve the customers' views of energy as a manageable expense. Duke Energy Ohio needs to test this program offer with customers in order to prove that it is cost-effective. Several other U. S. utilities are rolling out programs and measures with similar components and are seeing cost-effective results, but Duke Energy needs to test it with our customers and the EMIS vendors that we have prequalified.

4901:1-39-05(D) Independent Program Evaluator Report

Appendix C, provides an up-to-date summary EM&V methodologies and protocols. Individual reports have been provided as appendices D through L.

4901:1-39-05 (E)(1) and (2)(a-b) Peak Demand Reductions

Duke Energy Ohio has satisfied its peak-demand reduction benchmarks through energy efficiency and peak-demand response programs implemented by the Company and programs implemented on mercantile customer sites where the mercantile program is committed to the electric utility.

4901:1-39-05(F) and (G)(1-5) Mercantile Customers

Duke Energy Ohio's Mercantile Self Direct program is the avenue through which mercantile customers commit energy and demand impacts from their energy efficiency projects to Duke Energy Ohio in exchange for cash rebates or commitment payments. The program uses the constructs for calculating and deeming energy and demand savings that are present in the Custom Incentive and Prescriptive Incentive programs, respectively.

As of December 31, 2012, no customers have requested rider exemption in exchange for commitment of energy and demand savings to Duke Energy Ohio. Upon approval of the customer's application, Duke Energy Ohio tenders an offer letter agreement to the customer which outlines the cash rebate or commitment payment offered. After the customer signs the offer letter agreement, Duke Energy Ohio submits a mercantile application to the Commission on behalf of the customer. Upon Commission approval of the application or the passing of 60 days, Duke Energy Ohio remits payment to the customer for the agreed dollar amount.

The offer letter provided to applicants pursuant to each project submitted to Duke Energy Ohio requires the customer to affirm its intention to commit and integrate the energy efficiency projects listed in the offer into Duke Energy Ohio's peak demand reduction, demand response and/or energy efficiency programs. The offer letter agreement also requires the customer to agree to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by the Commission and to comply with any information and reporting requirements imposed by rule or as part of that approval. Noncompliance by the customer with the terms of the commitment is not applicable at this time.

The attached offer letter agreement template (Appendix O), used for each mercantile application (examples in Appendix M and Appendix N), provides for formal declaration.

36

Additionally, the attached example application documents request that the applicant allow Duke Energy Ohio to share information only with vendors associated with program administration. The release is limited to use of the information contained within the application and other relevant data solely for the purposes of reviewing the application, providing a rebate offer, submitting documentation to the Commission for approval and payment of the rebate. All program administration vendor contracts strictly prohibit the sharing of customer information for other purposes.

Upon customer request, Duke Energy Ohio will agree, as it is able to do so, to provide information to the Commission in the proper format such that confidential customer information is redacted from the public record.

With regard to the customers in Duke Energy's Ohio territory who have undertaken selfdirected energy efficiency projects, these initiatives will not be evaluated by the Company's independent evaluation contactor (TecMarket Works). These efforts have been implemented in the past and were self-directed by our mercantile customers without involvement in Duke Energy Ohio's energy efficiency or demand reduction programs under Duke Energy Ohio's Shared Savings Cost Recovery mechanism. As a result they will not be included in the evaluations of Duke Energy Ohio programs.

4901:1-39-05(H) Prohibition Against Counting Measures Required by Law Toward Meeting the Statutory Benchmark

Duke Energy Ohio did not count, in meeting its statutory benchmark, the adoption of measures that were required to comply with energy performance standards set by law or regulation, including but not limited to, those embodied in the Energy Independence and Security Act of 2007, or an applicable building code.

37

4901:1-39-05 (I) and (J) Benchmarks Not Reasonably Achievable

The above referenced sections do not apply to Duke Energy Ohio as it has met and exceeded the statutory benchmarks for the 2012 calendar year.

III. Conclusion

With this status report, Duke Energy Ohio has demonstrated that it is in compliance with the statutory load impact requirements as measured and reported in its Benchmark Report filed May 15, 2013. Duke Energy Ohio respectfully requests that the Commission find that the Company has met its compliance requirements for the 2012 compliance year.

Respectfully submitted,

DUKE ENERGY OHIO, INC.

hite LU

Am/B. Spiller Deputy General Counsel Elizabeth H. Watts Associate General Counsel Duke Energy Business Services 139 E. Fourth Street Suite 1303 Cincinnati, Ohio 4520 (614) 222-1331

Page 1 of 20

4901:1-39-05(C)(1)(b) - SB 221 Appendix A

2012 Total Reported Achievement

2,333,285	262,436,819	82,860			·	Grand Total
ipanes	@ Plant Total Partic	@ Plant Total	Measure	Product Code	Customer	Program
	Annual RWH Gross FR,	Annual KW Gross FR.				

Other EE Programs

				AUDITAL DAY OF STR.	MILINAL WALL STORE FIS.	
Program	Custornee	Product Code	Measure	@ Plant Total	@ Plant Fotal	Participants
PowerShare Generators	NonRes		PowerShare Generators	(31,360)		
Large Transmission Customer	NonRes		Large Transmission Customer	67,491		
Low Income Weatherization	Res		Low Income Weatherization	1,019	3,787,119	3,837
Grand Total				37,150	3,787,119	3,837

Shared Savings and Mercantile Portfolios

				Annual KW Gross FR,	Annual KWH Gross FR,	
Program	Customer	Product Code	Measure	(a) Plant Total	@ Plaut Fotal	Participants
Home Energy Comparison Report	Res	HECR	Home Energy Comparison Report	(222)	(3,240,335)	,
Home Energy Comparison Report	Res	HECR	Home Energy Comparison Report - Commercialized	15,658	45,637,090	250,447
Home Energy Comparison Report	Res	HECR Total		15,083	42,396,754	250,447
Home Breezer Comparison Report Fourt				2012 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42,396,754	24406272528
PowerManager	Res	PWRMGR	PowerManager - Midwest	(602'\$)		
PowerManager	Res	PWRMGR Total		(4,709)		
PowerManager Fotal & South Control of the South State				(60/49)		
Powershare	Res	PWRSHR	PS CallOption 0.5	1,132		
Powershare	Res	PWRSHR	PS CallOption 10_5			
Powershare	Res	PWRSHR	PS CallOption 15_5	•		
Powershare	Res	PWRSHR	PS CallOption 5_5	168		
Powershare	Res	PWRSHR Total		1,300		
Powershare Total Activity of the second s				00511 11300		A CONTRACTOR OF A CONTRACTOR
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	t		
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		42,694	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •		43,637	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		33,449	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		35,115	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		157,951	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		100,806	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		147,597	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		72,356	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		-	•
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		26,370	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	3	15,604	102
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	42	111,098	++
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		42,685	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	31	520,768	1
Mercantile Self-Direct	NanRes	NRCSSD	SD Custom -	33	215,562	229
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	48	332,861	335

Case No. 13-1129-EL-EEC Appendix A Page 2 of 20

•

. .

.

Mercantile Self-Direct	NonRes	NRCSSD	5D Custom -	26	179
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	107	938,167 748
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	7	66,159 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	2	78,771 1 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	<u> </u>	81,738
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	<u> </u>	68,839 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	7	66,531
Mercantile Self-Direct	NonRes	NRCSSD	5D Custom -	14	18,520 181
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		5,777 14
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	43	376,048 791
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	4	19,844
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	(2)	129,072
Mercantile Self-Direct	NonRes	NRCSSD	SD Custoin •	(1)	41,487 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	(1)	64,536
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	6	226,810 3
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	6	119,442
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •	3	23,985 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	2	50,755
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	1	30,440
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	m	325,675
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	8	90,607
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •		121,688 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	[2]	53,407 2
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		51,107 2
Mercantile Self-Direct	NonRes	NRCSSD	5D Custom -		299,068 103
Mercantlie Self-Direct	NonRes	NRCSSD	SD Custom •	(0)	8,786
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	33	94,222 1,022
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	136 1,	171,600 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	(9)	278,949
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	(5)	85,840
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	184 1.	045.046
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		21.074 6
Mercantile Self-Direct	NonRes	NRCSSD	SD Castom •	28	34,841
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	45	55,620 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	46	57,311 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	7	26,786 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	45	55,153
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	10	26,174
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		54,735
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	36	44,732
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	-	81,955
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		22,259 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	24	29,620
Mercantile Self-Direct	NonRes	NRCSSD	5D Custom -	76 1	529,366 1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	0	12,223
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	2	100,097
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	143	561,868
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	143	558,488
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	374	159,570 2
Mercantile Self-Direct	NonRes	NRCSSD	SD Gustom •	139	179,408 1
Mercantile Self-Direct	NonRes	NRCSSD	sD Custom -	139	309,657 1

-

~ - . -

~

Case Na. 13-1129-EL-EEC Appendix A Page 3 of 20

						Ŀ
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	139	265,558	[
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	136	131,351	
Mercantile Self-Direct	NonRes	NRCSSD	SD Cutstom -	139	147,582	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	e	56,959	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	4	42,891	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	4	45,650	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	4	38,566	ч
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	26	106,501	
Mercantile Seit-Direct	NonRes	NRCSSD	SD Custom •		177,211	8
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		3,259	4
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		7,966	3
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	231	2,027,231	-1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	12	101,286	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	55	483,639	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		20,910	6
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •		6,744	2
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		3,672	2
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		70,435	64
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		24,446	8
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	30	258,603	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	3	14,725	2
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	3	15,473	81
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •	59	66,540	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		12,808	-
Mercantile Celf-Direct	NurRes	NRCSSD	SN Custom -	157	1 377 870	
Marcantila Salf-Diract	NonRes	NRCSSD	SD Custom •	18	35,635	-
Marcantila Galf. Direct	NonRes	NRCSSD	SD Cutstam -		61 517	-
Mortanue Ser-Direct	NonDec	NDCCD	ob custom	16	7 113 305	-
	NorBec	NDCCD		20	22.024	آ -
Mercantile Self-Lifect	NUDRES	WRU300		0 5	FLD/CC	Ī
Mercantile Self-Direct	Nonkes	NKLSSU	SU Gustom -	16	542,102	-1-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	502	1,220,452	-[-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	11	22,225	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •	-	16,002	
Mercantile Self-Dtrect	NonRes	NRCSSD	SD Custom -	15	28,144	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	13	26,011	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	80	15,219	٦İ
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	4	6,779	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	10	18,449	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		16,441	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •	12	22,812	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	13	25,028	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	29	54,936	7
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	30	16,181	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	6	11,398	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	10	19,742	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		258,146	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	(4)	129,343	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	42	250,455	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		205,748	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		4,832	-
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		13,406	÷

Cuse No. (3-1129-EL-BEC Appendix A Page 4 of 20

Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -		6,500	
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom •	_	42,714	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	1	811	,,
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	6	109,043	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	23	135,016	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	43	198,341	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	34	203,427	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	38	228,029	1
Mercantile Self-Direct	NonRes	NRCSSD	SD Custom -	1.049	6,237,723	1
Mercantle Self-Direct	NonRes	NRCSSD Total		4,719.33	32,977,337,44	4,365.00
Mercantile Self-Direct	NonRes	NRPRSD	SD Compact Fluorescent Fixture	3 [14,762	41
Mercantile Self-Direct	NonRes	NRPRSD	SD Window Film	1	3,546	811
Mercantile Self-Direct	NonRes	NRPRSD	SD Compact Fluorescent Screw in	4	18,636	89
Mercantile Self-Direct	NonRes	NRPRSD	SD VFD HVAC Fan	38	225,724	170
Mercantile Self-Direct	NonRes	NRPRSD	SD VFD HVAC Pump	51	302,616	80
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 2ft 2 lamp	0	697	6
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 3ft 1 lamp	0	817	8
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 4ft 1 lamp	0	470	8
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 4ft 2 lamp	2	12,012	192
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 4ft 3 lamp	0	501	4
Mercantile Self-Direct	NonRes	NRPRSD	SD T-8 4ft 4 lamp	2	10,351	67
Mercantile Self-Direct	NonRes	NRPRSD	SD LED Case lighting	1	17,534	36
Mercantile Self-Direct	NonRes	NRPRSD	SD Low Watt TB lamps 2-4ft, replacing standard 32 Watt TB	12	59,010	3,081
Mercantile Self-Direct	NonRes	NRPRSD	SD AC 65,000 - 135,000 per ton	1	3,317	53
Mercantile Self-Direct	NonRes	NRPRSD	SD AC 135,000 - 240,000 per ton	7	19,079	172
Mercantile Self-Direct	NanRes	NRPRSD	SD Night covers for displays	0	2,608	32
Mercantile Self-Direct	NonRes	NRPRSD	SD High Performance Low Watt TB 4ft 4 lamp, replacing standard T8	37	183,108	2,109
Mercantile Self-Direct	NonRes	NRPRSD	SD AC < 65,000 3 Ph per ton	0	592	13
Mercantile Self-Direct	NonRes	NRPRSD	SD High Performance Low Watt T8 4ft 2 lamp, replacing standard T8	26	127,016	2,618
Mercantile Self-Direct	NonRes	NRPRSD	SD High Performance Low Watt T8 4ft 3 lamp, replacing standard T8	37	178,306	2,182
Mercantile Self-Direct	NonRes	NRPRSD	SD T-5 4 ft 2 Lamp w/ Electronic Ballast (replacing T-12 fixture)	1	3,505	61
Mercantile Self-Direct	NonRes	NRPRSD	SD T-5 4 ft 1 Lamp w/ Electronic Ballast (replacing T-12 fixture)	0	2,434	42
Mercantile Self-Direct	NonRes	NRPRSD	SD Vending Equipment Controller		23,019	27
Mercantike Self-Direct	NonRes	NRPRSD	SD Air Cooled Chiller Tune Up per ton	41	114,235	891
Mercantile Self-Direct	NonRes	NRPRSD	SD High Bay T8 4ft Fluorescent 4 Lamp (F32 Watt T8)	4	19,019	29
Mercantile Self-Direct	NonRes	NRPRSD	SD High Bay T8 4ft Fluorescent 6 Lamp (F32 Watt T8)	62	328,713	321
Mercantile Self-Direct	NonRes	NRPRSD	SD Water Cooled Chiller Tune Up per ton	3,018	8,362,908	130,456
Mercantile Self-Direct	NonRes	NRPRSD	SD Occupancy Sensors over 500 Watts	429	2,101,579	1,609
Mercantile Self-Direct	NonRes	NRPRSD	SD Occupancy Sensors under 500 Watts	193	930,151	1,781
Mercantile Self-Direct	NonRes	NRPRSD	SD (.ED Exit Signs Electronic Fixtures (Retrofit Only)	4	30,814	126
Mercantile Self-Direct	NonRes	NRPRSD	SD Air-Cooled Recip Chiller COP = 2.86, IPLV = 3.97 per ton	26	72,119	242
Mercantile Self-Direct	NonRes	NRPRSD	SD Air-Cooled Screw Chiller COP = 2.86, IPLV = 3.48 per ton	10	26,867	155
Mercantile Self-Direct	NonRes	NRPRSD	SD Air-Cooled Screw Chiller COP = 2.86, IPLV = 3.97 per ton	50	138,009	606
Mercantile Self-Direct	NonRes	NRPRSD	SD Air-Cooled Screw Chiller COP = 3.08, IPLV = 4.00 per ton	30	82,945	221
Mercantile Self-Direct	NonRes	NRPRSD	SD Water-Cooled cent Chiller > 300 ton 0.58 kW_ton w/ 0.35 kW_tonIPLVperton	137	379,067	2,025
Mercantile Self-Direct	NonRes	NRPRSD	SD Water-Cooled cent Chiller > 300 ton 0.58 kW ton w/ 0.41 kW ton PLVperton	163	452,821	3,400
Mercantile Self-Direct	NonRes	NRPRSD	SD ENERGY STAR Commercial Glass Door Refrigerators more than 50ft3 - var	0	957	1
Mercantile Self-Direct	NonRes	NRPRSD	SD ENERGY STAR Commercial Glass Door Freezers 30 to 50ft3 - var	4	37,107	6
Mercantile Self-Direct	NonRes	NRPRSD	SD ENERGY STAR Commercial Glass Door Refrigerators 15 to 30 ft3 - var	0	712	1
Mercantile Self-Direct	NonRes	NRPRSD	SD ENERGY STAR Commercial Glass Door Refrigerators 30 to 50ft3 - var	0	3,105	4
Mercantile Self-Direct	NonRes	NRPRSD	SD Exterior HID replacement above 175W to 250W HID retrofit	_	7,505	17

~

-

-

*

-

-

Case No. (3-1129-EL-REC Appendix A Page 5 af 20

Mercantile Self-Direct	NonRes	NRPRSD	SD Exterior HID replacement above 250W to 400W HID retrofit		110,408	146
Mercantile Self-Direct	NonRes	NRPRSD	SD Exterior HID replacement to 175W HID retrofit		14,907	50
Mercantile Self-Direct	NonRes	NRPRSD	SD LW HPT8 4ft 2 lamp, Replace T12	2	11,997	108
Mercantile Self-Direct	NonRes	NRPRSD	SD LW HPTB 4ft 4 lamp, Replace T12	2	12,066	50
Mercantile Self-Direct	NonRes	NRPRSD	SD Snack Machine Controller	0	1,190	4
Mercantile Self-Dtrect	NonRes	NRPRSD	SD 10 Horse Power High Efficiency Pumps	m	10,048	4
Mercantile Self-Direct	NonRes	NRPRSD	SD 125-250 Horse Power Motors - Incentives per participant	3	10,360	4
Mercantile Self-Direct	NonRes	NRPRSD	SD 1-5 Horse Power Motors - Incentives per participant	0	1,684	14
Mercantile Self-Direct	NonRes	NRPRSD	SD 25-100 Horse Power Motors - Incentives per participant	15	55,180	49
Mercantile Self-Direct	NonRes	NRPRSD	SD 7.5-20 Horse Power Motors - Incentives per participant	6	20,449	47
Mercantile Self-Direct	NonRes	NRPRSD Total		4,427	14,546,583	154,272
Mercantile Self-Direct Total	san ing tang tang tang tang tang tang tang ta			9,146	47,523,920	158,637
Appliance Recycling Program	Res	FRCYC1.	Freezer Recycle	49	182,785	140
Appliance Recycling Program	Res .	FRCYCL Total		49	182,785	140
Appliance Recycling Program	Res	RRCYCL	Fridge Recycle	188	700,356	398
Appliance Recycling Program	Res	RRCYCL, Total		188	700,356	398
Appliance Recycling Program Total	an ann an the ann ann an the second secon			238	883,141	538
Energy Efficiency Education Program for Schools	Res	K12CFL	K-12 Education Program- CFL Distribution (2009)	,	•	-
Energy Efficiency Education Program for Schools	Res		K-12 Education Program	,	•	•
Energy Efficiency Education Program for Schools	Res	K12CFL Total		•		
Energy Efficiency Education Program for Schools	Res	K12PRF	K-12 Education Program- Curriculum	102	1,148,881	9,516
Energy Efficiency Education Program for Schools	Res	K12PRF Total		102	1,148,861	9,516
Energy Efficiency Education Program for Schools Total	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			102	1,148,881	9,516
Low Income Services	Res	LICEL	Agency Assistance Portai	-	•	•
Low Income Services	Res	LICFL Total		•	•	•
Low Income Services	Res	REFRPL	Low Income Weatherization-Refrigerator Replacement	,	•	-
Low Income Services	Res	REFRPL Total			1	e
Low Income Services Total (1984) 115 11 11 11 11 11 11 11 11 11 11 11 11	Sala Sala Sala		「「「「「「「「「」」」」、「「」」、「」」、「」、「」、「」、「」、「」、「」		※「「「「「「「「」」」	第二人間を見ていた。 「「「「「「」」」
Residential Energy Assessments	Res	HEHC	Home Energy House Call - Energy Efficiency Starter KIT	668	4,739,374	2,208
Residential Energy Assessments	Res	HEHC Total		668	4,739,374	2,208
Residential Energy Assessments	Res	OHEC	SAW Online Audit w EE kit		•	•
Residential Energy Assessments	Res		Online Audit	•	•	•
Residential Energy Assessments	Res	OHEC Total				-
Residential Energy Assessments	Res	PER	Personalized Energy Report	0	206	2
Residential Energy Assessments	Res	PER Total		0	604	2
Residential Energy Assessments Total			为,我们们就是我们有这个人,我们的人,我们们们的人,我们们们,我们们的人们就是不能能帮助了。""你不知道,我们们就是我们的人,我们们的人,我们们就是我们就是我们的 "我们就是我们们的是我们就是我们的,我们们,你们也不是我们的,我们们们就是我们的我们,我们就是我们的我们的,我们就是我们的,我们就是我们的,我们就是我们就是我们的	668	4,740,084	2,210
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		: 1	ſ
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		5	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•

Case No. 13-1129-EL-EEC Appendix A Page 6 of 20 -

~

-

-

-

•

-

-

-

Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			,
Smart \$aver Non Residential Custom	NunRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	·		
Smart Saver Non Residential Custom	NonRes	INRPRSC	OH Custom		н н	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Caver Non Pecidential Custom	NonRec	NRPRSC	Off Custom			
	NICEDEC	NBDBC				•
Silitari Şayer Nun kesiyeniyat Custom	TAUTINES	NNF NOL				
smart saver non kesigential custom	Nonkes	NKKKSU		,	•	,
Smart Saver Non Residential Custom	NonKes	NKPKSC	UH Custom	*		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	Off Custom	31	188,084	894
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	1	٢
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		4	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn	•	•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	1
Smart saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart \$ aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom			•

Case No. 13-1129-EL-EEC Appendix A Page 7 of 20

				į		
imart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom	•		1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		4	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
imart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	
imart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	· ·		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,		-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		•	•
imart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		•	•
smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smort Saver Non Residential Custom	NonRes	NRPRSC	Off Custom	,		
Count Cause Non Decidential Ouctom	NonRec	JSadan	OH fustom	-		
Smart Cavar Non Desidential Custom	NonRec	NRPRSC	OH Custom		,	
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom		•	
Smart Caver Non Residential Fustom	NonRes	NRPRSC	OH Custom		•	•
Smart Caver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
sunat tave non nemerikan saawan Smort taver Non Decidential fustom	NonRes	NBPRSC	OH Custom			ſ
outer tarret non nestuentien custom	NonPec	NEPRSC	OH fustom		,	
Build's parter Non Resultantian Custom	NonRes	NDDO ST	Off Custom		,	
Smart Javer Non Residential Luston	Norbee	NUTAU				
Smart Javer Non Kesidential Lustom	NonKes	NREAC				
smart Saver Non Residential Custom	NUTIKES	NKPRC		,		
Smart Javer Non Residential Lustom	NonRes	NRFASC				
Science Non Residential Custom	ManDac	NDDDC	Old Custom			
smart taver hour residential Custom	NonRes	NRPRSC	Off Custom	.		
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	,	•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custoin		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn	-	-	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	•		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Sinart Saver Non Residential Custom	NonRes	NRPRSC	0H Castom	·	,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	'
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	•		•

Case Nu. 13-1329-EL-EEC Appendix A Page 8 of 20

*

Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		Ţ	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	,
Smart \$aver Non Restdential Custom	NonRes	NRPRSC	0H Custom			,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	,	.
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		.
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		,
Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	.
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRee	NRPRSC	OH Chetam	•	4	1
Smart Saver Non Residential Custom	NonRec	NBPRSC	OH Cistota	.		
Gmort Cartor Non Decidential Custom	MonBar	NBDDC				
	Canal Number	Nurved		_	,	
Smart Payer Non Residential Custom	Nonkes	NKFKOU	UH Custom	,		,
Smart Saver Non Residential Custom	NonRes	NRPRSC	UH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	-	1	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	1	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom	•	1	,
Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	,	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		
Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom			
Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,		
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custom			
Smart \$aver Non Residential Custom	VonRes	NRPRSC	0H Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	

~*

-

Case No. 13-1129-EE-EEC Appendix A Page 9 of 20

Smart faver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	*	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart \$aver Non Residential Custom	NunRes	NRPRSC	OH Custom		•	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	8
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custorn			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,		,
Smart Saver Non Residential Custom	NonRes	NRPRSC	Of Custom		,	
Smart Caver Non Residential Custom	NonRes	NRPRSC	loH Custom		•	
Smart Caver Non Residential Custom	NonRec	NRPRSC	OH Custom		1	
Supert Correction Decidential Custom	MonDae	NDDDC	Off Circles			
	N		VII Custom			
Smart Javer Non Kesidentiai Lustom	Nonkes	NKPKSC	UH Lustom	,	-	•
Smart Saver Non Residential Custom	NonHes	NRPRSC	UH Custom			-
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	1	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	- -
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	L	7	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	•
Smart \$aver Nou Residential Custom	NonRes	NRPRSC	OH Custom		•	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart saver Non Residential Custom	NonRes	NRPRSC	Off Custom		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	P	
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custorn		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	•	1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custorn		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	r

Case No. [3-1]29-EL-EEC Appendix A Page 10 of 20 ---

-

-

~

•

-

-

-

Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	•
<u>Smart Saver Non Residential Custom</u>	NonRes	NRPRSC	OH Custom		-	,
Smart Saver Non Residential Custom	NonRes	INRPRSC	0H Custom		.1	
Smart \$aver Non Residential Custom	NonRes	INRPRSC	OH Custom			
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	,
Smart Saver Non Residential Custom	NonRes	INPRSC	OH Custom	,	1	,
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	9	19.649	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	12	37,892	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	27	199,648	
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custom	160	495,455	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		7,587	2
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		10.116	(m
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		38,608	24
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		47,186	33
Smart Saver Non Residential Custom	NonRes	INRPRSC	OH Custom		668	
Smart \$aver Non Residential Custom	NonRes	INRPRSC	OH Custom		12.106	11
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		19.482	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	42	99.714	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	22	51.345	
Smart Saver Non Residential Custom	NonRes	NRPRSC	DH Custom	26	49,100	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	10H Custom	81	45.132	
Smart Saver Non Recidential Cuctom	NonRec	NRPRSC	OH Gustom		75 287	-
Smart Saver Non Residential Custom	NonRec	NRPRSC	OH Chethan	120	177 849	-
Smart Saver Non Residential Custom	NonRee	NRPRSC	Did Citetom	177	16.781	-
Smart Cover Non Decidential Custom	NonDec	NUMPER	Off Supercure		3 630	7
Durat t advert worth restantial custom	CANTION	NUTDEC			0000	
Smart saver Non Kesidential Custom	Nonkes	NKPKSU	OH Custom		2A6	2
Smart Saver Non Residential Custom	NonRes	INRPRSC	OH Custom	15	127,202	453
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	52	385,928	574
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		215,801	32
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	19	370,429	Ŧ
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	80	40,582	T
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom	11	111,729	T
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	65	(25,782)	F1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	169'19	2
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom	58	[26,327]	+-4
Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom	9	29,164	Ţ
Smart Saver Non Residential Custom	NonRes	NRPRSC	0H Custorn	10	52,341	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	9	28,748	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	Ω,	26,911	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	8	39,545	Ţ
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	9	30,845	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	3	13.974	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	8	39,339	F
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	6	44,743	T
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	2	36,016	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	17	2,593,885	F ,1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		300,223	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	300.086	1

Case No. 13-1129-EL-EEC Appendix A Page 11 of 20

					00, 00,		
Smart Şaver Non Kesidentlal Lustom	Nonkes	NKPKSU	UH LUStom	07	4/2,496		
smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		8,044	T	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	202	2,066,056		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	17	144,808	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	10	69.574	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	9	31,040	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	6	37,417	48	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	11	48,870	148	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	33,696	12	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	71	540,178	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	157	2,675,632	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custorn	6	651,243	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC.	OH Custom	48	1,590,344	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	46	146,703	1	
5mart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	88,932	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	94	228,122	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	13,915	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	4,494	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	951	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	3,224	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	8,554	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	14,105	-	
Smart Saver Non Besidential Fustom	NonRes	NRPRSC	Old Castom		15 087]		
Errert Carrer Non Decidential Custom	NonRes	NEPDC	OH Custom		3 010		
	- D -				210/2		
smart Saver Non Residential Custom	Nonkes	NKPHSC.	UH Custom	-	810/61	-1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	1,220	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	1,635	-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	287	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	3,818	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,015	1	
Smart Saver Non Residential fustom	NonRes	NRPRSC	OH Custom	G	5.352		
Smart Caver Non Pasidential Custom	NonRes	NEPRC	OH Custom	G	3 260 1		
	on Dec				1 010	-	
smart yaver non kesidential custom	Nonres	NRFRSC			/10/1	-	
Smart Saver Non Residential Custom	Nonkes	NKPRSt			404		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,079	 	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	1,177	-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,039	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,211	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,625	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	3,376	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	1,091	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,669	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	11,440	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	1,816	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,937	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	3,622	-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	624	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	2,680	1	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	4.024	14	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		111,850	1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	8	28,931	1	

Case No. 13-1129-EL-EEC Appendix A Page 12 sf 20

-

-

-

.

-

-

-

•

Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		235,488	1
Stnart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		22,127	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	235,052	÷
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	3	11,025	34
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	2,643	9
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	6	16,966	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	4	18,425	245
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	3	12,108	161
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	2	7,520	150
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	(9)	174,708	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	12	95,504	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	99	294.750	472
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	25	113.471	127
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	11	99,841	146
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	2	13.581	15
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	20	84.637	-
Smart \$aver Non Residential Custom	NonRes	INRPRSC	OH Custom	12	55.146	-
smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	64	560.445	Τ
Smart Sayer Non Residential Custom	NonRes	NRPRSC	OH Custom	29	113.663	5
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custom	11	55.565	2
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	27	1.103	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	101	424.056	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custorn	7	24.985	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	12	105.743	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		17.178	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	12	41.425	28
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	61	223.668	96
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	28	119.546	92
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custom	102	523.770	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	12.636	19
Smart Saver Non Residential Custom	NonRes	NRPRSC	Off Custom	j.	14 391	;
Smart Saver Non Residential Custom	NonRes	INRPRSC	OH Custom		14 000	18
Smart Saver Non Residential Custom	NonRes	NRPRSC	()H Custom		2 881	3 **
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH fustom		6318	Ţ
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Circiting	4	77 709	138
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	- 0	82	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custem	0	1.975	1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	0	176	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		196,313	125
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	3	13,667	16
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	15	128,886	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		2.772	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	3.799	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		2,684	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		2.152	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		328	F
Smart Sayer Non Residential Custom	NonRes	NRPRSC	OH Custom	10	39,485	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		78,014	368
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		252,746 1	,376
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	120 1,	155,176	-
Smart Saver Nnn Residential Custom	NonRes	NRPRSC	OH Custom		10.033	F

Case No. 13-1129-EL-EEC Appendix A Page 13 of 20

Smart \$aver Non Residential Custom	NonRes	NRPRSC	0H Custom		40,077	-1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	8	49,958	38
Smart Saver Non Residential Custom	NonRes	INRPRSC	OH Custom	~	12,800	822
Stnart Saver Non Residential Custom	NanRes	NRPRSC	OH Custom	206	1,320,932	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	24	206,738	250
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	5	42,175	51
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	80	295,593	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	75	1,210,364	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	1
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	-	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,	,	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	INPRSC	OH Custom	•	-	-
Smart Caver Nan Recidential Custom	NonRes	NEPRSC	OH Custom		-	r
Curat taran Itan Davidantial fustam	NonPac	NDDBCC	OH Pustom			.
Sinart Javer Noil Residential Custom	NonDod	NDDGC	Out Custom			
Sinart saver non residential custom		ATTACA CO			•	,
Smart Saver Non Residential Custom	Nonkes	NKPRSC				'
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	-
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	-		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			•
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	,		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		'
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custem		-	1
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	-	•
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1		
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			4
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	-	•	,

Case No. 13-1129-EL-EEC Appendix A Page 14 of 20

•

-

-

-

-

-

Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	r	-	-
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•		,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	•
5mart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	.
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		1	
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		-	,
Smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom		•	
smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom	1	-	.
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	1	,
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom		,	
smart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom	•	•	
smart \$aver Non ResidentiaJ Custom	NonRes	NRPRSC	OH Custom			
imart \$aver Non Residential Custom	NonRes	NRPRSC	OH Custom			
Smart Saver Non Residential Custom	NonRes	NRPRSC	OH Custom			-
Smart Saver Nan Residential Custom	NonRes	NRPRSC Total		2.781	74 904 197	7 170
smärt Saver Non Residential Custom Total 🦿 👘	いることであるが	ころのが言いていたのであった	1. 日本語語語が、1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A	24 904 197	Sec. 6. 16 . 1. 7.379
Smart Saver Non Residential Prescriptive	NonRes	INRES	Reverace Reach-in Controller			
smart Saver Non Residential Prescriptive	NonRes	NRFS	ECM (Tase Motors	40	465.177	1.223
smart Saver Non Residential Prescriptive	NonRes	NRFS	ECM Cooler and Freezer Motors - ECM replacing PSC	72	856.010	456
tmart Caver Non Residential Prescriptive	NonRec	NEFC	Anti-curast Hastar Controls	4	1 108 200	670
cmart Saver Non Residential Prescriptive	NonRes	NBFS	fundertien freeder vonderte		1.540CT1	
imart Caver Non Recidential Prescrimtive	NonDec	NDEC	Friter			
iment Seven New Desidential Lescupture	NonDae	NDEC	L1951 Holdmer Cabinat Gull Size Inculated			
but wat hou heatenad () taking a func-	NonDec	NDEC			-	•
	NORKES	NKrS	Automing Labinet Hair Size Instituted			•
smart saver non kesidential Prescriptive	NonKes	NKFS	Icemaker (100 to 500 lbs_day)		639	
smart Saver Non Residential Prescriptive	NonRes	NRFS	Icemaker (500 to 1000 lbs_day)	-	r	1
smart Saver Non Residential Prescriptive	NonRes	NRFS	[cemaker (> 1000 lbs_day]	0	4,118	e
Smart Saver Non Residential Prescriptive	NonRes	NRFS	Night covers for displays	r	,	•
Smart Saver Non Residential Prescriptive	NonRes	NRFS	Solid Door Reach-in Freezer (21 to 48 cu ft) Avg 30	,		
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	Solid Door Reach-in Freezer (Greater Than 48cu ft) Avg 63		,	
Smart Saver Non Residential Prescriptive	NonRes	NRFS	Solid Door Reach-in Refrig (21 to 48 cu ft) Avg 30		•	•
Smart Saver Non Residential Prescriptive	NonRes	NRFS	Solid Door Reach-in Refrig (Greater Than 48cu ft) Avg 63	a	1	
smart Saver Non Residential Prescriptive	NonRes	NRFS	Solid Door Reach-in Refrig (Less Than 20 cu ft) Avg 12			
smart \$aver Non Residential Prescriptive	NonRes	NRFS	Steamer	-		,
smart Saver Non Residential Prescriptive	NonRes	NRFS	Vending Equipment Controller	1	6,878	80
Smart Saver Non Residential Prescriptive	NonRes	NRFS	Steamer_5 pan	,		,
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	[Combination Oven (90 lbs_hr]	4	19,692	ţ,
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Glass Door Freezers 30 to 50ft3 - var	1	12,393	3
Smart Saver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Glass Door Refrigerators 30 to 50ft3 - var	0	1.555	2
Smart Saver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Freezers < 15ft3 - var	0	635	1
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Freezers 15 to 30 ft3 • var		1	
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Freezers 30 to 50ft3 - var	-	-	
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Refrigerators < 15ft3 - var	0	577	2
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Refrigerators 15 to 30 ft3 - var	0	502	1
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Refrigerators 30 to 50ft3 - var		1	т
Smart \$aver Non Residential Prescriptive	NonRes	NRFS	ENERGY STAR Commercial Solid Door Refrigerators more than 50ft3 - var	0	1.210	

Case No. (3-1129-EL-EEC Appendix A Page 15 of 20

		1				0000
Smart Saver Non Residential Prescriptive	NonRes	NRFS Total		123	£80//96/2	2/5/2
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 3.08, IPLV = 4.00 per ton	14	35,655	- 26
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 3.08, IPLV = 5.22 per ton	41	131,024	244
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP 135,000 - 240,000 per ton	•	1	•
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	HP 65,000 - 135,000 per ton	2	2,343	20
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	HP < 65,000 1 Ph per ton	1	1,661	14
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP < 65,000 3 Ph per ton	•		1
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled Cent Chiller < 150 ton 0.63 kW_ton with 0.38 kW_ton IPLV per ton	•		
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller > 300 ton 0.58 kW ton with 0.35 kW ton IPLV per ton	-	-	
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water-cooled screw chiller 150 - 300 ton 0.72 kW_ton w/0.57 kW_ton iPLV per ton	2	11,390	156
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-cooled screw chiller < 150 ton 0.71 kW ton with 0.53 kW ton IPLV per ton	•	•	
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water-cooled screw chiller < 150 ton 0.79 kW_ton with 0.55 kW_ton IPLV per ton			•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water Cooled Chiller Tune Up per ton	1,544	3,265,092	76,400
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Guest Room Energy Management, Electric Heating	95	554,680	795
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	High Efficiency Commercial Electric Water Heater 4.5 kW EF 0.93			-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	SAW Chilled Water EE Cooled Chillers 150 - 300 ton			
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	SAW Chilled Water EE Cooled Chillers greater than 300 ton		•	•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC 135,000 - 240.000	-		•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC 240.000 - 760.000	•		
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC 65.000 - 135.000		,	,
Smart Saver Non Residential Prescriptive	NonRes	NEHVAC	AC oreater than 760.000			
Smart Saver Non Paridential Prescriptive	NonRec	NRHVAC	AC less than 65 000 1 Ph			
Current Courter New Desidential Proceedinging	NonDer	NPUWAC	Ar Jace than 65 000 2 Dh			
Sinart Saver Null Kestueotial Presciptuve	NonDec	NRUVAC	AL 1558 LIAGI 02,000 J LI			
	NULLES	NULLAU				
Smart Saver Non Residential Prescriptive	NonKes	NKHVAC	SAW Linited Water Reset Air Cooled JUU-200 tons		•	•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Energy star Window AC over 14,000 Btu hr	•		.
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	HP 135,000 - 240,000	•	•	,
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP 65,000 - 135,000	_	1	-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP greater than 240,000			
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP less than 65,000 1 Ph	•	•	
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	HP less than 65,000 3 Ph	-	•	•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Packaged Terminal AC	1	1,057	26
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Setback Programmable Thermostat	(0)	173,295	140
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Thermal Storage Irg C&I			
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Window Film	15	172,889	39,541
Smart Saver Non Residential Prescriptive	NonRes	INPLAC	Air-Cooled Screw Chiller COP = 3108, IPLV = 3180	•	•	-
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 3:08, IPLV = 4:00			•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Energy Star Room AC over 14,000 Btu hr	0	453	2
Smart Saver Non Residential Prescriptive	NonRes	INRRVAC	Thermal Storage	155		1
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller 150 - 300 ton 0157 kW ton with 014 kW ton IPLV		•	-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller 150 - 300 ton 0:63 kW ton with 0:45 kW ton IPLV		-	
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller greater than 300 ton 0!52 kW_ton with 0!31 kW_ton IPL	•	-	-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller greater than 300 ton 0!52 kW ton with 0!37 kW ton IPL		•	•
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller greater than 300 ton 0!58 kW ton with 0!35 kW ton IPL	-		-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller greater than 300 ton 0158 kW ton with 0141 kW ton IPL			
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-Cooled cent Chiller greater than 300 ton 0!58 kW_ton with 0!47 kW_ton FPL	•	•	-
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Water-cooled screw chiller less than 150 ton 0:71 kW ton with 0!53 kW ton IPLV			•
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	BONUS Air Cooled Chiller Tun Up	•	-	-
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	BONUS Water Cooled Chiller Tune Up	,	•	,
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	BONUS Refrigeration System Tune Up		-	
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Air Cooled Chiller Tune Up	•	•	•

Case No. 13-1129-EL-EEC Appendix A Page 16 of 20

--

Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 2.86, IPLV = 4.33	•	-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Water Cooled Chiller Tune Up			
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC 135,000 - 240,000 per ton	37	29,839	417
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC 240,000 - 760,000 per ton	41	32,861	450
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	AC 65,000 - 135,000 per ton	33	26,112	446
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	AC > 760,000 per ton	16	12,562	225
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	AC < 65,000 1 Ph per ton	2	1,702	28
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	AC < 65,000 3 Ph per ton	6	4,915	108
Smart Saver Non Residential Prescriptive	NonRes	NRHVAC	Air Cooled Chiller Tune Up per ton	339	717,898	8,959
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 2.86, IPLY = 3.48 per ton	125	265,202	1,530
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Cooled Screw Chiller COP = 2.86, IPLV = 3.97 per ton	30	64,450	283
Smart \$aver Non Residential Prescriptive	NonRes	NRHVAC	Air-Coated Screw Chiller COP = 2.86, IPLV = 4.33 per ton	188	397,956	965
Smart \$aver Non Résidential Prescriptive	NonRes	NRHVAC Total		2,749	5,903,036	130,845
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	SAW Occupancy Sensors under 500 Watts	•	-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	SAW Occupancy Sensors over 500 Watts	•	•	•
Smart \$aver Non Residential Prescriptive	NonRes	INRLTG	SAW Switching Controls Multilevel Lighting	,		-
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Ceramic Metal Halide Integral Ballast	0	1,965	6
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	CFL Reflector Flood	30	146,986	606
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	CFL Screw high wattage	21	103,238	210
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	CFL Screw in, Specialty	54	265,771	1,749
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Delamping T12 2ft to T-8	0	2,037	21
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	[Delamping T12 3ft to T-8	2	11,788	81
Smart \$aver Non Residential Prescriptive	NonRes	NRLTC	Delamping T12 4ft to T-8	0	1,662	6
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	Exterior HID replacement above 175W to 250W HID retrofit		265,654	602
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	Exterior HID replacement above 250W to 400W HID retrofit		566,653	748
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Exterior HID replacement above 400W HID retrofit		377,659	277
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Exterior HID replacement to 175W HID retrofit		160,658	537
Smart \$aver Non Residential Prescriptive	NonRes	INRLTG	Garage HID replacement above 175W to 250W HID retrofit	0	3,023	3
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Garage HID replacement above 250W to 400W HID retrofit	1	5,196	3
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	Garage HID replacement to 175W HID retrofit	63	813,857	1,192
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	LED Downlight	20	97,422	379
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	LED Lamps	618	3,042,954	13,042
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	LW HPTB 4ft 1 lamp, Replace T12	9	42,913	708
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	LW HPTB 4ft Z lamp, Replace T12	140	688,677	8,605
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	LW HPTB 4ft 3 lamp, Replace T12	226	1,112,597	7,644
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	LW HPT8 4ft 4 lamp, Replace T12	248	1,218,324	7,385
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	T-5 High Output 1 Lamp with Electronic Ballast (replacing T-12 fixture)		•	,
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	T-5 4 ft 1 Lamp with Electronic Ballast (replacing T-12 fixture)	-		
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	T-5 4 ft 2 Lamp with Electronic Ballast (replacing T-12 fixture)	•		'
Smart \$aver Non Residential Prescriptive	NonRes	INRLTG	T-5 High Output 2 Lamp with Electronic Ballast (replacing T-12 fixture)		•	,
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	T-5 4 ft 3 Lamp with Electronic Ballast (replacing T-12 fixture)	,	· ·	•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	T-5 High Output 3 Lamp with Electronic Bailast (replacing T-12 fixture)			•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	T-5 4 ft 4 Lamp with Electronic Ballast (replacing T-12 fixture)	•	1	•
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	T-5 High Output 4 Lamp with Electronic Ballast (replacing T-12 fixture)	•	1.	
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	High Bay 2L T-5 High Output	,		•
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	High Bay 3L T-5 High Output	•	1	-
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	High Bay 4L T-5 High Output	•		
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	High Bay 6L T-5 High Output	•	. 1	-
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	High Bay 8L T-5 High Output	•	•	•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	High Bay T8 4ft Fluorescent 4 Lamp (F32 Watt T8)	1	*	
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	High Bav T8 4ft Fhuorescent 6 Lamp (F32 Watt T8)	•	,	

. . .

Case No. 13-1129-EL-EEC Appendix A Page 20 of 20

~

-

t Saver® Residential	Res	SSHP	Smart Saver - Heat Pump	689	4,242,598	1,511
t Saver® Residential	Res	SSHP Total		689	4,242,598	1,511
saver® Residential Total	A second s	(a) A her defines a set of a state of a set o		10,092	82,838,767	1,489,758
[Teta]				45,710,19	258,649,700.30	2,329,447.92

*Impacts applied January – September based on prior EM&V report effective Jan 2011 **Impacts applied October - December based on current EM&V report effective October 2012.

Case No. 13-1129-EL-EEC Appendix A Page 17 of 20

,	-	-	BUNUS I-5 4 Lamp with Electronic patiast (replacing 1-14 intuite)	NKLIC	NOUKES	Smart Saver Non Residential Prescriptive
		,	BONUS T-5.3 Lamp with Electronic Ballast (replacing T-12 fixture)	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•		-	BONUS T-5 2 Lamp with Electronic Ballast (replacing T-12 fixture)	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
137	45,176	4	LED Case lighting sensor control	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
2,030	996,492	84	LED Case lighting	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
6,165	1,336,121	272	Compact Fluorescent Screw in	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
680	295,111	60	Compact Fluorescent Fixture	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
,			2 High Pay VE 1 2 High VII-PULL VERMIN, 20071 100 100000 HID	NRLTG	NonRes	Summer Cavar Non Residential Prescrintiae
2-30			2 High Bay 6L T-5 High Output replacing 1000W HID	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
1530	456.827	a .	1.0 tuga Output o to a taup	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
, ag	12120		T-9 High Output 9 ft 1 taitup	NULTO	NonBee	Salart Saver Non Residential Frescriptive Senart Canver Non Decidential Procerintiae
400	14,704	2	1-0 00. 4 Iamp T-8 High Outwire 8 ft 1 1 amn	NRL JU	NonRes	Smart taver non kesidenual Prescriptive Smort Cover Non Decidential Prescriptive
5 1	707	> •	I-9 Utr I lamp	NKLTG	Nonkes	Smart Saver Non Residential Prescriptive
7,164	555,804	115	T-8 4ft 4 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
2,523	159,113	32	T-8 4ft 3 lamp	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
4,793	150,881	31	T-8 4ft 2 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
325	10,231	2	T-8 4ft 1 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
			T-8 3ft 4 lamp	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
28	3,314		T-8 3ft 2 lamp	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
287	19,478	4	T-8 3ft 1 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
,			T-9 410.9 14119	NRLTG	NonRes	Suart saver Non Residential Prescriptive Smart Saver Non Residential Prescriptive
442	454/LC	10	11-8 21tt 2 tamp	NKLTG	Nonkes	Smart Saver Non Residential Prescriptive
49	2,377	0	T-8 2ft 1 lamp	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
-		•	High Performance T8 4ft 4 lamp, replacing T12 High Output 8ft 2 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•	,	•	High Performance T8 4ft 2 lamp, replacing T12 High Output 8ft 1 lamp	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
1,591	48,225	10	High Performance T8 4ft 4 lamp, replacing T12 8ft 2 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
72	5,278	T	High Performance T8 4ft 2 lamp, replacing T12 8ft 1 lamp	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•	,	•	Pulse Start Metal Halide 320W retrofit only	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•			Plug Load Occupancy Sensors Document Stations	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
			Occupancy Sensors under 500 Watts	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
•		•	Occupancy Sensors over 500 Watts	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
•			High Performance Low Watt T8 4ft 2 lamp, replacing standard T8	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
			High Performance Low Watt 78 4ft 4 Jamp, replacing standard 78	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
			High Performance Low Watt 78 4ft 3 lamp, replacing standard T8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
		•	High Performance Low Watt 78 4ft 1 lamp, replacing standard 78	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
(846)	(16,727)	(E)	Low Watt T8 lamps 2-4ft, replacing standard 32 Watt T8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
			Light Tube	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
266	42,812	13	LED Pedestrian Signals	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
1,140	278,703	38	LED Exit Signs Electronic Fixtures (Retrofit Only)	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
,			High Performance T8 4ft 4 lamp, replacing standard T8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•	1	•	High Performance T8 4ft 4 lamp, replacing T12-HPT8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
•		•	High Performance T8 4ft 3 lamp, replacing standard T8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
1	,		High Performance T8 4ft 3 lamp, replacing T12-HPT8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
			High Performance T8 4ft 2 lamp, replacing standard T8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
		•	High Performance T8 4ft 2 lamp, replacing T12-HPT8	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
-			High Performance T8 4ft 1 lamp, replacing standard T8	NRLTG	NonRes	Smart \$aver Non Residential Prescriptive
		•	High Performance T8 4ft 1 lamp, replacing T12-HPT8	NRLTG	NonRes	Smart saver Non Residential Prescriptive
		•	High Bay T8 4ft Fluorescent 8 Lamp (F32 Watt T8)	NRLTG	NonRes	Smart Saver Non Residential Prescriptive
		-	High Bay T8 4ft Fluorescent 3 Lamp (F32 Watt T8)	NRLTG	NonRes	Smart Saver Non Residential Prescriptive

Case No. 13-1129-EL-EEC Appendix A Page 18 of 20

~

~

--

Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS T-5 High Output 2 Lamp with Electronic Ballast (replacing T-12 fixture)	0	2,212	76
Smart saver Non Residential Prescriptive	NonRes	NRLTG	BONUS T-5 High Output 3 Lamp with Electronic Ballast (replacing T-12 fixture)	0	102	9
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS T-5 High Output 4 Lamp with Electronic Ballast (replacing T-12 fixture)	0	342	9
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS 42W 8 Lamp High Bay Compact Fluorescent		•	•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay 2L T-5 High Output	2	12,492	30
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay 3L T-5 High Output	2	13,138	27
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay 4L T-5 High Output	353	1,908,002	1,999
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay 6L T-5 High Output	146	787,856	1,958
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay BL T-5 High Output	185	999,231	353
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay Fluorescent 3 Lamp (F32 Watt T8)	4	17,513	44
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay Fluorescent 4 Lamp (F32 Watt T8)	182	983,300	1,480
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay Fluorescent 6 Lamp (F32 Watt T8)	1,995	10,787,906	10,386
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Bay Fluorescent 8 Lamp (F32 Watt T8)	112	605,673	863
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS Occupancy Sensors under 500 Watts	1,017	4,901,893	9,366
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS Occupancy Sensors over 500 Watts	172	843,827	644
Smart Saver Non Residential Prescriptive	NonRes	INRLTG	BONUS Pulse Start Metal Halide (retrofit only)	42	208,307	462
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS 2 High Bay 6L T-5 High Output replacing 1000W HID	12	61,122	36
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS 2 High Bay Fluorescent 8LF32T8 - Replacing 1000W HID	m	14,028	9
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 1 lamp, replacing T12-HPT8	0	2,336	41
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 2 lamp, replacing T12-HPT8	89	335,507	4,379
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 3 lamp, replacing T12-HPT8	18	88,375	689
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 4 lamp, replacing T12-HPT8	53	259,112	1,775
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 1 lamp, replacing standard T8		-	
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 2 lamp, replacing standard T8	1	3,882	95
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T0 4ft 3 lamp, replacing standard T8	0	1,200	26
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T8 4ft 4 lamp, replacing standard T8	0	1,919	28
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance Low Watt T8 4ft 1 lamp, replacing standard T8	4	21,121	622
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance Low Watt T8 4ft 2 lamp, replacing standard T8	68	332,098	6,846
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance Low Watt TB 4ft 3 lamp, replacing standard TB	21	102,176	1,239
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance Low Watt TB 4ft 4 lamp, replacing standard T8	58	285,878	3,274
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T-8 4ft 2 lamp replacing T-12 8ft 1 lamp	-	1	
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T-8 4ft 4 lamp replacing T-12 8ft 2 lamp	-	-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS High Performance T-8 4ft 2 lamp replacing T-12 High Output 8ft 1 lamp	18	85,886	533
Smart \$aver Non Residential Prescriptive	NonRes	NRL'TG	BONUS High Performance T-8 4ft 4 lamp replacing T-12 High Output 8ft 2 lamp	178	877,571	2,969
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	BONUS Low Watt 78 lamps replacing standard 32 Watt T-8's	599	2,998,176	151,642
Smart \$aver Non Residential Prescriptive	NonRes	NRLTG	CFL12PK_MIXBC_22	6	31,209	12
Smart Saver Non Residential Prescriptive	NonRes	NRLTG	Central Lighting Controls	,	,	
Smart Sayer Non Residential Prescriptive	NonRes	NRLTG Total		7,463	40,970,405	274,639
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	VFD HVAC Fan	289	1,844,300	1,389
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	VFD HVAC Pump	178	2,042,658	540
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	VFD Process Pump 1-50 HP	67	301,621	310
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	125-250 Horse Power Motors - Incentives per participant	•		,
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	1-5 Horse Power Motors - Incentives per participant	•	•	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	25-100 Horse Power Motors - Incentives per participant			,
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	715-20 Horse Power Motors - Incentives per participant		-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 5 Horse Power Pumps	•	1	,
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 10 Horse Power - Process Pumping	,	•	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 10 Horse Power Pumps			•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 15 Horse Power - Process Pumping	,		•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 15 Horse Power Pumps		-	
Smart taver Non Roeldential Prescriptive	NonRes	NRP&M	Variable Fragmence Drive 2 Horse Power Pumps	,	1	

--

- • ·

Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 20 Horse Power - Process Pumping	•	•	-
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 20 Horse Power Pumps	,		'
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 25 Horse Power - Process Pumping	1		,
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 25 Horse Power Pumps	-		
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 3 Horse Power Pumps		-	•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 30 Horse Power - Process Pumping	•	1	
Smart saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 30 Horse Power Pumps			•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 40 Horse Power - Process Pumping	• • • • • • • • • • • • • • • • • • • •	-	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 40 Horse Power Pumps	-		'
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 5 Horse Power - Process Pumping	•	1	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 50 Horse Power Pumps	-		•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 715 Horse Power - Process Pumping			-
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	Variable Frequency Drive 715 Horse Power Pumps	•	8	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	1.5 Horse Power High Efficiency Pumps		3	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	10 Horse Power High Efficiency Pumps	•	-	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	15 Horse Power High Efficiency Pumps	•	r	-
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	20 Horse Power High Efficiency Pumps	,	ł	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	3 Horse Power High Efficiency Pumps	0	1,290	2
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	5 Horse Power High Efficiency Pumps	0	2,149	2
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	7.5 Horse Power High Efficiency Pumps		-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 2 Horse Power Pumps		•	
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 3 Horse Power Pumps	•	•	
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 5 Horse Power Pumps	•	-	-
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 715 Horse Power Pumps	•	4	•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 10 Horse Power Pumps	•	1	
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 15 Horse Power Pumps	•		•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 20 Horse Power Pumps			
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 25 Horse Power Pumps		-	•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 30 Horse Power Pumps	•	•	-
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 40 Horse Power Pumps	•	-	-
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 50 Horse Power Pumps	1		•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 5 Horse Power - Process Pumping	•	-	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 10 Horse Power - Process Pumping		÷	,
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 15 Horse Power - Process Pumping			•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 30 Horse Power - Process Pumping	•	1	•
Smart Saver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 40 Horse Power - Process Pumping	-	r	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M	BONUS Variable Frequency Drive 50 Horse Power - Process Pumping	1	1	•
Smart \$aver Non Residential Prescriptive	NonRes	NRP&M Total		535	4,192,019	2,243
Smart \$aver Non Residential Prescriptive	NonRes	NRPROC	VSD Air Compressors	140	580,813	864
Smart Saver Non Residential Prescriptive	NonRes	NRPROC	Barrel Wraps (Inj Mold & Extruders)		7	,
Smart Saver Non Residential Prescriptive	NonRes	NRPROC	BONUS PC Network Energy Management	-		· [
Smart \$aver Non Residential Prescriptive	NonRes	NRPROC Total		140	580,813	864
Smart Saver Non Residential Prescriptive Total				11,010	54,213,957	410,963
Smart Saver® Residential	Res	RCFL	Smart Saver - RCFL Promo	-	-	
Smart Saver® Residential	Res	RCFL	RCFL Opt-In Free CFLs [Jan-Sept]*	7,058	63,692,277	1,127,224
Smart Saver® Residential	Res	RCPL	RCFL Opt-In Free CFLs (Oct-Dec)**	1,398	12,620,797	343,157
Smart \$aver@ Residential	Res	RCFL Total		8,456	76,313,074	1,470,381
Smart \$aver@ Residential	Res	RCFLPM	Property Manager 13WCFL	72	648,252	15,341
Smart \$aver@ Residential	Res	RCFLPM Total		72	648,252	15,341
Smart \$aver@ Residential	Res	SSAC	Smart Saver - Central Air Conditioner	875	1,634,843	2,525
Smart \$aver@ Residential	Res	SSAC Total		875	1,634,843	2,525

Case No. 13-1129-EL-EEC Appendix A Page 19 of 20

D

TABLE OF CONTENTS

OVERALL EVALUATION APPROACH	3
Billing Analysis	3
Engineering Estimates	1
Impact Analysis Reconciliation	5
Process Evaluations	5
NET TO GROSS APPROACHES	i
REPORTING	5

0

Evaluation Objectives

This section provides an overview of the Research Questions that will be addressed in each of the following evaluation components.

- a) Impact Evaluation Research Questions
- b) Process Evaluation Research Questions
- c) Additional Research Questions (if needed)

Impact Evaluation Research Questions

- 1. What are the per-unit energy savings?
- 2. What are the per-home energy savings?
- 3. What are the demand savings (coincident and non-coincident) by measure?
- 4. What is the common practice for normal replacement measures not covered by code?

Process Evaluation Research Questions

- 1. Are the program management and operations efficient and effective?
- 2. Are program participants satisfied with the program?
- 3. Is the program targeting, marketing and outreach effective?
- 4. What are the reasons for participating and barriers to participation?
- 5. Are the incentive/rebate levels and effective and influential?
- 6. Are vendors and stakeholders satisfied with the program?
- 7. What are the evaluation contractor recommendations for improvements?
- 8. What is the level of freeridership and spillover associated with this program?

Additional Research Questions (if needed)

There are no plans for market assessments, baseline research, or non-energy benefits research at this time. There are a few program evaluations that include cross-cutting evaluation activities to determine if a certain program leads to higher levels of participation in other Duke Energy programs.

- 1. Does this program lead to higher levels of participation in other programs?
- 2. What lessons can be learned from the way rate payers access the variety of Duke Energy web sites.

Overall Evaluation Approach

Billing Analysis

For programs that are to be evaluated using a billing data analysis, the standard procedure that will be used involves estimating a fixed-effect panel model. This model uses data both across households (i.e., cross-sectional) and over time (i.e., time-series). With these types of data, it becomes possible to control, simultaneously, for differences across households as well as differences across periods in time. The fixed-effect refers to the model specification aspect that differences across homes that do not vary over the estimation period (such as square footage, heating system, etc.) can be explained, in large part, by customer-specific intercept terms.

In the model, the dependent variable is the customer's monthly energy usage obtained from billing data normalized by number of days in the month (to account for differences in days across months). These data will span both the pre- and post-participation period for the customer. Because the consumption data in the panel model include months before and after the installation of measures through the program, the period of program participation (or the participation window) may be defined specifically for each customer. This feature of the panel model allows for the pre-installation months of consumption to effectively act as controls for post-participation months. In addition, this model specification, unlike annual pre/post-participation models such as annual change models, does not require a full year of past data, and it is preferable if all do). Effectively, the pre-participation data for participants are used as the control group (i.e., used to estimate the baseline), thus eliminating the need for a non-participant group. Note that this approach requires a variation in the date of participation, so it is not appropriate for programs like MyHER, in which all customers have the same treatment date. In that case, the billing data analysis will use the prior selected control group.

The fixed effects model can be viewed as a type of differencing model in which all characteristics of the home, which (1) are independent of time and (2) determine the level of energy consumption, are captured within the customer-specific constant terms. In other words, differences in customer characteristics that cause variation in the level of energy consumption, such as building size and structure, are captured by constant terms representing each unique household.

Algebraically, the fixed-effect panel data model is described as follows:

$$y_{ii} = \alpha_i + \lambda_i + \beta x_{ii} + \delta \cdot Part_{ii} + \varepsilon_{ii}$$
(1)

where:

<i>Y</i> _{it}	=	energy	consumption	for	customer	i dı	uring n	nonth t
------------------------	---	--------	-------------	-----	----------	------	---------	---------

 α_i = constant term for customer *i*

- λ_t = monthly indicator variable for time *t*
- β = vector of coefficients

x = vector of variables that represent non-program factors causing changes in energy consumption for site *i* during month *t* (specifically weather terms)

 δ = estimated program impact

 $Part_{it}$ = an indicator variable that equals 1 if site *i* was a participant in the program during month *t*

 $\varepsilon_{it} =$ error term for site *i* during month *t*.

With this specification, the weather data and the monthly indicator variables capture the effect of those non-program factors that vary month to month and affect energy use for each customer.

Engineering Estimates

Engineering estimates will be developed using a combination of engineering algorithms and building energy simulation modeling. The engineering methods and data collection strategies are designed to follow the International Measurement and Verification Protocol (IPMVP).

Engineering Algorithms

Engineering algorithms for simple measures such as lighting follow the basic form:

kWh = units x (Watts_{base} – Watts_{ee}) / 1000 x hours x (1+WHF_e)

 $kW = units x (Watts_{base} - Watts_{ee}) / 1000 x (1+WHF_d) x CF$

where:

For some measures, unit energy savings will be derived from building energy simulation models:

 $\Delta kWh = units \times (\Delta kWh/unit)$ $\Delta kW_s = units \times (\Delta kW/unit) \times CF_s$

where:

ΔkW	= gross coincident demand savings			
∆kWh	= gross annual energy savings			
units	= quantity of measures installed			
CF	= coincidence factor			
∆kW/unit	= electricity demand savings per unit derived from simulation modeling			

 $\Delta kWh/unit$ = electricity consumption savings per unit derived from simulation modeling

Building Energy Simulation Modeling

Building energy simulations will be used to estimate savings of individual projects, or to develop parameters used in engineering algorithms. The DOE-2.2 building energy simulation program will be used. When developing engineering parameters, the simulations will be conducted using a set of prototypical building models. The prototypical simulation models will be derived from the residential and commercial building prototypes used in the California Database for Energy Efficiency Resources (DEER) study, with adjustments make for local building practices and climate. Simulations will be driven by the TMY3 long-term average weather data for Covington, KY (Cincinnati Airport).

Building specific models will be developed for selected sites in the Nonresidential Smart \$aver Custom program, following the IPMVP Option D Calibrated Simulation Model approach. The models will be calibrated to a combination of measure performance and billing data.

Impact Analysis Reconciliation

For programs that involve a billing data analysis as well as an engineering analysis to determine program impacts, a comparison will between the results of the two will be made to determine if there is a statistically significant difference between them. If there is, then the model in equation will change the participation variable from an indicator variable to the engineering-based savings for that customer (i.e., a statistically-adjusted engineering or SAE model). This will provide further information on the difference between the estimates. Since the billing data use all participants (rather than a sample as is usually the case with the engineering analysis), and uses actual usage to derive impacts, for cases where there are statistically significant differences, the billing analysis is often assumed to provide the most accurate estimate of the effect of the program.

Since the billing data are based upon monthly energy use (kWh), it is not possible to derive the demand (kW) savings from this analysis. To develop these estimates, the ratio of the kW to kWh savings found in the engineering analysis will be applied to the kWh estimates from the billing analysis to get a statistically adjusted estimate of demand. Billing analysis also provides the team with a means to assess take-back effects.

Process Evaluations

The process evaluation efforts will be somewhat different for each program. However, to a certain extent these studies will follow a similar theme and approach. The process evaluation will consist of program-specific efforts designed to address each program's researchable issues, but will, in general, include the following efforts:

1. Reviewing program materials and methods of operation

- 2. Holding an evaluation project initiation meeting with Duke Energy to review all study objectives
- 3. Conducting interviews with program managers and implementers
- 4. Conducting interviews with trade allies, partners, key managers and implementers
- 5. Designing interview and survey instruments
- 6. Conducting surveys with participants and/or non-participants
- 7. Analyzing process evaluation data
- 8. Developing process evaluation reports

These activities are described below and apply to the evaluation efforts associated with the process evaluation for each program being assessed. During the planning process the specific researchable issues on which each study will focus will be established and the process evaluation plan will be designed to specifically address those issues.

1. Review program materials and methods of operation

Early in the evaluation process, the evaluation team will request program materials and begin a review of all available information to familiarize our team with the operations of the program. We like to gain as much knowledge as possible prior to launching the process evaluation field efforts. This includes reviewing all program-specific documents and incorporating this information with the verbal information obtained during discussions with Duke Energy and discussions with the program implementers.

Together, the review of the documents collected, linked with the verbal information obtained from managers, provides the foundation for a number of activities, including: 1) identification of researchable issues for the process evaluation, 2) obtainment of information needed to start the development of interview and survey protocols and instruments, 3) identification of appropriate analytical methods. Typically we examine between 2 and 6 documents per program during this task.

2. Hold an evaluation project initiation meeting to review study objectives

The evaluation team will meet Duke Energy to review the evaluation efforts, finalize general evaluation plans, and develop program-specific plans. The project initiation meeting will be preceded by a conference call with the Duke Energy evaluation managers to review each project and discuss any desired refinements to the overall activities.

Through the initial scheduling process, we will work to identify key individuals that will serve as information sources. Typically these are the Duke Energy evaluation and program managers and others. These are often the same people who are responsible for cost-effective program operations and program delivery and interaction with the market. If possible, we will want to hear from several of these individuals during the initiation meeting, but we will follow up with all identified individuals as necessary.

During the project initiation meeting we will review the upcoming work in detail. We will discuss the programs design, operation, and timing. We will work with Duke Energy to identify researchable issues for each program with the program implementers (through follow up discussions as necessary) to reach an agreement on the issues that will be incorporated into each

program's evaluation. The researchable issues will be the dominant focus of the process evaluation efforts. Through this process, we will ensure that key researchable issues are not missed during the planning phase.

3. Conduct interviews with program managers and implementers

The evaluation team will also conduct formal interviews with program managers and implementers to obtain a detailed level of knowledge about each program. This is one of the most important tasks in the process evaluation effort. At this point in the study, the evaluation team will be familiar with the program's general program processes and the program managers. We will understand the general operational systems and procedures of the program, but will need additional information on the design and operations of these systems at a level of detail needed to conduct a process evaluation.

Through our formal interviews, we will explore the detailed implementation process associated with each program. We will also discuss intended program designs, operational procedures, marketing and outreach efforts, tracking and data handling systems, interactions with contractors, allies, and participants' application procedures. (Note that the California Evaluation Framework, which was developed under the guidance of Nick Hall at TMW, provides additional details on standard industry practices on the investigative nature of the process evaluation. To minimize the length of this write-up, we have not included all of this information here.)

To guide these interviews, the evaluation team will develop interview protocols that identify who will be interviewed, and each of the questions to be asked of each manager. This protocol will be provided to the managers prior to the interview.

While these interviews are primarily to serve as the initial program-level process evaluation information gathering task, it is also the time at which we will go over the program theories and logic models (if available) with the program managers to identify needed changes. The interview questions and the manager's responses will serve as one of the data sources for the process evaluation's analysis efforts. The responses will also help set the stage for the identification of the issues to be addressed during the interactions with the trade allies, contractors, participants and non-participants.

4. Conduct interviews with trade allies, partners, key managers and implementers For a few of the program evaluations, interviews will be conducted with a sample of partners, trade allies and program implementation staff (note that the specific programs and targeted groups will be identified in the program-by-program planning process). This task is where skilled process interviewers are required. These interviews will focus on the program's design, operations, operational conditions, the interaction between the ally, the program and the participant, the service stream and the activities in that stream, the influence of the program and the ally on the participants' decision to take actions, and other considerations. In addition, the interviews will focus on the interviewee's opinions about which parts of the program work best and least well, and what kind of recommendations are suggested by the interviewee.

We will work with Duke Energy to identify the population of key allies for the interview sample. The key ally sample will be a targeted sample drawn to get at allies that are most involved with

TecMarket Works

the program being evaluated. This allows us to identify a set of "must interview" allies that have been or are significantly involved in the program and who consequently should be high priority interview targets. If Duke Energy can identify a set of high-priority allies, we can identify these allies as interview targets. The remaining key allies not included in the interview sample will be put in the non-key ally sample and a random assignment of the non-key ally sample will be conducted to develop a priority list of sample targets for the ally survey. These approaches allow us to obtain a strong key ally sample and follow-up with a strong ally sample of the remaining key and non-key allies.

The interviews will follow a prescribed protocol that guides the interview to address the key researchable issues. The protocol and the questions to be asked will be developed by the evaluation team and reviewed by Duke Energy managers prior to field implementation. The interviews will be scheduled by the evaluation team to be convenient to the interviewee. The interviews may be recorded to preserve a record to support the analysis, but maintained as confidential information. Process evaluation results are typically confidential so that the interviewee will provide opinions and information that are objective and accurate, without concern that their comments will be linked to them as an individual. However, all issues, comments and concerns, as well as interviewee recommendations for program changes, are reported to Duke Energy.

5. Design interview and survey instruments

A separate interview or survey protocol and instrument will be drafted for each of the targeted programs and survey groups as appropriate for each program (allies, participants and non-participants). The protocols and instruments for the allies will focus on a wide range of design, management and operational issues. The surveys with participants will focus on the participation experience, the ability of the program to help the customer, program and program-component satisfaction, ability of the program to accomplish the reasons for participation, actions that would have been taken without the program, and services that the participants indicated to be of values. The development of the participant survey instruments will also be fed by the results of the program managers' interviews and the trade ally interviews and surveys. Typically these interviews and surveys identify a range of issues that need to be tested or assessed in the participant survey. The non-participant survey will focus on customer perceptions of the program, the value of the program, the ability of the program to understand and serve a customer need, program design and operational issues, and the reasons for non-participation. This survey will also explore program changes that can be expected to increase participation and satisfaction rates among the non-participants.

For each of these data collection efforts, Duke Energy managers will be given the opportunity to review and comment on the protocols and the interview and survey data collection instruments.

These instruments and protocols will be used to guide all data collection efforts. Our primary data collection approaches will employ in-depth interviews and surveys, linked to document and records reviews and analysis. All data collection efforts involving key managers or staff, contractors, customers and trade allies will be guided by protocols and instruments that will be reviewed by Duke Energy prior to their use. This is a critical step. This step identifies the information that will be collected to feed the process, analysis, and recommendation efforts.

8

6. Conduct surveys with participants and/or non-participants

In this task we will conduct the process surveys with the participants and non-participants as appropriate. All participant surveys will be coordinated with the impact evaluation team to make sure impact questions are included in the survey as needed. This is particularly important for evaluations that use engineering analysis and modeling approaches that must be calibrated to the participants' use conditions. In addition, all non-participant surveys will be coordinated with the any planned market assessment efforts to minimize data collection costs.

At the kick-off meeting we will discuss and confirm the contact standards in which the process or the impact evaluation can contact a participant. Typically, participants are given an option to participate in the evaluation effort (any part of it). In addition, we have employed a 3 to 5 contact attempt (at different times of the week and days of the week) standard for reaching participants before dropping a participant and adding another contact to the sample.

Participant sample sizes will be determined based on participation in the programs (as well as by measure, if needed). Generally, where ramp up of the program is slow, sample sizes are small. In general, however, participant sampling for process evaluation efforts will employ a 90% +/-10% level of precision at the program level, but may be expanded or contracted depending on the level of reliability needed for each program, the needs of the impact evaluation effort (specifically NTG estimates), and the available budget for that effort. The data collection approach for the participant is expected to be a random assignment approach across the programs based on downloads from the participant tracking records.

We may also conduct non-participant surveys. We will work with Duke Energy to augment this effort with any needed non-participant efforts, as necessitated by the researchable issues for the process evaluation effort. For non-participants we have used several sampling approaches in the past, including residential neighbor or neighborhood approaches, residential income-certified approaches, commercial business size and type matching approaches, marketing contact approaches or other approaches. When non-participant surveys are indicated, we will work with Duke Energy to identify the best approach for each program.

Surveys with participants will focus on a wide range of issues including their experiences with the program, their reasons for participation, their satisfaction with the program and the service components provided within the program. The survey will inquire about the most and least valuable parts of the program and inquire about their recommended changes. As noted above, surveys will also ask about actions taken and measure use conditions when energy impact estimates must be calibrated to participant use conditions.

Non-participant surveys focus attention on the reasons for non-participation and their perception of the needs for the services provided. These surveys also focus on marketing and outreach efforts and opportunities and ways that Duke Energy can motivate additional participation. When impact estimates need to be adjusted for non-participant considerations, these surveys also focus on actions they have taken on their own, and the measure use conditions associated with those actions. During the survey development process, Duke Energy managers will be given the opportunity to include additional questions in the participant and non-participant survey instruments. No surveys will be launched prior to the approval of the protocol.

7. Analyze process evaluation data

This task covers a wide range of analytical efforts employing analysis strategies and systems that the evaluation team has used successfully for over many years and on which the California Evaluation Protocols are based. It includes analysis of the following types of information consistent with the researchable issues identified for the assessment, and structuring the analysis in a way that allows a documentation of the program's structure and operation, an assessment of these conditions, and the development of recommendations to improve the program.

This assessment includes:

- ✓ Analysis of program materials, manager interviews, ally interviews and surveys, participant interviews and non-participant interviews to understand the organization and operations of the programs in order to identify strengths and weaknesses and make recommendations for program changes.
- ✓ Analysis of marketing materials (when requested) to determine their strengths and weaknesses and coverage to make recommendations on ways to improve the marketing efforts or materials.
- ✓ Analysis of ally interview and survey results to identify strengths and weaknesses in the relationships and operational conditions between the programs and the contractors and allies who help make the programs work well for their customers, the utility and themselves.
- ✓ Analysis of the participant information and survey results to identify drivers of satisfaction and their experiences with the programs from the view of the most important person in the chain of events: the customer who participates. This involves assessing a wide range of participant information and understanding their personal experiences and opinions about the programs, including ways that they think the program can be improved.
- ✓ Analysis of non-participant information to identify the barriers to participation and to assess the program's ability to satisfy customer needs. This analysis will result in the development of recommendations that can be expected to increase participation rates and strengthen program acceptance.

The primary purpose of the analysis efforts is to feed the development of actionable program change recommendations that can be expected to improve the performance and cost effectiveness of the programs.

Much of this analysis is basic statistical comparisons of data collected and the professional assessment of expressed opinions by managers, allies, participants and non-participants. For indepth statistical analysis we use SPSS and can covert output files to SAS or Excel or in other requested formats.

8. Develop Process Evaluation Reports

The evaluation team will deliver both a draft and final process evaluation write-up for each program. The draft report will be provided in time to be reviewed by Duke Energy and their consultant team, so that comments can be provided to the evaluation team. Following the receipt of comments, the report will be finalized into the draft final report. Once Duke Energy accepts the report, it will be made into a final report. As always, the evaluation team is open to other comments from key Ohio or program/portfolio-associated stakeholders including Commission contractors used to help oversee the evaluation efforts. We recognize that in many cases the regulatory body in the state will request to review draft reports and provide comments prior to the final draft report, and we will work with the Ohio Commission and their contractors to meet the needs of all stakeholders.

Present Evaluation Results

In this task key members of the research team may travel to Duke Energy and present the results of the study to Duke Energy managers and other information consumers. The presentations will typically consist of a PowerPoint slide show of the evaluation approach, key findings, and a review of the evaluation recommendations. Presentation locations and dates will be arranged by Duke Energy.

Net to Gross Approaches¹

Studies conducted by TecMarket Works prior to 2013 used standardized billing analysis techniques linked to net analysis adjustment methods to estimate net impacts for all measures without differentiating between low-cost standard consumable measures (part of normal purchase behaviors because first cost, product availability and transaction barriers are not significant) and measures with significant acquisition barriers. In the last year the field has differentiated analysis approaches associated with normal low-cost item purchase behavior measures (CFLs, aerators, shower heads, caulking, etc.) from products that have significant cost and other purchase barriers (furnaces, air conditioners, compressors, etc.). Impact analysis approaches associated with low-cost low-barrier products that have few if any significant purchase barriers can produce net savings directly from a pre-post participation billing analysis over participants that controls for weather and pre-existing (before the program) changes in market conditions over the evaluation period. In these approaches, the use of a rolling preprogram billing period, consisting of all participants' consumption before they enroll in a program, can be effectively used as a control group and as a result, that analysis produces net savings without identifying gross savings. For these analyses there is no need to adjust savings to account for freeriders. However, for large impact measures that are procured only a few times during a lifetime, the same participant-only analysis approach produces gross savings that have to be adjusted for freeriders. This advancement in the field of evaluation has resulted in the analysis used in this study and as a result, the results provided are net of freerider savings and also include impacts associated with short-term spillover.

¹ Note, it is not always necessary to conduct net to gross analysis when the evaluation uses approaches that produce net savings directly. For example, when energy impact analysis baselines are set to include the practice of freeriders or when quasi-experimental designed are used, the evaluation can produce net savings as the analysis output without identifying gross savings. See text for added information.
Prior to this change in the evaluation approach, impact evaluations employed four different strategies for estimating impacts. These are:

- 1. The Experimental Design Approach in which customers are randomly sorted into a test and control group. In this design savings are based on the difference between the consumption of these two groups over the same period of time. The mathematics of this approach is called the "difference of differences approach". This approach provides net savings because it segregates the two groups independently as a function of their random assignment. Only the test group receives exposure to the program, while the randomly assigned non-participants are used as a control group. When these two groups are compared, in a difference of differences approach, the findings are net savings because the savings are already adjusted for what would have happened without the program by subtracting out the savings from the control group. In this approach, subtracting or adding the differences in the energy use of the control group adjusts the gross savings (pre vs. post consumption of the test group) to compensate for the change in consumption of the non-program-exposed control group. This savings produced from this approach are net.
- 2. The Quasi-Experimental Approach is similar to the experimental design approach. However, the construction of the control group is not based on random assignment. In this approach the evaluation experts purposefully and systematically selects subjects to use as a control group. However, because this type of analysis uses a non-random approach to represent the control group, the term "control group" is not used because it can be confused with a random assignment approach. In the use of the quasiexperimental design the evaluation experts selects the comparison group so that it is as closely matched to the test group (participants) as possible. The term used to represent the group that is used to adjust savings for what would have occurred is the "comparison group". Assignments to the comparison group population are carefully considered by the evaluation expert in order to develop a comparison group that is as identical as possible to the test group, except for the participation in the program. The characteristics of the test group that are used for matching are typically demographic characteristics (age, housing type, location, income, etc.), energy use characteristics (amount of energy they use and when they use it) and in some cases psychographic characteristics (attitudes and behaviors). While the match is not as reliable as a true experimental design the results provided from this difference of differences approach are net savings. That is, the savings are already adjusted for what would have occurred without the program via the use of the matched comparison group and the use of the differences of differences analytical approach.
- 3. The Pre versus Post with Net Adjustment Approach is a simpler approach than the experimental or quasi-experimental approach in that the energy savings are based not on the use of the comparison or control groups, but instead are based on the difference between the pre-program and post-program periods of the test group. This approach is a differences approach in that gross savings are estimated as the difference between the pre and post program periods. To convert gross savings to net of freerider savings (what would have occurred without the program), the savings that would have been achieved

without the program are subtracted from the gross savings. The estimation of the savings that would have occurred without the program is typically calculated via the use of a freeridership battery of questions asked of the participants. These questions essentially get at what actions the participants would have taken without the program. Then the estimates of savings that would have occurred are then subtracted from the gross savings to provide net savings that are adjusted for freeridership.

4. The Engineering Based with Net Adjustment Approach is another standard energy savings estimation approach using an engineering estimation approach in which savings are estimated via the use of engineering calculations rather than billing or consumption records. In this approach, the actions taken are identified via interviews, surveys or inspections. Then a trained energy evaluation expert calculates the expected savings under the installation and use conditions of the participant's facilities. These are estimated savings based on known conditions about the energy use of the equipment that was going to be in use without the program and the consumption of the program-induced equipment. In this case the savings are gross and need to be adjusted by what the participant would have done without the program. As in the previous approach, the estimation of the savings that would have occurred without the program is typically calculated via the use of a freeridership battery of questions asked of the participants.

The approaches presented above are presented in descending order of their reliability. The approach with the highest level of reliability is the experimental design approach. The least reliable is the engineering based approach. The experimental design approach, when done well, is typically reliable to a couple of percent. The engineering approach, even when done well, is typically reliable to within 20% to 30%.

As stated previous, the latest approach for evaluation is more reliable than the pre versus post or the engineering approach, but is not as costly as the experimental or quasi experimental approaches, the field of evaluation developed the controlled fixed effects net billing analysis approach. This approach delivers net energy savings at a level of reliability that is similar to the experimental or quasi-experimental design but does not include the costs to form and use an independent control or comparison group:

5. The Controlled Fixed Effects Billing Analysis with and without Net Adjustment approach has been developed to provide savings estimates when a control or comparison group is not available or advisable because of cost considerations. In this approach, the participant's energy use data is used to econometrically model the energy savings for the participant by employing a rolling comparison time period using the time before customers participated in a program as the comparison period, forming a proxy comparison group. Because customers come into a program at a specific time, the time before that enrollment is grouped with other pre-program periods of all participants. Because the customer's pre-program period is used to control for normal energy changes over time at the population level, it is more reliable than the use of a comparison group. That is, the participants are exactly matched to the comparison group because they are the same individuals. Therefore, there is no selection bias because there is no selection into a control or comparison group. This strengthens the study. Because only the pre-program

energy use is used as the proxy comparison group, there is no program influence on that period of time that is used for the savings estimation. Because people come into the program at different periods of time, essentially providing a full analytical period (timeline) of non-participating energy consumption, the entire pre-program period can be used as the comparison group over the pre and post analytical program period. This analytical approach can also control for the effects of participating in other energy efficiency programs so that the savings achieved via multiple program participation is only counted once and credited to only one program. In cases in which there are multiple program participants, the savings associated with participants who have participated in multiple programs is subtracted from the savings associated with the typical installation in proportion of their occurrence in the participating population. A further benefit of this approach is that the analysis is conducted over the entire population of participants, thus eliminating any potential sampling error.

This approach has gained considerable use within the evaluation community and has been adopted as standard practice by several of the leading evaluation firms in the United States. The approach has also been peer reviewed within the evaluation community and accepted as one of the more reliable evaluation approaches that is not as reliable as the experimental design approach, but is probably more reliable than the quasi-experimental design because it reduces the bias associated with comparison group selection.

When this approach has been used in the past, typically net savings were estimated by conducting a freeridership questionnaire and then subtracting out the savings associated with freeridership. As an example, this is the approach that was used in the Duke Energy Home Energy House Call 2011 impact evaluation report. However, recent developments in the field of evaluation has indicated that when a program is assessing standard market consumable measures that are inexpensive and have low purchase barriers, there is no need to adjust for freeriders because their market practices are already in the pre-program billing data. These measures that are typically readily available in the market and typically cost under \$5 each do not rise to the level that they pose a significant financial or technical barrier once an adoption decision has been made. As a result, there is no need to adjust for freeriders when a program focuses on low-cost, readily available, easily replaced/installed standard measures. Thus the field of evaluation is now moving away from adjusting for freeriders for minor low-cost, readily available measures (CFLs, pipe wrap, aerators, shower heads, etc.) when a billing analysis approach is used that employs a rolling pre-program period as the comparison group. However, when the program offers measures that have significant adoption barriers, such as a high cost or technical uncertainty (air-conditioners, major Energy Star appliances, motors, chillers, pumps compressors, etc.), then this approach must also include a freerider analysis to estimate net effect. Because major measures are not a standard market consumable product, the savings from these measures would not typically be net savings from the use of a rolling comparison period consisting of the pre-program period for all enrolling participants.

TecMarket Works adopted the controlled fixed effects billing analysis with and without net adjustment approach as a standard practice in 2012. With this adoption, TecMarket Works acknowledges that the 2011 Home Energy House Call evaluation studies that subtracted the savings of self-expressed freeriders for minor measures essentially double-counted freerider

adjustments and provided a net savings estimate that is lower than what the program achieved. While that study was conducted using the industry's standard best-practice analysis approaches of 2011, the field has since changed in its acceptance of this practice and TecMarket Works agrees with this change for future evaluations. As with all fields, the field of energy efficiency program evaluation is evolving. Our field is establishing protocols that reflect improvements in the ability to estimate net energy impacts. As the evaluation field develops and adopts more reliable net energy analysis approaches, these approaches will be incorporated into our industry's protocols and standard practices. For example, the state of Indiana has (in 2012) adopted the approach that recognizes standard market operational practices (such as the pre-program period for participants) as the baselines for conducting energy impact analysis in which the results are net savings without the need for freerider adjustments. This protocol is included in the Indiana and Delaware² Evaluation Frameworks and is now being used as a standard practice in other states. TecMarket Works has abandoned the practice of adjusting minor or low-cost standard market products to account for freeriders when pre-program energy use practices are set as the net baseline analysis platform.

² The Delaware Evaluation Framework is pending final approval. When it is made public, it will be available at: <u>http://www.dnrec.delaware.gov/energy/information/otherinfo/Pages/Evaluation.aspx</u>.

Reporting

The report outline follows PUCO's Evaluation Report Template. TecMarket Works developed a report template that includes all of PUCO's required information. The outline of the report template is presented in the three images below, and will be modified accordingly for the type of evaluation and the methodologies therein.

Executive Summary

Key Findings and Recommendations

The key findings and recommendations identified through this evaluation are presented below.

Implementation Rates: Key Findings

Engineering Impact Estimates: Key Findings

Table 1. Summary of Program Savings by Measure

Measure	Measure Participation Ex Ante Ex An Count kWh kW impact impace		Ex Ante Per unit kW impact	Gross Ex Ante kWh Savings	Gross Ex Ante kW Savings
······					
••••• <u>•</u> ••••••••••••••••••••••••••••••					

Introduction and Purpose of Study

Summary Overview

Summary of the Evaluation

Evaluation Objectives

Researchable issues

Description of Program

Program Participation

Program	Participation Count for 2010						
Non-Residential Energy Assessments	20						

Methodology

Overview of the Evaluation Approach

Study Methodology

Data collection methods, sample sizes, and sampling methodology

Number of completes and sample disposition for each data collection effort

Expected and achieved precision

Description of baseline assumptions, methods and data sources

Description of measures and selection of methods by measure(s) or market(s)

Use of TRM values and explanation if TRM values not used

Threats to validity, sources of bias and how those were addressed

Evaluation Findings

Impact Evaluation

Process Evaluation

Market Analysis

Conclusions and Recommendations for Program Changes

Appendix A: Required Savings Tables

The required table showing measure-level participation counts and savings for each program is below. Also include tables showing calculations done to achieve Adjusted Gross Savings for each program.

Required tables will include the following (see Excel file for details):

1. Participation counts and ex ante savings estimates at the measure level for each program

- 2. Gross savings calculations at the measure level for each program.
 - At a minimum, Gross Verified Savings must be reported.
 - If additional adjustments are made, Adjusted Gross Savings can be reported using Option A, B, C only.

Measure	Participation Count	Verified Per unit kWh impact	Verified Per unit kWh impact	Gross Verified kWh Savings	Gross Verified kW Savings
an mar an					
			·····		
			:		

Case No. 13-1129-EL-EEC Appendix D Page 1 of 339

Final Report Evaluation of the 2009 – 2011 Smart **\$aver** Non-Residential Custom Incentive Program in Ohio

Results of an Impact Evaluation

Prep**ared** for Duke Energy

139 East Fourth Street Cincinnati, OH 45201

September 13, 2012

Submitted by

John Bates Architectural Energy Corporation Pete Jacobs BuildingMetrics, Inc. Nick Hall TecMarket Works 165 West Netherwood Road 2nd Floor, Suite A Oregon; Wisconsin 53575

de la

Table of Contents

EXECUTIVE SUMMARY	
KEY FINDINGS AND RECOMMENDATIONS Engineering Impact Estimates: Key Findings	
INTRODUCTION AND PURPOSE OF STUDY	7
Summary of the Evaluation Researchable Issues	
DESCRIPTION OF PROGRAM	
METHODOLOGY	
OVERVIEW OF THE EVALUATION APPROACH	
Data collection methods, sample sizes, and sampling methodology Number of completes and sample disposition for each data collection effort Expected and achieved precision	
Description of baseline assumptions, methods and data sources Description of measures and selection of methods by measure(s) or market(s)	
Threats to validity, sources of bias and how those were addressed Snapback and Persistence	
IMPACT EVALUATION FINDINGS	
Engineering-Based Impact Analysis Sample Design	
SAMPLE STATUS APPLICATION REVIEW	
M&V PLAN DEVELOPMENT MEASUREMENT AND VERIFICATION	
RESULTS	
Project Life APPENDIX A: REQUIRED SAVINGS TABLES	24
APPENDIX B: SITE M&V REPORTS – CUSTOMER DETAIL REDACTED	

Executive Summary

Key Findings and Recommendations

The key findings and recommendations identified through this evaluation are presented below.

Engineering Impact Estimates: Key Findings

- 1. The overall realization rate across all projects was 1.03, indicating that the program evaluation results matched the expected kWh savings very closely. On an individual project basis, the realization rates ranged from 0.37 to 3.23, indicating a wide variation in the evaluated vs. expected kWh savings on any individual project.
- 2. The cool roof project did not perform to program expectations. The calculations done for the project application used roofing system vendor estimates that overstated savings. Future cool roof projects should be more thoroughly screened. Project savings estimates prepared with vendor-supplied software should be independently verified, including comparisons to unit savings estimates (kWh/SF and kW/SF) from the Ohio TRM. Projects with pre-existing roof insulation levels at or near code should be carefully reviewed.
- 3. About 33% of the total program savings come from lighting. Based on our review, it appears there is enough data to support moving some measures to the Prescriptive Program by expanding the list of eligible fixtures. This will reduce application burden on customers and reduce the application review burden on Duke Energy staff. Candidates for inclusion in the prescriptive lighting program include interior and exterior induction lighting fixtures, high-bay fluorescent lighting in refrigerated spaces, exterior LED fixtures, and exterior metal halide fixtures.
- 4. Several HVAC systems were observed to have no mechanical ventilation. This situation can potentially cause indoor air quality problems, although buildings may have adequate ventilation due to infiltration. Enabling mechanical ventilation will increase energy consumption, but will bring buildings into compliance with ASHRAE Indoor Air Quality standards for commercial buildings.
- 5. The age of the equipment in one of the projects deemed to be early replacement was well past normal industry values for effective useful life. The customer was interviewed and asserted that they would have continued to operate and maintain the existing equipment in the absence of the program, including questions about the remaining useful life of existing equipment in the application is an industry best practice, and will reduce the risk of lifetime savings erosion in projects with equipment that is near the end of its service life. This information should be collected for early replacement projects, and include documentation to justify the claimed value. The justification and documentation of remaining useful life for early replacement projects should be examined as a normal component of the application review process.
- 6. Several of the new construction projects claimed savings for measures that were required by code. Application reviewers should screen new construction projects carefully to make sure measures exceed code minimum requirements.
- 7. One lighting project participant installed additional lighting measures without applying for a rebate from either the prescriptive or custom programs. This action could represent additional savings caused by the program due to customer "spillover." The impacts of

Case No. 13-1129-EL-EEC Appendix D Page 4 of 339

٠

customer spillover at this site were not calculated, thus the net savings are likely conservative.

Customer	kWh		CP kW ²	MMBtu ³
Site 1	258,169	42.00	42.00	N/A
Site 2	399,610	226.00	70.00	N/A
Site 3	3,378,176	483.00	483.00	N/A
Site 4	4,798	13.40	8.20	N/A
Site 5	3,775,031	588.00	588.00	N/A
Site 6	5,591,557	603.26	603.00	N/A
Site 7	360,188	56.00	56.00	N/A
Site 8	587,214	61.30	0.00	N/A
Site 9	247,604	24.50	28.20	N/A
Site 10	329,359	64.40	0.00	N/A
Site 11	52,653	13.70	13.70	N/A
Site 12	449,297	21.00	21.00	N/A
Site 13	1,813,844	768.00	384.00	N/A
Site 14	161,110	5.10	27.70	N/A
Site 15	347,394	28.60	28.60	N/A
Site 16	237,527	319.20	22.00	N/A
Site 17	22,341	9.90	2.60	N/A
Site 18	719,314	75.00	75.00	N/A
Site 19	113,766	0.00	0.00	N/A
Site 20	470,380	-99.20	-52.00	N/A
Site 21	95,107	22.80	0.00	N/A
Site 22	287,240	28.90	28.90	N/A
Site 23	203,477	76.70	65.40	N/A
Site 24	130,149	161.30	199.20	N/A
Site 25	657,570	117.85	69.33	N/A
Site 26	39,340	6.20	6.20	N/A
Site 27	194,606	21.90	21.90	N/A
Site 28	75,476	7.80	7.80	N/A

Table 1: Evaluated Savings Estimate Breakdown by Customer

Table 2. Summary of Evaluated Gross Savings by Measure Type

Measure Type	Particl- pation Count	Evaluated Per unit kWh impact	Evaluated Per unit NCP kW impact	Evaluated Per unit CP kW impact	Evaluated kWh Savings	Evaluated Evaluated kWh NCP kW Savings Savings	
Lighting	7	154,387	26	13	1,080,709	185	94
HVAC	13	940,065	211	143	12,220,840	2,737	1,858
Process	8	962,594	103	106	7,700,749	825	847

¹ NCP kW is an abbreviation for non-coincident peak kW
 ² CP kW is an abbreviation for coincident peak kW
 ³ The study evaluated electricity savings only.

•

•

Measure Type	Partici- pation Count	Ex Ante Per unit kWh impact	Ex Ante Per unit NCP kW impact	Ex Ante Per unit CP kW impact	Ex Ante kWh Savings	Ex Ante NCP kW Savings	Ex Ante CP kW Savings	
Lighting	7	162,417	24	23	1,136,918	166	159	
HVAC	13	873,117	184	131	11,350,519	2,391	1,705	
Process	8	978,612	121	116	7,828,897	969	926	

Table 3. Summary of Ex Ante Savings by Measure Type

Table 4. Ex-Ante Savings Estimates by Customer⁴

Customer	Ex Ante kWh Savings	Ex Ante NCP kW Savings	Ex Ante CP kW Savings
Site 1	167,454	44.10	41.66
Site 2	479,209	108.28	80.58
Site 3	1,284,468	233.77	182.36
Site 4	10,100	4.16	3.10
Site 5	4,832,346	552.00	462.50
Site 6	5,991,963	686.14	686.14
Site 7	190,343	34.18	9.56
Site 8	698,742	62.55	62.55
Site 9	191,139	21.92	21.92
Site 10	528,652	60.30	60.50
Site 11	40,915	15.40	15.40
Site 12	632,527	86.17	106.37
Site 13	1,910,023	610.85	528.37
Site 14	106,952	12.19	16.67
Site 15	252,206	38.64	11.13
Site 16	148,014	80.00	17.65
Site 17	60,259	9.17	9.17
Site 18	716,028	81.69	77.90
Site 19	217,522	73.53	0.00
Site 20	463,752	105.58	31.94
Site 21	61,296	5.32	0.00
Site 22	271,999	76.73	85.38
Site 23	63,041	14.00	14.00
Site 24	103,510	188.90	13.67
Site 25	507,265	271.47	202.03
Site 26	43,578	7.49	7.49
Site 27	255,828	31.84	31.83
Site 28	87,203	10.27	10.27

⁴ Savings shown for entire project as unit savings are not applicable for custom projects.

Introduction and Purpose of Study

Summary of the Evaluation

This report presents the results of an impact evaluation of the Ohio Smart \$aver Non-Residential Custom Incentive Program, herein referred to as the "Custom Program".

Evaluation Objectives

An impact analysis was performed utilizing an M&V plan that was developed following the International Performance Measurement and Verification Protocol (IPMVP)⁵. The projects were separated into lighting, HVAC, and process categories, and samples were drawn from each category. The goal of the impact analysis was to estimate a savings realization rate for each category that can be projected into the full program participant population, and then could be applied to each new application Duke Energy Ohio receives by category.

This report is structured to provide program energy impact estimations via the engineering analysis. The impact tables reporting total savings are based on the savings identified from 28 surveyed participants extrapolated to the program's total participants through December 31, 2011. The engineering estimates were calculated using data from the sample of participants using the date range of January 2009 through April 2011.

Researchable Issues

The evaluation issues researched in this study are listed below:

- 1. Estimate kWh, non-coincident peak (NCP) kW and coincident peak (CP) kW savings for each project in the sample
- 2. Calculate kW and kWh realization rates for each project
- 3. Calculate average kW and kWh realization rates by lighting, HVAC, and process projects
- 4. Calculate confidence intervals around the realization rates
- 5. Identify causes for differences between evaluated savings and ex-ante savings estimates

⁵ International Performance Measurement and Verification Protocol. Concepts and Options for Determining Energy and Water Savings. Volume 1. Prepared by Efficiency Valuation Organization. <u>www.evo-world.org</u>. September, 2010. EVO 10000 – 1:2010.

Description of Program

The Duke Energy Custom Program is intended to supplement the Smart \$aver[®] Non-Residential Prescriptive Incentive Program, which provides prescriptive rebates on pre-selected measures. Customers who want to install measures not on the Smart \$aver Non-residential Prescriptive Incentive Program list are provided the opportunity to apply for a rebate through the Custom Program. The number of project applications that were reviewed and approved is shown below.

Table 5. Program Participation Count

Program	Participation Count for January 2009 through April 2011
Smart \$aver Non-Residential Custom Incentive Program	77

Methodology

Overview of the Evaluation Approach

This impact evaluation was performed using an engineering analysis of a sample of 28 out of 77 projected⁶ total program participants.

Study Methodology

The impact methodology consisted of engineering analysis following the International Performance Measurement and Verification Protocol (IPMVP)⁷. The projects were separated into lighting, HVAC, and process categories, and samples were drawn from each category. An M&V plan was developed following the IPMVP. Site surveys and metering equipment were installed to gather data according to the M&V plan. Pre and post installation measurements were taken whenever possible. Energy and demand savings estimates were developed for each sampled project. The goal of the impact analysis was to estimate a savings realization rate for each category that can be prospectively projected into the full program participant population.

Data collection methods, sample sizes, and sampling methodology

Based on the projected participation of 77 projects, an initial sample of 31 projects was chosen to meet a sampling error of +/-10% at 90% confidence.

⁶ Projected participation included projects at the contract approval stage (where the incentive offer was accepted by the customer), along with projects that were completed and paid. It was possible that some of the projects at the contract approval stage may not be completed, hence the total participation count was a projection.

⁷ International Performance Measurement and Verification Protocol. Concepts and Options for Determining Energy and Water Savings. Volume 1. Prepared by Efficiency Valuation Organization. <u>www.evo-world.org</u>. September, 2010. EVO 10000 – 1:2010.

Site surveys were conducted and metering equipment was installed to gather data according to the M&V plan. Pre and post installation measurements were taken whenever possible. Energy and demand savings estimates were developed for each sampled project.

Number of completes and sample disposition for each data collection effort

The sample disposition for the impact study is shown in Table 6.

Group	Sample Size	Completed Notes					
Lighting 7		7	Sample completed				
IVAC 15 13		15 13 Construction not completed in time for post-per monitoring					
Process	9	8	Construction not completed in time for post-period monitoring				
Total	31	28					

Table 6. Status of 2009-2011 Sample

Expected and achieved precision

The sample design was expected to return a sampling error of +/-10% at 90% confidence. Due to sample dropout and actual sample variability, the achieved precision was +/-11.1% at 90% confidence.

Description of baseline assumptions, methods and data sources

For early replacement projects, the baseline assumption was the existing equipment. For normal replacement projects where the equipment is covered by state or federal energy standards, the minimally code compliant efficiency is the baseline. For normal replacement projects not covered by state or federal energy standards, industry common practice is the baseline.

Description of measures and selection of methods by measure(s) or market(s)

The custom program encompasses a wide variety of measures. Current applications include a variety of lighting, HVAC, and industrial process projects. Lighting projects include fixture types not currently covered under the Smart Saver Non-Residential Prescriptive Incentive Program. HVAC projects include HVAC controls, equipment upgrades, and cool roof projects. Process projects include refrigeration systems, compressed air, and injection molding machines.

All projects were evaluated in compliance with the IPMVP. All projects were evaluated under either IPMVP Option A^8 or IPMVP Option D^9 .

Use of TRM values and explanation if TRM values not used

The study relied on primary data collection, engineering algorithms, building energy simulation modeling, and statistical regression modeling. Since this is a custom program, TRM algorithms and values do not apply.

⁹ IPMVP Option D – Calibrated Simulation. See impact section below for more information.

⁸ IPMVP Option A - Partially Measured Retrofit Isolation. See impact section below for more information.

Case No. 13-1129-EL-EEC Appendix D Page 10 of 339

Threats to validity, sources of bias and how those were addressed

The study utilized a pre/post M&V protocol when feasible. Due to project timing, post-only measurements were made for some projects. The use of post-only measurements for these projects is not expected to significantly bias the results. Early sites were studied systematically before moving to a random selection process. The systematic selection of early projects could introduce some bias in the sample, but the project selection seems representative of the overall program participation. State of the art engineering modeling techniques, including building energy simulation modeling were employed to reduce engineering bias.

Snapback and Persistence

The theoretical additional energy and capacity used by customers that may occur from implementing an energy efficiency product, often called "snapback" is not factored into this evaluation. In addition, TecMarket Works does not believe that snapback is an issue in evaluations of Custom programs. This is because of two key reasons: First, customers participating in the Custom Programs do not typically base energy-intensive investment decisions on the degree of savings being achieved from previous installed energy efficiency measures. Instead, these customers tend to base energy efficient investment decisions on the benefits and costs associated with a single project requiring an investment decision. Second, the very concept of snapback is theoretical in nature. There has yet to be an evaluation conducted of an energy efficiency program that has reliably documented a snapback effect. Studies of snapback based on the last 20-plus years of California's well-funded and aggressive energy efficiency portfolio demonstrate that snapback does not exist. California's per person energy consumption has remained flat for 20 years with energy efficiency programs; while other states not offering aggressive portfolios of energy efficiency programs over that period (more than 20 years) have increased per-person energy consumption. If snapback existed to any degree, perperson energy consumption in California would have increased at the same rate as states that have not offered a long history of energy efficiency programs. TecMarket Works does not believe that snapback exists for the Duke Energy Custom program and does not incorporate approaches to adjust savings for theoretical and unproven concepts.

The evaluation did not address how long these savings are likely to persist over time because the time span of the available data was not sufficient to address this issue.

Case No. 13-1129-EL-EEC Appendix D Page 11 of 339

Impact Evaluation Findings

Engineering-Based Impact Analysis

The impact evaluation employed a tracking system review, sample design and selection, an engineering review of the custom program applications, field measurement and verification (M&V) of selected projects, data analysis and reporting. Tracking data obtained from Duke Energy from January 2009 through April, 2011 shows the following breakdown of ex-ante energy savings by measure:

Figure 1. Energy Savings by Project Type

Sample Design

The program evaluation started in June of 2009. Program participation was light in the early stages of the program, but program managers were interested in getting early feedback. Thus, the initial projects were evaluated as they were approved. As program participation increased, projects were studied on a sample basis. The projects were assigned as the program developed to one of three categories: Lighting, HVAC, and Process. The projects were grouped into similar technology categories to minimize the variation in the realization rates across projects and provide better precision in the overall program results. The realization rates across the

technology categories also provided an idea of which types of projects are performing closer to original expectations.

The program tracking system is based on the Sales Force customer relationship management tool. Project leads are entered into the Sales Force system, and tracked as they progress in the system. In general, the process is as follows:

- 1. *Initial Application*. Customer submits an application for the project, including a project description and energy savings calculations.
- 2. Application Review. Applications are reviewed by a Duke Energy contractor for program eligibility and reasonableness. Modifications are made to the savings estimates as necessary. Project cost effectiveness is calculated and the incentive offer is determined.
- 3. *Proposal to Customer*. A rebate proposal based on the reviewed and adjusted (as necessary) savings estimate and incentive offer is presented to the customer.
- 4. *Contract Approval*. The customer has accepted the incentive and plans to move forward with the project.
- 5. *Project Completion*. The customer has completed the project, and requested and received their incentive.

Projects that are at the Proposal to Customer stage are put in a list of potential candidates. Once the project proceeds to Contract Approval, it is eligible for sampling. The intention is to capture as many projects in the contract approval phase before construction begins in order to obtain preinstallation data.

The sampling plan incorporates a stratified random sample approach, where the projects are stratified according to technology type (lighting, HVAC, or process), and sampled randomly within each stratum. Early projects were evaluated systematically to satisfy the needs for early feedback. As program participation increased, a random sample approach was introduced.

The total sample size is calculated from the following equation¹⁰:

$$n = \frac{\left(\sum_{k} (kWh_{k} \times cv_{k})\right)^{2}}{\left(\frac{P \times kWh}{Z}\right)^{2} + \sum_{k} \frac{(kWh_{k} \times cv_{k})^{2}}{N_{k}}}$$

where:

n = total sample size required kWh_k = estimated savings from group k cv_k = assumed coefficient of variation for group k

¹⁰ Bonneville Power Administration, Sampling Reference Guide. Research Supporting an Update of BPA's Measurement and Verification Protocols, August, 2010.

Case No. 13-1129-EL-EEC Appendix D Page 13 of 339

P= desired precisionKWh= total kWh savingsZ= z statistic (1.645 at 90% confidence)N_k= population size of group k

Samples are allocated to each group based on the following equation:

$$n_k = n \times \frac{kWh_k \times cv_k}{\sum_k \left(kWh_k \times cv_k\right)}$$

The Ohio participation at the time of sample selection is summarized in Table 7. This projection assumed all projects in the Contract Approval stage would complete construction and would be paid in this evaluation cycle.

Group	kWh	cv	Total Projects	Sample Size
Lighting	13,881,282	0.3	20	7
HVAC	17,044,128	0.5	42	15
Process	10,803,126	0.5	15	9
Total			77	31

Table 7.	Sample	Selection	for	Custom	Component	of	Ohio	Custom	Program
									÷

Since lighting projects are generally more predictable, an initial assumption of 0.3 was used for the coefficient of variation. Otherwise, a coefficient of variation of 0.5 was used, consistent with sampling criteria in the IPMVP for projects where previous variability data are not available. A sample of 31 projects was used in the program evaluation, split across lighting, HVAC, and Process projects.

Sample Status

At the conclusion of the evaluation, three of the projects in the sample did not complete and thus were eliminated from the sample. The achieved sample is shown in the table below.

Table 8. Status of 2009-2011 Sample

Group	Sample Size	Completed	Notes
Lighting	7	7	Sample completed
HVAC	15	13	Construction at 2 sites not completed in time for post- period monitoring
Process	9	8	Construction at 1 site not completed in time for post- period monitoring
	31	28	

The completed projects are summarized in Table 9 below.

Table 9. Summary of Completed Projects

Site Number	Facility Type	Project Type	Expected kWh savings	Expected NCP kW savings	Expected CP kW savings
Site 1	School	Lighting	167,454	44.10	41.66
Site 2	Healthcare	HVAC	479,209	108.28	80.58
Site 3	Hotel	HVAC	1,284,468	233.77	182.36
Site 4	Gymnasium	HVAC	10,100	4.16	3.10
Site 5	Convenience Store	HVAC	4,832,346	552.00	462.50
Site 6	Grocery	Process	5,991,963	686.14	686.14
Site 7	Grocery	Process	190,343	34.18	9.56
Site 8	School district	HVAC	698,742	62.55	62.55
Site 9	Refrigerated Warehouse	Lighting	191,139	21.92	21.92
Site 10	Convenience Store	Lighting	528,652	60.30	60.50
Site 11	Refrigerated Warehouse	Lighting	40,915	15.40	15.40
Site 12	Hospital	HVAC	632,527	86.17	106.37
Site 13	School	HVAC	1,910,023	610.85	528.37
Site 14	Industrial	Process	106,952	12.19	16.67
Site 15	Industrial	Process	252,206	38.64	11.13
Site 16	School	HVAC	148,014	80.00	17.65
Site 17	Gymnasium	Lighting	60,259	9.17	9.17
Site 18	Industrial	Process	716,028	81.69	77.90
Site 19	Industrial	HVAC	217,522	73.53	0.00
Site 20	Office	HVAC	463,752	105.58	31.94
Site 21	Prison	Lighting	61,296	5.32	0.00
Site 22	Industrial	Process	271,999	76.73	85.38
Site 23	Office	HVAC	63,041	14.00	14.00
Site 24	School	HVAC	103,510	188.90	13.67
Site 25	Hotel	HVAC	507,265	271.47	202.03
Site 26	Industrial	Process	43,578	7.49	7.49
Site 27	Industrial	Process	255,828	31.84	31.83
Site 28	Office	Lighting	87.203	10.27	10.27

Application Review

The customer application for each site was obtained from Duke Energy, along with any supporting documentation. Each application was reviewed to gain an understanding of the measures included and the expected savings. The Duke Energy Business Relations Manager (BRM) associated with each sampled site was contacted to secure customer participation in the evaluation. Once contact was established with the customer, follow-on phone calls and emails were exchanged to better understand the facility, the measures, and the construction schedule.

M&V Plan Development

An M&V plan was developed by Architectural Energy Corporation for each sampled site. The M&V plan covered the following topic areas:

Introduction. The project and the measures installed were described in sufficient detail to understand the M&V project scope and methodology. Savings by measure were shown and the M&V priorities for measures within the project were listed. The project baseline assumptions were also described.

Goals and Objectives. The overall goals and objectives of M&V activity were listed.

Building Characteristics. An overview of the building, with a summary table of relevant building characteristics, such as building size (square footage), number of stories, building envelope, lighting system, HVAC system type, etcetera, was provided.

Data Products and Project Output. Specific end products – kWh savings, coincident and noncoincident kW savings, and therm savings were listed. Raw and processed data to be supplied at the conclusion of the study were identified.

M&V Option. The M&V Option according to the International Performance Measurement and Verification Protocol (IPMVP) was described. The options are summarized below:

- Option A Partially Measured Retrofit Isolation. Savings under Option A are determined by partial field measurement of the energy use of the system(s) to which an energy conservation measure (ECM) was applied separate from the energy use of the rest of the facility. Measurements may be either short-term or continuous. Partial measurement means that some parameter(s) affecting the building's energy use may be stipulated, if the total impact of possible stipulation error(s) is not significant to the resultant savings. Savings are estimated from engineering calculations based on stipulated values and spot, short-term and/or continuous post-retrofit measurements.
- Option B Retrofit Isolation. Savings under Option B are determined by field measurement of the energy use of the systems to which the ECM was applied separate from the energy use of the rest of the facility. Savings are estimated directly from measurements. Stipulated values are not allowed.
- Option C Whole Facility. Savings under Option C are determined by measuring energy use at the whole-facility level. Short-term or continuous measurements are taken throughout the post-retrofit period and compared to 12 to 24 months of pre-retrofit data. Savings are estimated from analysis of whole-facility utility meter or sub-meter data using techniques ranging from simple comparison of utility bills to regression analysis.
- **Option D Calibrated Simulation.** Savings under Option D are determined through building energy simulation¹¹ of the energy use of components or the whole facility, calibrated with hourly or monthly utility billing data, and/or end-use metering.

Data Analysis. The engineering methods and/or equations used to generate the data products identified above were listed. The data sources, either measurements or stipulated values from secondary data sources, were identified.

¹¹ DOE-2 is a commonly used building energy simulation program.

Field Data Points. Specific field data points collected through the M&V plan were listed. The field data were a combination of survey data, one-time measurements, and time series data collected from data loggers installed for the project or trend data collected from the site energy management system (EMS).

Data Accuracy. Meter and sensor accuracy for each field measurement point was listed.

Verification and Quality Control. The steps taken to validate the accuracy and completeness of the raw field data were listed.

Recording and Data Exchange Format. The format of the raw and processed data files used in the analysis and supplied as data products were listed.

The M&V plans, along with the processed data summary and project results are shown in Appendix B. A summary of the M&V plan for each site is shown in Table 10.

Customer	Project Type	IPMVP Option	M&V Plan Summary
Site 1	Lighting	A	Spot measurements of lighting fixture power combined with stipulated operating hours
Site 2	HVAC	A	Engineering analysis combined with post installation monitoring
Site 3	HVAC	A	Pre/post measurements of packaged terminal air conditioner (PTAC) current combined with spot kW
Site 4	HVAC	D	DOE-2 model based on post-installation survey
Site 5	HVAC	A	Pre/post measurements of HVAC and condensing unit current combined with spot kW
Site 6	Process	A	Post only measurements of LED case lighting and occupancy sensors
Site 7	Process	A	Pre/post measurements of refrigeration compressor amps combined with spot kW
Site 8	HVAC	A	Fixture count verification at a sample of 9 schools; monitoring at a sample of 2
Site 9	Lighting	A	Post only monitoring of a sample of lighting circuits. Field verification of installed fixture count and type
Site 10	Lighting	A	Post-only spot watts of lighting fixtures; log lighting circuit current to verify operating hours
Site 11	Lighting	Α	Time series current logging on a sample of lighting circuits
Site 12	HVAC	A	Load from one-time gpm (from energy management system) and measured chilled water loop temperature difference. Post only time series kW. Pre kW estimated from chilled water temperature, condenser water temperature, outdoor wetbulb temperature and typical chiller performance curves

Table 10. M&V Plan Summary

Customer	Project Type	IPMVP Option	M&V Plan Summary
Site 13	HVAC	A	Short term post only monitoring of a sample of lighting circuits across the 10 schools.
Site 14	Process	A	Post only monitoring of variable frequency drive equipped compressor combined with vendor monitoring of existing compressor plant
Site 15	Process	A	Post only monitoring of variable frequency drive equipped compressor combined with vendor monitoring of existing compressor plant
Site 16	HVAC	D	Onsite survey of building characteristics combined with energy management system trend logs of measure operation
Site 17	Lighting	A	Post only monitoring of a sample of lighting circuits
Site 18	Process	A	Vendor measurements of existing system kWh combined with Post measurements of compressor kW
Site 19	HVAC	A	Post measurements of humidifier kW and latent humidification load. Pre estimated from load and steam generator efficiency.
Site 20	HVAC	D	Building onsite survey used to develop DOE-2 model. Short term trend logs from a sample of 16 heat pumps used to verify measure operation.
Site 21	Lighting	A	Spot measurements of lighting circuit kW and current combined with time series current measurements
Site 22	Process	A	Post time series logging of new and backup compressors
Site 23	HVAC	D	Onsite survey of treated and untreated floors. Data logging of treated and non-treated HVAC equipment
Site 24	HVAC	D	Onsite survey of building characteristics data to build DOE-2 model.
Site 25	HVAC	D	Onsite survey of a sample of guest rooms. Trend data showing occupancy and setpoints. Survey hotel personnel to establish baseline control strategies.
Site 26	Process	Α	Time series measurements of pump kW
Site 27	Process	A	Spot watt measurement of existing compressor kW combined with vendor measurements of compressor operating hours. Post installation time series kW monitoring of variable frequency drive equipped compressor.
Site 28	Lighting	A	Lighting circuit logging of a sample of circuits

Measurement and Verification

Field data were collected by Duke Energy contractors according to the M&V plan. The Duke Energy contractors were trained by personnel from Architectural Energy Corporation and BuildingMetrics Incorporated. In addition to the training, meter installations were observed by contractors representing the Public Utility Commission of Ohio (PUCO). Metering equipment consisted of a combination of light loggers, portable data acquisition equipment (capable of measuring temperature, relative humidity, electric current, etc.), as well as true electric power meters. The specific instrumentation used at each site is described in Appendix B and summarized below. Survey data and spot measurements were obtained during meter installation. The metering equipment was installed for a period ranging from 2 weeks to 6 weeks, depending on the nature and variability of the energy consumption of the metered equipment. The metering duration used in each site is also described in Appendix B and summarized in Table 11 below.

Customer	Project Type	Measurements Taken	Monitoring Duration
Site 1	Lighting	Spot measurements of post-installation fixture power	One-time
Site 2	HVAC	True electric power measurements of air handling unit (AHU) fans, AHU and outdoor temperatures and relative humidity.	5+ weeks post only
Site 3	HVAC	Pre/post PTAC current	3+ weeks pre/ 2+ weeks post
Site 4	HVAC	Comprehensive onsite survey for DOE-2 model development	N/A
Site 5	HVAC	Spot watt and time series current for Rooftop air conditioners, refrigeration system condensing units, display cases, water heater	4 weeks pre and 4 weeks post
Site 6	Process	Light logger on occupancy sensor controlled case lighting	3 weeks post only
Site 7	Process	Spot watt and time series current for refrigeration compressors	3 weeks pre/post
Site 8	HVAC	Outdoor fixture circuit current	3 weeks
Site 9	Lighting	Time series lighting circuit current and spot circuit kW measurements	3 weeks
Site 10	Lighting	Spot watts and time series current on sample of lighting circuits	3 weeks
Site 11	Lighting	Post-only time series current measurements on sample of lighting circuits. Spot watt measurements of circuit power and current	3 weeks
Site 12	HVAC	Chiller kW, chilled water loop temperature difference, condenser water temperature, outdoor temperature and relative humidity.	4 weeks
Site 13	HVAC	Spot watt measurements of lighting circuit power and current, time series current measurements on a sample of lighting circuits	3 weeks
Site 14	Process	Compressor kW	3 weeks
Site 15	Process	Time series true electric power for variable frequency drive equipped compressor	3 weeks
Site 16	HVAC	Outdoor temperature, Air hander supply air, mixed air and return air temperatures, CO2 concentration, energy recovery ventilator entering and leaving air temperature.	3 weeks
Site 17	Lighting	Spot measurements of lighting circuit kW and current. Time series current measurements	3 weeks
Site 18	Process	Existing Compressor kW, new compressor kW, air dryer current	3 weeks

Table 11. M&V Approach Summary

Customer	Project Type	Measurements Taken	Monitoring Duration
Site 19	HVAC	Humidifier kW, humidifier entering temperature and relative humidity humidifier leaving temperature and relative humidity, outdoor temperature and relative humidity.	3 weeks
Site 20	HVAC	Heat pump current, supply air temperature, outdoor air temperature and relative humidity.	3 weeks
Site 21	Lighting	Lighting circuit current, spot kW and current	3 weeks
Site 22	Process	True electric power for new and backup compressors	3 weeks
Site 23	HVAC	Comprehensive onsite data collection for DOE-2 model development plus time series data on air handers, cooling tower, pneumatic controls compressor, outdoor temperature and relative humidity.	3 weeks
Site 24	HVAC	Comprehensive onsite data collection for DOE-2 model development plus time series data on lighting circuits to verify daylighting controls operation	3 weeks
Site 25	HVAC	Trend data on a sample of guest rooms	1 week
Site 26	Process	Time series measurements of injection molding machine	4 weeks
Site 27	Process	Compressor kW pre (one time) and post (time series)	3 weeks
Site 28	Lighting	Spot kW and time series current	3 weeks

Calculations and Reporting

Pre and post installation data were collected by Duke Energy contractors and forwarded to Architectural Energy Corporation for analysis. The data were analyzed according to the M&V plan developed for each project. Data analysis consisted of pre / post comparisons of monitored data extrapolated to annual consumption and demand using simple engineering models or linear regression techniques as described in the M&V plan. A site report was developed for each completed project. The reports are attached in Appendix B. The calculations and analysis techniques are summarized in Table 12.

Table 12.	Calculation	Approach	Summary
-----------	-------------	----------	---------

Site Number	Project Type	Calculations
Site 1	Lighting	Engineering equations
Site 2	HVAC	Engineering equations and regression model expanded using bin data.
Site 3	HVAC	Regression model expanded using bin data.
Site 4	HVAC	DOE-2 building energy simulation
Site 5	HVAC	Engineering equations and regression model expanded using bin data.
Site 6	Process	Engineering equations
Site 7	Process	Regression model expanded using bin data
Site 8	HVAC	Engineering calculations with short term monitoring (STM) of lighting hours. HVAC measures passed through.
Site 9	Lighting	Engineering calculations supported by monitored lighting power. Interactions with refrigeration system included
Site 10	Lighting	Short term measurements adjusted for nighttime hours across the year. Standard values used for baseline lighting fixtures. Measure values used for efficient fixtures.

Site	Project	Calculations
Site 11	Lighting	Engineering calculations using standard baseline wattage assumptions, mfg.
Site 12	HVAC	Regression model used to project STM into annual kWh
Site 13	HVAC	Engineering calculations of lighting savings.
Site 14	Process	Pre/post analysis of time series data by daytype
Site 15	Process	Engineering calculations of pre/post kWh by daytype projected to annual savings
Site 16	HVAC	Whole building analysis using ASHRAE Standard 90.1-2004 baseline
Site 17	Lighting	Engineering calculations of lighting savings using monitored lighting hours
Site 18	Process	Pre post kWh comparison adjusted for cfm differences
Site 19	HVAC	Humidification energy estimated from AHU cfm and entering and leaving conditions. Pre kWh estimated from latent heat addition from an electric resistance heat source. Regression model applied to daily kWh estimates pre and post
Site 20	HVAC	Short term data processed to inform DOE-2 model inputs. Model calibrated to billing data
Site 21	Lighting	Engineering calculations of lighting savings
Site 22	Process	Pre/post kWh comparisons, adjusted for no loss drains and leak sealing. Pre- monitoring conducted by vendor.
Site 23	HVAC	DOE-2 building energy simulation, inputs derived from treated and untreated equipment
Site 24	HVAC	Building energy simulation using DOE-2. ASHRAE Standard 90.1-2004 used as baseline
Site 25	HVAC	DOE-2 building energy simulation, inputs derived from trend data
Site 26	Process	True electric power measurements of injection molding machine input power
Site 27	Process	Adjust Pre kW for reduction in system pressure
Site 28	Lighting	Engineering calculations of lighting savings. One of two buildings upgraded. Untreated building used as baseline.

Results

The results of the evaluation are reported in this section. Annual savings for kWh and kW are reported along with their realization rates for each project. These data are summarized by project type. An independent assessment of the project life is also reported.

Annual Savings

A summary of the annual savings from each project is shown in Table 14. The average annual realization rate by project type is shown in Table 15.

The estimated sampling precision in the realization rates is shown in Table 13.

Table 13. Realization Rate Achieved Sampling Precision

Project Type	Population Size	Sample Size	Actual Sample cv	Relative Precision
Lighting	20	7	0.42	+/- 23%
HVAC	42	13	0.54	+/- 20%
Process	15	8	0.15	+/- 6%
Total	77	28		+/- 11.1%

Case No. 13-1129-EL-EEC Appendix D Page 21 of 339

Table 14. Annual Results Summary

		KW	h Savinus		NCF	> kW Savinds	U	CP CP	kW Savinds	
Site	Project lype	Evaluated	Expected	RR	Evaluated	Expected	RR	Evaluated	Expected	RR
Site 1	Lighting	258,169	167,454	1.54	42.00	44,10	0.95	42.00	41.66	1.01
Site 2	HVAC	399,610	479,209	0.83	226.00	108.28	2.09	70.00	80.58	0.87
Site 3	HVAC	3,378,176	1,284,468	2.63	483.00	233.77	2.07	483.00	182.36	2.65
Site 4	HVAC	4,798	10,100	0.48	13.40	4.16	3.22	8.20	3.10	2.65
Site 5	HVAC	3,775,031	4,832,346	0.78	588.00	552.00	1.07	588.00	465.50	NA
Site 6	Process	5,591,557	5,991,963	0.93	603.26	686.14	0.88	603.00	686.14	0.88
Site 7	Process	360,188	190,343	1.89	56.00	34.18	1.64	56.00	9.56	5.86
Site 8	HVAC	587,214	698,742	0.84	61.30	62.55	0.98	0.00	62.55	0.00
Site 9	Lighting	247,604	191,139	1.30	24.50	21.92	1.12	28.20	21.92	1.29
Site 10	Lighting	329,359	528,652	0.62	64.40	60.30	1.07	00.00	60.50	0.00
Site 11	Lighting	52,653	40,915	1.29	13.70	15.40	0.89	13.70	15.40	0.89
Site 12	HVAC	449,297	632,527	0.71	21.00	86.17	0.24	21.00	106.37	0.20
Site 13	HVAC	1,813,844	1,910,023	0.95	768.00	610.85	1.26	384.00	528.37	0.73
Site 14	Process	161,110	106,952	1.51	5.10	12.19	0.42	27.70	16.67	1.66
Site 15	Process	347,394	252,206	1.38	28.60	38.64	0.74	28.60	11.13	2.57
Site 16	HVAC	237,528	148,014	1.60	319.20	80.00	3.99	22.00	17.65	1.25
Site 17	Lighting	22,341	60,259	0.37	9.90	9.17	1.08	2.60	9.17	0.28
Site 18	Process	719,314	716,028	1.00	75.00	81.69	0.92	75.00	77.90	0.96
Site 19	HVAC	113,766	217,522	0.52	0.00	73.53	0.00	0.00	0.00	
Site 20	HVAC	470,380	463,752	1.01	-99.20	105.58	-0.94	-52.00	31.94	-1.63
Site 21	Lighting	95,107	61,296	1.55	22.80	5.32	4.29	0.00	0.00	NA N
Site 22	Process	287,240	271,999	1.06	28.90	76.73	0.38	28.90	85.38	0.34
Site 23	HVAC	203,477	63,041	3.23	76.70	14.00	5.48	65.40	14.00	4.67
Site 24	HVAC	130,149	103,510	1.26	161.30	188.90	0.85	199.20	13.67	14.57
Site 25	HVAC	657,570	507,265	1.30	117.85	271.47	0.43	69.33	202.03	0.34
Site 26	Process	39,340	43,578	0.90	6.20	7.49	0.83	6.20	7.49	0.83
Site 27	Process	194,606	255,828	0.76	21.90	31.84	0.69	21.90	31.83	0.69
Site 28	Lighting	75,476	87,203	0.87	7.80	10.27	0.76	7.80	10.27	0.76

•

Case No. 13-1129-EL-EEC Appendix D Page 22 of 339

Project		kWh Savings		Ň	CP kW Saving	5	сЪ	kW Savings	
Type	Evaluated	Expected	RR	Evaluated	Expected	RR	Evaluated	Expected	RR
Lighting	1,080,709	1,136,918	0.95	185	166	1.11	94	159	0.59
HVAC	12,220,840	11,350,519	1.08	2,737	2,391	1.14	1,858	1,705	1.09
Process	7,700,749	7,828,897	0.98	825	696	0.85	847	926	0.91
Overall	21,002,298	20,316,334	1.03	3,747	3,527	1.06	2,800	2,790	1.00

Table 15. Average Annual Realization Rate by Project Type

A summary of the specific findings from each project are shown in Table 16. See Appendix B for more information on each sampled project.

Site Number	Project Type	Notes
Site 1	Lighting	Additional operating hours verified
Site 2	HVAC	Initial savings estimate provided by vendor with little detail, but realization rate was above 80%
Site 3	HVAC	Occupancy controls along with heat pumps replacing PTACs with electric heat were very effective
Site 4	HVAC	Cool roof savings less than simplified vendor calculations.
Site 5	HVAC	All roof top unit outdoor air dampers shut off. No mechanical ventilation or outdoor air economizers.
Site 6	Process	Limited savings from occupancy sensors
Site 7	Process	Old compressor near end of effective useful life. Remaining life unknown.
Site 8	HVAC	Site assigned to HVAC category, but is majority lighting. Not all projects are complete; savings based on projected completion of remaining projects.
Site 9	Lighting	Straightforward lighting project that performed well.
Site 10	Lighting	Additional non-rebated lamps observed during field work. Application based on 24/7 operation of lighting. Some override of photocell controls noticed.
Site 11	Lighting	Combination of LVD (induction) and T8 fixtures. Original application showed only induction fixtures.
Site 12	HVAC	Chiller sequencing changed, reducing effect of variable frequency drive on chiller compressor. Limits on minimum condenser water temperature due to other chillers in the plant also reduced savings.
Site 13	HVAC	Assigned to HVAC stratum, but measures were mostly lighting. HVAC measures denied by Duke, with the exception of window replacements. Some exterior lighting photocells malfunctioned. Some planned fixture replacements did not occur. Several projects are planned but not completed. Savings based on completion of remaining projects.
Site 14	Process	Straightforward compressed air project. Comprehensive analysis conducted by vendor provided sound technical basis for project.
Site 15	Process	Straightforward compressed air project. Comprehensive analysis conducted by vendor provided sound technical basis for project.
Site 16	HVAC	Savings claimed for economizers and heating system setback thermostats that are required by code. Lighting savings higher than expected.
Site 17	Lighting	Occupancy sensors installed by owner outside of project reduced lighting operating hours
Site 18	Process	Straightforward compressed air project. Comprehensive analysis conducted by vendor provided sound technical basis for project.
Site 19	HVAC	Ultrasonic humidifiers only; ECM 1 (boiler replacement) not implemented
Site 20	HVAC	Off-hour controls of a series of zone level water loop heat pumps. Return from off hour control caused a start-up peak, thus increasing non-coincident peak demand. Other measures denied by Duke.
Site 21	Lighting	Observed operating hours less than application. Savings claim based on 76 fixtures; 145 fixtures verified.
Site 22	Process	Straightforward air compressor project
Site 23	HVAC	Project in progress; savings extrapolated from observed work to whole building. No savings assigned to thermostat calibration or AC compressor rebuilds. Claim reduced by 65% from value in application.

Table 16. Findings Summary

Site Number	Project Type	Notes
Site 24	HVAC	Whole building new construction project assigned to HVAC stratum. Savings observed across lighting and HVAC end-uses. Lighting controls operating correctly.
Site 25	HVAC	Setpoint schedules for Rented & Occupied, Rented & Unoccupied, Unrented (but available) and Unavailable (Off) modes projected into annual occupancy. Savings due primarily to fan energy reductions at room fan-coil units.
Site 26	Process	VFD on injection molding machine performed to expectations. Machine throughput difficult to predict due to economy.
Site 27	Process	Straightforward compressed air project. Comprehensive analysis conducted by vendor provided sound technical basis for project.
Site 28	Lighting	Savings based on completion of one of two projects totaling 74 fixtures. Claim based on 79 fixtures.

Project Life

An independent assessment of the project life was conducted and compared to the project life estimates prepared by Wisconsin Energy Conservation Corporation¹² (WECC), in consultation with Duke Energy program managers. The WECC project life estimates were used to set incentive levels, and calculate the lifecycle savings and benefits of each project. The project life estimates for each project are shown in Table 17.

Table 17. WECC Project Life Estimates

Site	Project	WECC		
Number	Туре	Project Life		
Site 1	Lighting	10.0		
Site 2	HVAC	2.0		
Site 3	HVAC	10.0		
Site 4	HVAC	15.0		
Site 5	HVAC	5.5		
Site 6	Process	8.0		
Site 7	Process	20.0		
Site 8	HVAC	10.0		
Site 9	Lighting	10.0		
Site 10	Lighting	7.0		
Site 11	Lighting	10.0		
Site 12	HVAC	10.0		
Site 13	HVAC	10.4		
Site 14	Process	10.0		
Site 15	Process	15.0		
Site 16	HVAC	10.0		
Site 17	Lighting	10.0		

¹² WECC is a contractor hired by Duke Energy to assist in program implementation and application review.

Site 18	Process	15.0
Site 19	HVAC	7.0
Site 20	HVAC	7.0
Site 21	Lighting	7.0
Site 22	Process	10.0
Site 23	HVAC	7.0
Site 24	HVAC	20.0
Site 25	HVAC	10.0
Site 26	Process	10.0
Site 27	Process	7.0
Site 28	Lighting	10.0

An independent assessment of the project life was conducted by examining the measures making up each project and assigning an effective useful life (EUL) to each measure. EUL estimates were obtained from the Draft Ohio Technical Reference Manual (TRM), the California Database for Energy Efficiency Resources (DEER) EUL table or California IOU workpapers developed for new measures not yet incorporated into DEER. A project level EUL was calculated as the weighted average of the measure EULs. The results of this assessment are shown in Table 18.

Table 18. Evaluated Project Life Estimates

Project Type	Measures	EUL	Ăţ.		Source
		15 15	330	0.31	DEFD Frank Menacement Statement
Q	Peak Energy Reduction Through HVAC Controls	1	34%	12.0	DEER, HVAC Controls
	Stack Effect Control System	10	33%		DEER, Reducing Over ventilation.
	7000 Buth Heat Punts	. A 6 🥽	1 200 × 1		OhoTRM
Č	12000 Bluth Heal Purry Call	195	25%	A . A	ODDRY
,	Wheless Themostets and Energy management availant	15	50%	2 0	DEER, ENS
ပ်	Cool Roof	15	100%	15.0	OND HAL
4	Energy Management System	12 (A)	82%	and the second second	DEER TRM. Energy management System
ÿ	allets (Reingereich Scane Sching an	8	15%		OND TRN
ess	LED Refrigerated Case Lighting	8	100%	8.1	OKATAN
888	Refigeration Compressor Update	15	100%	15.0	DEER Refrageration Ungrades
ļ	Exterior Induction Lighting	16	78%	(1 1	2006 PGE Workpaper
ر	Ventilation Controls	15	23%	D.U	DEER, EMS
	Refrigerated Lighting	15	70%		ONCTAM
	Occurancy Sensor	17 8 N	30%		OND TRU
ing	Outdoor LED Lighting	16	100%	16.0	2006 PGE Workpaper
1	High Bay Induction Lamps	- 1 6 3	82%	. ×.	2006 PGE Wortpaper
9	HIG IT Play Thereacent Hamps		100 % OL 100	0.0	Cherren
¢	Chiller	20	53%	1	ON TRN
ږ	Chiller VFD	15	47%	11.1	Ohio TRM, HVAC VFD
100	Linear Fluorescant	S. 15	87%		OboTRM
T	Pulse Start Mela Halida	1. S.	X	u V	OND TRM
Ì		16 14		5.5 2.5	2006 PGE Workpeer
1 1	Induction	16	28		2008 PGE Workpaper
ess	Air Compressor with VFD	15	100%	15.0	Ohb TRM
	Air Compressor with VFD	16	100%	15.0	Ohio TRM
ç	Lighting	15	82%	15.0	Ohio TRM, linear fluorescent
2	Demand Controlled Ventilation	15	18%	13.0	DEER EMS
g	INUCION STATES OF A DESCRIPTION OF A DES	16	*8	1 X Y	2008 RGE Workpeper
Ń	Harowied CFL	E 12	14%		Chio TRM
ess	Air Compressor with VFD	15	100%	15.0	Chio TRM

Case No. 13-1129-EL-EEC Appendix D Page 27 of 339

				1	T	10				8		T		Т	
Source	Independent estimate not available: Duke	project the used	DEER, EMS	DEER, EMS	ONOTISM	OhoTKM	DER ENS	Ono IRM	Chic IKM		Ohio TRM, HVAC VFD		1 2006 DGE Worknaner		DEER, I Imediock with of without photosensors
Wt EUL			46.0	0.01	15.0	15.0	15.0	17.1		242°0	15.0		10 4	, , ,	14.4
Ŵ		\$	50%	50%	100%	100%	100%	41%	59%	100%	100%			%.00	20%
EUL			15	15	15	15	15	20	15	15	15		9	0	8
Measures		Citresonic Hundher	FMS	Tstat Recalibration and Relocation	Ceramic Neika Neikie	Compressors	Dottal Control System	HVAC	Linear Fluorescent	EMS.Upardoo	PLC-controlled AC inverter drive	system	AF Compressor with VED	Induction Lighting	Photo Sensors
Project	AVE	HVAC		HVAC		Process	HVAC	HVAC		HVAC	Droces	110003	Process		Lighting
Site	No.	Ste 19		Site 20	Ste 21	Site 22	Sten 23		Site 24	Site 25	Cito 26	010 20	Site 27		Site 28

.

The WECC estimated project life and the independent project life estimates were weighted by the expected kWh savings and the evaluated kWh savings respectively, and a weighted average project life was calculated for each project type. The realization rate on project life was calculated as the ratio of the evaluated EUL to the WECC project life estimate. These results are shown in Table 19.

Project Type	WECC Project Life	Evaluated EUL	Realization Rate
Lighting	8,4	15.1	1.79
HVAC	7.7	14.5	1.88
Process	9.2	14.1	1.53

Table 19. Summary of Project Life Estimates by Project Type

Note, the evaluated project life estimates for Lighting, HVAC, and Process were 78%, 88%, and 53% higher, respectively, than the WECC estimates, indicating WECC and Duke Energy used a conservative approach to establishing project lifetimes for these types of projects.

Project	Ex Ante kWh Savings	Ex Ante NCP kW Savings	Ex Ante CP kW Savings
Site 1	167,454	44.10	41.66
Site 2	479,209	108.28	80.58
Site 3	1,284,468	233.77	182.36
Site 4	10,100	4.16	3.10
Site 5	4,832,346	552.00	462.50
Site 6	5,991,963	686.14	686.14
Site 7	190,343	34.18	9.56
Site 8	698,742	62.55	62.55
Site 9	191,139	21.92	21.92
Site 10	528,652	60.30	60.50
Site 11	40,915	15.40	15.40
Site 12	632,527	86.17	106.37
Site 13	1,910,023	610.85	528.37
Site 14	106,952	12.19	16.67
Site 15	252,206	38.64	11.13
Site 16	148,014	80.00	17.65
Site 17	60,259	9.17	9.17
Site 18	716,028	81.69	77.90
Site 19	217,522	73.53	0.00
Site 20	463,752	105.58	31.94
Site 21	61,296	5.32	0.00
Site 22	271,999	76.73	85.38
Site 23	63,041	14.00	14.00
Site 24	103,510	188.90	13.67
Site 25	507,265	271.47	202.03
Site 26	43,578	7.49	7.49
Site 27	255,828	31.84	31.83
Site 28	87,203	10.27	10.27

Appendix A: Required Savings Tables

Table 20. Evaluated Savings Estimate Breakdown by Customer

Customer	kWh	NCP kW	CP kW	MMBtu ¹³
Site 1	258,169	42.00	42.00	N/A
Site 2	399,610	226.00	70.00	N/A
Site 3	3,378,176	483.00	483.00	N/A
Site 4	4,798	13.40	8.20	N/A
Site 5	3,775,031	588.00	588.00	N/A
Site 6	5,591,557	603.26	603.00	N/A
Site 7	360,188	56.00	56.00	N/A
Site 8	587,214	61.30	0.00	N/A
Site 9	247,604	24.50	28.20	N/A
Site 10	329,359	64.40	0.00	N/A
Site 11	52,653	13.70	13.70	N/A
Site 12	449,297	21.00	21.00	N/A
Site 13	1,813,844	768.00	384.00	N/A

¹³ The study evaluated electricity savings only.
Case No. 13-1129-EL-EEC Appendix D Page 30 of 339

Customer	kWh	NCP kW	CP kW	MMBtu ¹³
Site 14	161,110	5.10	27.70	N/A
Site 15	347,394	28.60	28.60	N/A
Site 16	237,528	319.20	22.00	N/A
Site 17	22,341	9.90	2.60	N/A
Site 18	719,314	75.00	75.00	N/A
Site 19	113,766	0.00	0.00	N/A
Site 20	470,380	-99.20	-52.00	N/A
Site 21	95,107	22.80	0.00	N/A
Site 22	287,240	28.90	28.90	N/A
Site 23	203,477	76.70	65.40	N/A
Site 24	130,149	161.30	199.20	N/A
Site 25	657,570	117.85	69.33	N/A
Site 26	39,340	6.20	6.20	N/A
Site 27	194,606	21.90	21.90	N/A
Site 28	75,476	7.80	7.80	N/A

Appendix B: Site M&V Reports – Customer Detail Redacted

Case No. 13-1129-EL-EEC Appendix D Page 32 of 339

M&V Plan Results Summary

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED ON: March 2011

INTRODUCTION

lamp.

Architectural Energy Corporation was hired to evaluate the Duke Energy custom incentive program for the lighting retrofit of the interior hallway lights at

. The original proposal called for a one-for-one replacement of 21 fixtures at each , an existing 1000 Watt Metal Halide lamp, with a 200 Watt High-bay Induction

Energy savings were estimated at \$8,340 annually for this upgrade at each totaling \$16,680 for the measure. The M&V portion of the project involved conducting post-installation spot measurements of the lighting circuits. Annual lamp runtime hours were determined from staff interviews prior to installation and are found in a brief explanation included with the application.

GOALS AND OBJECTIVES

The project goal was electric use savings of 166,800 kWh annually and demand savings of 41 kW annually, or approximately \$16,680, as noted in the M&V Plan. The specific objective of this M&V project was to complete a pre and post implementation site survey of the affected lighting in order to determine the true power reduction. Then apply the pre-installation counts to the new fixtures and interviewed operating hours to determine the actual annual energy savings and realization rate.

PROJECT CONTACTS

Approval shall be requested from the two Duke Energy contacts listed below prior to making direct contact with the Customer or undertaking work on this M&V Plan.

Duke Energy M&V Administrator	Frankie Diersing	
Duke Energy BRM	Mike Harp	
Customer Contact		
Site Locations		

DATA PRODUCTS AND PROJECT OUTPUT

- Count post fixtures to verify quantity installation.
- Annual energy savings and verification of calculations.

M&V OPTION

IPMVP Option A

VERIFICATION AND QUALITY CONTROL

- 1. Verify pre and post-retrofit lighting fixture specifications and quantities are consistent with the application. If they are not consistent, record discrepancies.
- 2. Verify pre-retrofit lighting fixtures are removed from the project. If they are abandoned in place, please note if the wiring is removed or not. If the fixtures have been removed, check to see if the existing lighting fixture lamps and ballasts have been stored on site.
- 3. Verify electrical voltage of pre and post lighting circuits.
- 4. Visually inspect pre/post lighting data sheets for correlation to incentive plan savings.
- 5. Verify lighting data and correlate to incentive plan savings.

RECORDING AND DATA EXCHANGE FORMAT

- 1. Pre-installation Lighting Survey Form and notes.
- 2. Post-installation Lighting Survey Form and notes.
- 3. CT logger data files.

RESULTS SUMMARY

DATA ANALYSIS

1. Verify Proposed Measures Were Implemented:

The 21 new fixtures were installed as planned at each site. There were increased annual hours of operation found compared to those deduced from the application calculation, based on an explanatory note included in the application. The calculation originally assumed that lighting would operate 4,000 hours annually. However, this note specifies a lighting operation time of 6:00 am through 10:00 pm each day (16 hours per day, or 4160 annually, with the assumption of Monday-Friday operation only).

2. Verify Lighting Control:

Lighting control was not part of this application.

3. <u>Calculation Methodology:</u>

Since the lighting is specified as being on through the peak demand period, kW savings should be included in this measure. However, a rate of \$0.10 per kWh was used in the proposal calculation and is not clear where it was derived from. This value is close to the kWh rate published by the utility, thus does not appear to include demand savings. For this

reason, and to maintain consistency, the same cost per kWh (\$0.10) was also used to determine the realized post-install savings based on a kWh reduction only.

Annual lighting electric energy is calculated as follows:

 $kWh/year = a \times b \times c$

Where:

a = Number of fixtures, counted during site visit, for replacement

b = kW per fixture, often from manufacturer specification

c = Total estimated annual "hours on"

4. Savings Verification and Realization Rate:

Compare Pre/Post values to obtain total lighting kWh/year savings. Once the savings are calculated, the realization rate is calculated by the following formula:

Realization Rate = $kWh_{actual} / kWh_{application}$

CALCULATION OUTPUT

The following Excel Tables demonstrate real achieved lighting savings and summarize the results of the lighting retrofit application. For additional details, see included post-retrofit measurement and calculation spreadsheets.

	ication.		1/100000 A1200	a water - "Geo Mars, American".
Baseline	and a state of the second s	Proposed		
kW per Fixture	1.200	kW per Fixture		0.207
Fixture Count	42	Fixture Count		42
Run Hours (annual)	4,000	Run Hours (annual)		4,000
Annual Energy (kWh)	201,600	Annual Energy (kWh)		34,776
Electric Rate (\$/kWh)	\$ 0.10	Electric Rate (\$/kWh)	\$	0.10
Demand Rate (\$/kW)	\$ -	Demand Rate (\$/kW)	\$	-
Operating Cost	\$ 20,160	Operating Cost	\$	3,478

Reported in Application:

Savings:

kWh: 166,824 Cost: \$16,682

Adjustments Based on Duke Energy Project Review:

The Duke Energy project review adjusted the savings from 166,824 to 167,454. The incentive offer was based on a savings of 167,454 kWh.

Reported Following Installation:

Baseline	÷ 4. 2	
kW per Fixture	1	.200
Fixture Count		42
Run Hours (annual)	5,840	
Annual Energy (kWh)	294,336	
Peak demand (kW)	50.4	
Electric Rate (\$/kWh)	\$ 0.10	
Demand Rate (\$/kW)	\$	-
Operating Cost	\$ 3	29,434

		eg generatio
kW per Fixture	() 	0.207
Fixture Count	42	
Run Hours (annual)	4,160	
Annual Energy (kWh)	36,167	
Peak demand (kW)	8.7	
Electric Rate (\$/kWh)	\$	0.10
Demand Rate (\$/kW)	\$	-
Operating Cost	\$	3,617

Savings:

kWh: 258,169 kW: 41.7 Cost: \$25,817

Project Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
258,169	167,454	1.54	42	44	0.95	42	44	0.95

*Notes:

Lighting fixture power values were taken from the M&V Plan document. Proposed savings were back calculated from the Application. Electric Rate used was derived from the rebate application savings.

M&V Summary

Site 2

- Stack Effect Control Prepared by Dan Bertini April, 2011

Introduction

This document summarizes the third-party M&V activities for a Non-Residential Custom Incentive application for the first phase of an energy improvement project administered by at their for the first phase of an energy improvement project administered by

The project is being carried out in phases at three hospitals:

•

Throughout the phases of the project there will be three measures implemented overall:

- 1. Stack Effect Control
- 2. Control System Optimization
- 3. Peak Load Shedding

The first measure was implemented at the three hospitals during the first phase of the project. The other two measures will be implemented in future phases. This document summarizes the M&V findings related only to the implementation of the Stack Effect Control measure at the location.

The description of the measure is copied verbatim from **the second secon**

"Stack Effect Control:

"Stack Effect is a phenomenon that creates differential air pressure forces between the upper and lower floors of tall buildings. In the winter, the forces pressurize the upper floors of the building and make the lower floors negative. The opposite is true for the summer. See below:

Case No. 13-1129-EL-EEC Appendix D Page 38 of 339

"In the case of the **manufacture** hospital, at zero degree outside air temperature, the building is affected as follows:

"The total stack effect pressure exerted on the building is almost 0.5 IN WC at zero degrees, which is 10 times the building pressure setpoint of 0.05 IN WC. This causes the HVAC control systems to exhaust air needlessly out of the building. The more air the HVAC system exhausts, the worse the problem gets and the building becomes a chimney as the conditioned air is exhausted out of the building.

"To correct the problem, all the HVAC primary air handling units must be reprogrammed and exhaust air dampers of the air handlers need to be retrofitted to operate independently of other control dampers in the building. In addition, several VFD drives will need to be installed. Savings from this project are estimated at 2% of the total energy use of the facility and are based on field observations at the hospitals. The exception is **definition** off peak kWh estimates are 10%. They are higher because we are installing more VFD's at this facility and heating kWh will be impacted as a result."

Goals

For the Stack Effect Control measure at the following savings are expected:

- 479,208 Gross kWh
- 84 On-Peak kW

Project Contacts

Duke Energy M&V Administrator	Frankie Diersing
Duke Energy BRM	Nick Beck
Duke Energy BRM (alternate)	Mike Harp
(Customer) Contact	
(Project Engineer) Contact	

Data Products and Project Output

- Average pre/post load shapes for controlled equipment
- Model predicting pre/post kWh as a function of outdoor temperature
- Summer peak demand savings
- Annual Energy Savings
- Miscellaneous diagnostics (cooling delta T, supply air temperature)
- Outdoor air fraction; economizer operation (if equipped).

M&V Option

IPMVP Option A - Stipulated and Measured

Case No. 13-1129-EL-EEC Appendix D Page 40 of 339

Field Data

Pre-Implementation

Historical 15 minute interval data was obtained from the site's two utility meters for a roughly 2.5 year period starting January 1st, 2008 and ending June 8th, 2010. Unfortunately, since M&V activities were not scheduled prior to the implementation of the measure, other than the old T&B reports obtained during the post-implementation site survey, this historical site data represents the only actual pre-implementation operating data available to the investigation.

Post-Implementation

Survey Data

- Copy of engineer's notebook containing equipment schedules, existing control strategies, and implementation plans for respective equipment
- Copy of owners working AHU equipment schedule
- Screen captures from control system front-end graphics
- Miscellaneous photos
- Copies of selected equipment schedules from original construction
- Copies of selected T&B reports from original construction
- Interview with the engineer who designed and commissioned the measure

One-time Measurements

- Spot measurements of supply and return fan kW at selected AHUs
- Spot measurements of supply and return fan % Speed at those selected AHUs that were VFD-driven
- Spot measurements of supply, return and mixed air temperatures at selected AHUs

Time series data on selected equipment

• While there are (37) AHUs in the hospital, the Stack Effect Control measure was implemented only on the (27) AHUs that at the time were under the control of the Siemens automation system. Of those (27) AHUs, (10) were randomly selected to be monitored for M&V purposes, representing roughly 60% of the overall designed CFM capacity of the (27)

- Loggers were deployed to record data at 5 minutes intervals for 40 full days starting on midnight June 12th and ending on midnight July 22nd, 2010 on the following (10) AHUs: 3,9,27,28,32,35,36,37,40,43
 - o Dent Elite Pro loggers measured supply and return fan kW
 - Onset Hobo U-12s measured supply, return and mixed air temperatures
 - Onset Hobo U-10s measured OA, supply, return and mixed air temperature and relative humidity

Data Accuracy

International statution

Strain Strain

Measurement	Sensor	Accuracy	Notes
Temperature	thermistor	±0.5°	
Amps	current transducer	±1%	10% of rating < Amps < 130% of rating
%RH	capacitive element	±3.5%	25% < RH < 85%
kW	Elite Pro (7.28 kHz)	<1%	exclusive of current transducer

Verification and Quality Control

- 6. Visually inspect time series data for gaps
- 7. Compare readings to nameplate values; identify out of range data
- Look for physically impossible combinations e.g. Tsupply > Tmix when AC unit is cooling

Recording and Data Exchange Format

- 4. Dent and Hobo binary files
- 5. Excel spreadsheets

Data Analysis Summary

Approach

Energy Savings

Discussions with the engineer established that the new Stack Effect Control sequence operates at each AHU essentially as follows:

- Supply Fan modulates to maintain downstream duct static pressure setpoint as downstream VAV dampers modulate to maintain space temperature
- Return Fan modulates to maintain return plenum static pressure setpoint

• Exhaust Damper modulates to maintain average building static pressure per patentpending algorithm

For this evaluation it is assumed that the Stack Effect Control measure, by virtue of maintaining positive pressure entirely throughout the inside of the building, impacts the selected AHUs by essentially reducing to zero the infiltration component of their respective cooling loads, which in turn has the effect of reducing the overall fan and chiller plant load in the summer, but in winter, when the "free cooling" of infiltration is eliminated, may have the opposite effect. The objective of the analysis then is to calculate the amount by which the overall hourly electrical demand is reduced over the course of a year as a result of the change in fan and chiller plant demand, as shown in Equation 1:

Equation 1 - Annual KWh Savings

Annual kith Savings
$$\frac{\sum_{t=1}^{k \neq 60 \text{ dis}} \left(k W_{\text{plant_wrs}_t} - k W_{\text{plant_wrs}_t} + k W_{\text{plant_wrs}_t} - k W_{\text{plant_wrs}_t} \right)}{S}$$

where

 $kW_{plant,vve}$ pre implementation hourly kW of chiller plant resulting from coil load on (10) AHUs $kW_{plant,vve}$ post implementation hourly kW of chiller plant resulting from coil load on (10) AHUs $kW_{rans,vve}$ pre implementation hourly kW of fans on (10) AHUs $kW_{rans,vve}$ post implementation hourly kW of fans on (10) AHUs $kW_{rans,vve}$ post implementation hourly kW of fans on (10) AHUs $kW_{rans,vve}$ post implementation hourly kW of fans on (10) AHUs $kW_{rans,vve}$ post implementation hourly kW of fans on (10) AHUs $kW_{rans,vve}$ post implementation hourly kW of fans on (10) AHUs

Demand Reduction

From the hourly set of demand derived in Equation 1 is also found the following two key measures:

- 1. Maximum on-peak kW reduction
- 2. Minimum grid-coincident-peak kW reduction

kW fans part

The last term in the numerator of Equation 1, kW_{fans_post} , is the hourly kW of all the fans in the (10) sampled AHUs. This is calculated through the use of the regression model shown in Equation 2. The parameters $m1_T$ and $b1_T$ are calculated using the logged data by regressing total daily logged AHU fan kWh against average daily logged outdoor air temperature.

Equation 2 - KW (and pose

$$kW_{fans_{osc}} = \frac{(m1_{7}T_{a_{i}} + b1_{7})}{24}$$

where

T_e hourly outdoor drybulb

m17 slope of daily total AHU fan kWh regressed against average daily outdoor drybulb

b17 intercept of daily total AHU fan kWh regressed against daily outdoor drybulb

kW juns pre

The third term in the numerator of Equation 1, kW_{fans_pre} , is the sum of broken out as follows in Equation 3:

Equation 3 - KW gans are

kW fans are kW sf are 1 kW rf pre

where

 $kW_{sf_{pre}}$ pre implementation hourly total supply fan kW $kW_{sf_{pre}}$ pre implementation hourly total return fan kW

Equation 3 requires hourly values for kW_{x} , pre and kW_{r} , pre. The former is found in Equation 4:

Equation 4 - KW sture

 $kW_{st_{ore}} = \frac{\left(in_{\phi}\dot{Q}_{ore} + b_{\phi}\right)}{24}$

where

 \dot{Q}_{ore} pre-implementation average hourly coil load of (10) AHUS (tons).

 $m_{m p}$ — slope of daily total supply fan kWk regressed against daily average coil load —

 b_{b} — intercept of daily total supply fan kWh regressed against daily average coil load

Equation 4 represents the total supply fan kW required to satisfy the total pre-implementation coil load, \dot{Q}_{pre} and requires knowledge of \dot{Q} not only in its solution but also in the formulation of the regression parameters. The regression parameters are calculated using logged data by regressing the daily average logged post-implementation coil load of all (10) AHUs against the corresponding daily total logged supply fan kWh. It is assumed that the coil load is zero whenever the calculated value for \dot{Q}_{pre} is less than or equal to zero.

In general, since ducted returns connect to all AHUs in the hospital, it is assumed that all infiltration is seen by the AHUs as an adjustment in space load, which implies that \dot{Q}_{PTE} is equal to \dot{Q}_{PUSL} plus (or minus) an adjustment to offset a proportion, S, of the total building infiltration load, \dot{Q}_{inf} , as shown in Equation 5.

Equation 5 - Qpre

The first term in Equation 5, Q_{Past} , is found in Equation 6 as follows:

Case No. 13-1129-EL-EEC Appendix D Page 44 of 339

Equation 6 - QPost

$$\hat{Q}_{Fast} = c_{ii}\rho(\overline{h_{inst} - h_{sa}}) \sum_{i=1}^{10} \sum_{j=1}^{100} CPM_{sf,vast_j}$$

where

 $s_0 = \tan(1s \ conversion \ a)' \ 60 \left(\frac{min}{hr}\right) / 12000 \left(\frac{dtu}{tou}\right)$

 $\begin{array}{ll} { CFM}_{sf, best} & post & implementation supply fan airflow (CPM) \\ \hline h_{max} & h_{sc} & CFM weighted average coil enthalpy drop <math>{best} \\ ibm \end{array}$

The post-implementation supply fan airflow that is required in Equation 6 for each supply fan, $CFM_{s_1^2,uos_2^2}$, is found implicitly in the flow ratio, f, of the Englander-Norford equation for a VFD-driven fan, which is shown below in Equation 7:

Equation 7 - Hsf.post

Her_pose at bf I df3 where CFR Same supply fan airflow ratio 1 CFN1/_mux XW:(1) Herpost RH's mux supply fan power ratio $\frac{v_{00}^{1.5}}{2}$ Q, $p_{\rm p}$ = ratio of static pressure seconds of the controller to the static pressure at the fundischarge $b p_i(1 a)$ diab kWst_max supply fan full load kW CFM_{st_max} supply fan full load CFM

Note that when $p_u = 1$, as is the case for a return fan controlling the static pressure immediately downstream, Equation 7 reduces to the familiar cubic relation in Equation 8:

Equation 8 - H

H f³

Two of the critical parameters called out in Equation 7 for each fan, CFM_{max} and kW_{inax} , are presumed to be equal to those values given in the T&B reports if available or alternately from the design BHP and CFM found in the equipment schedules. However, in this investigation it is assumed instead that kW_{inax} for each fan is approximately equal to the maximum kW measured during the investigation, which occurred during what was perhaps the hottest time of the year. Furthermore, CFM_{max} is then assumed to be approximately equal to the following shown in Equation 9. Equation 9 - CFM mai

 $CFM_{max} = CFM_{max} \left(\frac{MW_{max}}{MW_{max}} \right)^{3}$ where $CFM_{max} = maximum CFM presumed from T&B or design documents$ $<math>KM_{max} = maximum of measured kW and kW presumed from T&B or design documents$

The second term in Equation 5 includes \tilde{Q}_{inf} , which is a function of the total building infiltration airflow, $CFM_{1\pi f}$. For this analysis $CFM_{1\pi f}$ is calculated following the ASHRAE enhanced method, which seeks to combine the effects of both ambient wind and internal stack pressures as shown in Equation 10:

Equation 10 - CFM /mf

 $CFM_{haf} = \sqrt{(CFM_{eb})^2 + (CFM_{b})^2}$

The wind and stack effect components are defined, respectively, in Equation 11 and Equation 12:

Equation 11 - CFM_w

 $CFM_g = cC_w (sfK_g)^{2k}$

Equation 12 - CFMs

 $CFM_3 \subset C_s(|T_0 - T_1|)^n$

where

- $c = flow coefficient \begin{pmatrix} 2FM \\ nuch \end{pmatrix} \\ C_{W} = wind coefficient \begin{pmatrix} (2FM \\ nuch)^{2} \end{pmatrix}$
- $C_{s} = stack \ coefficient \ \left(\begin{pmatrix} wer \\ \psi \end{pmatrix}^{W}
 ight)^{W}$
- sf skelter factor
- $V_{w} = outdoor windspeed (mph)$
- n pressure coefficient
- $\mathcal{T}_{o}=$ outdoor ambient drybulb temperature (°F)

T_c = typical indoor drybulb temperature (*F)

The hourly infiltration load, \hat{Q}_{inf} , is then found by inserting the result from Equation 10, CFM_{inf} , into Equation 13:

Equation 13 - Qint

```
 \begin{aligned} \hat{Q}_{inf} &= c_{\mu} c(h_{\alpha} - h_{f}) CFM_{inf} \\ \text{where} \\ c_{\mu} &= units \ conversion \ of \ 60 \left(\frac{min}{h_{f}}\right) / 12000 \left(\frac{btn}{twn}\right) \\ \rho &= nominal \ air \ deusity \binom{20m}{c_{\pi}} \end{aligned}
```

```
 \begin{array}{l} h_{a} & \mbox{enthalpy of outdoor ambient air } \begin{pmatrix} p_{CA} \\ p_{M} \end{pmatrix} \\ h_{i} & \mbox{enthalpy of typical indoor air } \begin{pmatrix} b_{M} \\ p_{M} \end{pmatrix} \\ CFM_{hig} & \mbox{total building infiltration } (CFM) \end{array}
```

It is significant that \dot{Q}_{inf} can be positive or negative, thereby increasing or decreasing the preimplementation coil load.

Having now calculated \hat{Q}_{Pust} in Equation 6 and \hat{Q}_{inf} in Equation 13, the sum of the two provides the solution to Equation 5, \hat{Q}_{Pre} , which is then applied to Equation 4 to give the preimplementation supply fan kW, $kW_{sf,pre}$, which is one of the two variables required in Equation 3 to solve for $kW_{fans,pre}$.

Note however that Equation 6, as presented thus far, can only be solved using logged data. To extrapolate over 8760 hours in a year requires creating another regression model from the logged data as shown in Equation 14.

Equation 14 - \dot{Q}_{Post} Regression

```
 \begin{array}{l} \dot{Q}_{Post} & (m2_TT_a+b2_T) \\ \text{where} \\ \dot{Q}_{Post} & post & implementation total hourly coil load (tons) \\ T_a & hourly outdoor drybulb \\ m2_T & slope of daily total coil load regressed against average daily outdoor drybulb \\ b2_T & intercept of daily total coil load regressed against average daily outdoor drybulb \\ \end{array}
```

The regression parameters $m2_T$ and $b2_T$ are calculated using logged data by regressing the daily average logged post-implementation coil load of all (10) AHUs against the corresponding daily average logged outdoor air temperature. It is assumed that the post-implementation coil load is zero whenever the calculated value for \dot{Q}_{post} is less than or equal to zero.

The second variable required by Equation 3, $kW_{r_1,\mu\tau_2}$, is obtained through the application of Equation 8 as shown in Equation 15:

```
Equation 15 - kW_{cf,\mu\nu\sigma}

kW_{cf,\mu\nu\sigma} = kW_{totalrf,max} (f_{cf,\mu\nu\sigma})^{2}

where

f_{cf,\mu\nu\sigma} total pre implementation return fan airflow ratio

kW_{totalrf,max} total return fan full load kW
```

The survey reveals that the pre-implementation return fans generally were intended to maintain a fixed airflow differential with respect to the supply fans in order to continuously return from the spaces only the balance of the volume not exhausted by the building exhaust fans nor required to

maintain building pressurization. In this case then $f_{rf, pre}$ is assumed to be as shown in Equation 16:

Equation 16 - Pre-Implementation Return Fan Airflow Ratio

where

return fan airflow wacking differential (CFM)
 CFM_{rotalof,wre} total pre inhementation supply fan airflow
 CFM_{rotalof,max} total return fan full load airflow

The solution of Equation 16, however, requires knowing the total pre-implementation supply airflow, $CFM_{100talsf_vrv}$, which is found implicitly via the application of the Englander-Norford equation for a VFD-driven fan as shown in Equation 17:

Equation 17 - Hmaisf me

 $H_{totalsf,pro} = a + b(f_{sf,pro}) + d(f_{sf,pro})^3$

where

```
 \begin{array}{l} \int_{S_{1}^{2} \cup V^{2}} & \frac{U^{PM}_{(s,last), j=V}}{C^{PM}_{(s,last), j=0, a}} & \text{total pre-implementation supply fan airflow ratio} \\ H_{taastsf_{i}, j=V^{2}} & \frac{\mathcal{R}^{M}_{(s,l_{i}), j=0, a}}{\mathcal{R}^{M}_{(s,l_{i}), j=0, a}} & \text{total pre-implementation supply fan power ratio} \\ \mathcal{R}^{M}_{(s,last), j=0, a} & \text{total supply fan full load } kW \\ a & \binom{\mathcal{N}_{i}}{2} \\ p_{3} & \text{ratio of static pressure setpoint of the controller to the static pressure at the fan discharge} \\ b & p_{0}(1-a) \\ d & 1-a = b \end{array}
```

Solving Equation 17 for $CFM_{10tattsf_pre}$ and inserting it into Equation 16 gives f_{rf_pre} , which, when applied to Equation 15, returns kW_{rf_pre} .

Inserting $kW_{sj,sre}$ and kW_{rfme} into Equation 3 finally enables the calculation of $kW_{fans,sre}$.

kW plant_post

The second term in the numerator of Equation 1, $kW_{plant,pust}$, is obtained by inserting the solution to Equation 6, \dot{Q}_{Pust} , into Equation 18:

Equation 18 - KW plant post

KW plancings Eplance Pose

where \dot{Q}_{Fust} post implementation total hourly coil load (tons) ε_{Flant} overall plant efficiency $\binom{W}{TON}$ S ratio of total CFM of (10) sampled AHUs to total CFM of (27) site AHUs

kW plant_pre

With ducted returns connected to all the AHUs in the hospital, it is assumed that all infiltration must be met with a corresponding increase or decrease in load on the chilled water plant, depending on whether the outdoor ambient enthalpy is greater or less than the typical indoor enthalpy. The first term in the numerator of Equation 1, kW_{ptant_pre} , is therefore obtained by inserting \dot{Q}_{POSI} and the solution to Equation 13, \dot{Q}_{inf} , into Equation 19:

```
Equation 19 - KW plant_pre
```

KW plant pre Epicie (Q past 1 Quir)

Summary of Required Parameters and Independent Variables

The overall set of numbers required to solve all the equations described above are summarized below in

Table 1 and Table 2. Required hourly independent variables are from logged data and/or TMY. Required parameters are derived by one of three means:

- 1. Survey
- 2. Stipulation
- 3. Regression of logged data

Table 1 – Required Parameters

Parameter	Description	Source
$m1_7$	slope of daily total AHU fan kWh regressed against daily average outdoor drybulb (sampled supply and return fans)	regression of logged data
<i>b</i> 1 _г	intercept of daily total AHU fan kWh regressed against daily average outdoor drybulb (sampled supply and return fans)	regression of logged data
S	ratio of total CFM of (10) sampled AHUs to total CFM of (27) site AHUs	survey
тų	slope of daily total supply fan kWh regressed against daily total coil load (sampled AHUs)	regression of logged data
ь _q	intercept of daily total supply fan kWh regressed against daily total coil load (sampled AHUs)	regression of logged data
ρ	nominal air density	stipulated
Ρu	ratio of controlled static pressure setpoint to static pressure at fan discharge	stipulated
CFM stance	full load CFM of individual supply fan	
kWsj_max	full load kW of individual supply fan	survey
E _{TT1}	nominal efficiency of fan motors	stipulated
Edrive	nominal efficiency of VFD drives	stipulated

Е	flow coefficient	stipulated
C _S	stack coefficient	stipulated
C _e	wind coefficient	stipulated
sf	sheiter factor	stipulated
i2	flow exponent	stipulated
T _è	typical indoor drybulb	survey
hi	typical indoor enthalpy	survey
m2 ₇	slope of daily average coil load regressed against daily average outdoor drybulb (sampled supply and return fans)	regression of logged data
b2 ₁	intercept of daily average coil load regressed against daily average outdoor drybulb (sampled supply and return fans)	regression of logged data
CFM _{totals(_max}	sum of full load CFM of all (10) supply fans	survey
CFM totatrf_max	sum of full load CFM of all (10) return fans	survey
kW construction and	sum of full load kW of all (10) supply fans	survey
kW _{cotalsf_max}	sum of full load kW of all (10) return fans	survey
t	return fan airflow tracking differential	survey
Epiani	overall plant efficiency	stipulated

Table 2 - Required Independent Hourly Variables

Variable	Variable Description	
kWjans_post	kWjans_post post-implementation kW of all fans sampled	
T_{c}	outdoor drybulb temperature	logged and TMY
$\overline{\Delta h}$	مَلَّهُ post-implementation CFM-weighted overall average coil enthalpy drop	
V _w	Vis. outdoor windspeed	
h _u	outdoor enthalpy	psychrometrics applied to TMY

Surveyed Parameters

The values assigned for maximum CFM and kW for each fan, as well as the total CFM and kW for the full set of supply and return fans, respectively, are shown below in Table 3. Values assigned to the remaining surveyed parameters are shown in Table 4:

Fan	CFM sf man	kW sf_max	CFM _{rf_max}	kW _{rf_max}
AHU-3	5823	9.2	5028	2.0
AHU-9	40515	33.5	40480	11.3
AHU-27	64000	54.6	60000	35.0
AHU-28	13682	10.6	11562	2.3
AHU-32	7744	10.8	5608	2.5
AHU-35	53743	48.7	40760	33.7
AHU-36	56161	55.6	45308	46.2
AHU-37	57692	60.2	33210	18.2

Table 3 - Fan Full Load CFM and kW

Case No. 13-1129-EL-EEC Appendix D Page 50 of 339

AHU-40	17760	5.6	13422	1.7
AHU-43	42501	22.7	26422	5.0
	359,620	312	281,800	158
	CFM _{totalsf_max}	kW totals f_max	CFM _{totalrf_max}	kW rotate f max

Table 4 - Other Surveyed Parameters

Parameter	Nominal Value
T;	72
jż _i	26.3 (RH=50%)
S	0.6
L C	CFM rotatist max CFM rotatist max

Stipulated Parameters

The stipulated parameters, shown below in Table 5, are based on engineering standards.

Parameter	Nominal Value		
p ₂	0.4		
€drine .	0.95		
ε _{iii}	0.85		
<	400,000		
	0.005		
C _W	0.0025		
sf	1		
12	0.65		
ρ	0.075		
Eriant	0.75		

Table 5 – Stipulated Parameters

Logged Variables and Regression Parameters

The logged kW, temperature and humidity data are used only to create the (6) regression parameters shown in Table 1 that are required to find the extrapolated hourly results for Equation 2, $kW_{fans_{post}}$, Equation 3, $kW_{fans_{pre}}$, and Equation 14, \dot{Q}_{post} , as further described below.

TMY Variables

Hourly Typical Meteorological Year (TMY) data for Cincinnati are applied for purposes of extrapolating annual savings results, as described below. Only three TMY values are required:

- 1. $V_{\rm ev}$, outdoor windspeed
- 2. T_{α} , outdoor drybulb temperature
- 3. RH_{α} , outdoor relative humidity

A standard psychrometric formula applied to the latter two variables gives the hourly variable, h_a , outdoor enthalpy, which is required in Equation 13.

TMY Annual Extrapolation

All the necessary equations and data are now in place to solve Equation 1 for each hour of a typical meteorological year (TMY). This hourly extrapolation is performed as follows for each of the terms in Equation 1.

kW funs post

 TMY drybulb, T_c, is applied directly to Equation 2 to calculate the hourly value for kW_{funs_post}.

kW fans_pre

- 1. TMY drybulb, T_{α} , and wind speed, k_{α} , are applied to Equation 10 to calculate hourly infiltration, CFM_{inf} , which is combined with TMY h_{α} in Equation 13 to obtain hourly infiltration load, \dot{Q}_{inf} .
- 2. TMY drybulb, T_{α} , is also applied to Equation 14 to obtain hourly average overall postimplementation coil load, Q_{post} .
- 3. The values for \dot{Q}_{inf} and \dot{Q}_{post} calculated above are applied to Equation 5 to obtain hourly \dot{Q}_{pre} , which, when inserted into Equation 4 gives $kW_{sf,pre}$. $kW_{sf,pre}$ is then plugged into Equation 17, the result of which is plugged into Equation 15 to give $kW_{rf,pre}$. Combining $kW_{sf,pre}$ and $kW_{rf,pre}$ in Equation 3 gives the hourly value for $kW_{fans,pre}$.

kW plant_post

1. The value \hat{Q}_{post} calculated above is applied directly to Equation 18 to obtain the hourly value for $kW_{plant,post}$.

kW plant_pre

1. The value \hat{Q}_{pre} calculated above is applied directly to Equation 19 to obtain the hourly value for $kW_{ptent,pre}$.

Sensitivity Analysis

The partial variation in overall annual savings with respect to various parameters is identified by adjusting, alone and in turn, each of the selected parameters shown below in Table 6.

Table 6 - Sensitive Parameters

Parameter	Nominal Value		
Po	0.4		
ε _m	0.85		
c	400,000		
< <u>5</u>	0.005		

Case No. 13-1129-EL-EEC Appendix D Page 52 of 339

<	0.0025
sf	1
12	0.65
Erlant	0.75
T_{t}	75
RH:	50
S	0.6
CFM service max	359,620
CFM perairfymax	281,800
KW maater mar	312
MW constraint much	158
τ	77,821

Results Summary

Regressions

Logged data yielded the required regression parameters shown in Table 7 and depicted in Figure 1- Logged Daily AHU kWh and Coil Load v Average Daily Outside Air Temperature" and Figure 2 – Logged Daily Supply Fan kWh v Daily Average Coil Load".

Parameter	Description	Value
$m1_r$	slope of daily total AHU fan kWh regressed against daily average outdoor drybulb (sampled supply and return fans)	44.6
b1 ₁	intercept of daily total AHU fan kWh regressed against daily average outdoor drybulb (sampled supply and return fans)	3254
$m_{\dot{m{y}}}$	slope of daily total supply fan kWh regressed against daily total coil load (sampled AHUs)	2.0
b _à	intercept of daily total supply fan kWh regressed against daily total coil load (sampled AHUs)	379 8
$m2_T$	slope of daily average coil load regressed against daily average outdoor drybulb (sampled supply and return fans)	12.7
b2 r	intercept of daily average coil load regressed against daily average outdoor drybulb (sampled supply and return fans)	400

Table 7 - Regression Parameters

Figure 1- Logged Daily AHU kWh and Coil Load v Average Daily Outside Air Temperature

Energy Use and Savings

Applying the parameters given in Tables 3, 4 and 5, the solution to Equation 1 - Annual kWh Savings is given below in

Case No. 13-1129-EL-EEC Appendix D Page 54 of 339

Table 8. This represents the estimated savings associated with implementing the Stack Effect Control measure on (27) AHUs in the hospital. Annual energy savings amount to almost 400,000 kWhs, which is equal to $\sim 6\%$ of the pre-implementation energy use associated with the (27) AHUs. Note that in post-implementation while overall return fan energy drops dramatically, overall supply fan and plant energy actually rises. The drop in return fan energy is expected considering that the return fans work much less to maintain return plenum static pressure than they did to maintain airflow differential. On the other hand, the increase in work by the supply fans and chiller plant may indicate that the respective AHU economizers have not compensated for the loss of the "free cooling benefit" associated with infiltration. It is expected that this effect will be remedied in Phase 2 of the project.

	kWhs Pre	kWhs Post	kWh Savings
Supply Fans	2,668,225	2,696,164	-27,938
Return Fans	1,330,933	754,269	576,664
Plant	3,149,007	3,298,122	-149,115
Total	7,148,165	6,748,555	399,610

Table 8 – Annual Energy Savings

Demand Savings

The historical 15 minute demand data obtained from the site's two utility meters is shown in Figure 3 – Historical Site Interval Data". In 2008 the on-peak maximum demand of 4152 kW occurred on Thursday, June 26th at 12:15 pm. In 2009 the on-peak maximum of 4282 kW occurred on Monday, September 20th at 1:00 pm.

Integrating this data for the years 2008 and 2009 shows average annual consumption during that time to be \sim 23,700,000 kWh. The savings associated with the Stack Effect Control measure therefore amounts to \sim 1.7% of the whole site.

The results of Equation 1 are shown by equipment type in annual profile in Figure 4, and then specifically for January (winter) and July (summer) in Figure 5 and Figure 6, respectively. Peak values are shown in

Table 9 – Demand Savings

	kW	Time and Date
On-Peak Max Demand Savings	226	Wednesday August 8, 1:00 PM
Grid-Coincident Min Demand Savings	70	Thursday August 2, 3:00 PM
Grid-Coincident Max Demand Savings	150	Monday August 20, 3:00 PM

Figure 4 – TMY Annual Demand Savings Profile

Case No. 13-1129-EL-EEC Appendix D Page 56 of 339

Figure 6 – July Demand Savings Profile

Figure 7 below depicts the respective demand savings according to outdoor temperature rather than date. As mentioned above, note the penalty associated with the plant in the range of "swing" temperatures, between \sim 35F to \sim 65F, when the economizers should be working to provide free cooling. Below \sim 30F the difference between pre and post electrical use appears to be limited to the return fans (humidification impacts are not addressed here).

.

Realization Rate

Savings realizations rates are shown in Table 10.

Table 10 - Realization Rates

	Predicted	Measured	Realization Rate
Energy Consumption (kWh)	479,208	399,610	83%
Coincident Peak Demand (kW)	108	70	65%

Sensitivity

The partial variation in overall annual savings with respect to various parameters is identified by adjusting within Equation 1, alone and in turn, each of the selected parameters shown in Table 6. Shown below in Table 11 are the results presented as the ratio of the %variation in savings to the %variation in parameter. For example, a 1% increase in $CFM_{10/alsf_1max}$ will result in a 12.5% increase in savings. Conversely, a 1% increase in $CFM_{10/alsf_1max}$ will result in a 9.4% decrease in savings.

Table 11 - Sensitive Parameters

Parameter	Nominal Value	Sensitivity
		K

Case No. 13-1129-EL-EEC Appendix D Page 58 of 339

CFM serning man	359,620	12.5
RW months / max	312	-9.4
CFM sorair funax	281,800	-9.4
<i>T</i> ₂	75	-5.0
Wencely / max	158	3.1
Γ	77,821	-3.1
p ₂	0.4	1.5
5	0.6	-1.3
RH	50	-1.0
12	0.65	-0.7
EF.lanz	0.75	-0.4
c	400,000	-0.3
<i>€</i> 3	0.005	-0.2
٤ ₁₁₆	0.85	-0.2
sf	1	-0.1
<	0.0025	-0.1

Site Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
399,610	479,209	0.83	226	108	2.1	70	81	0.87

Case No. 13-1129-EL-EEC Appendix D Page 59 of 339

Site 3

M&V Plan Results Summary

PREPARED FOR: Duke Energy OHIO

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED IN: March 2011

INTRODUCTION

Architectural Energy Corporation was hired to evaluate the Duke Energy custom incentive evaluation program for **evaluation** in downtown Cincinnati. The energy conservation measures (ECM) were provided by **evaluation** and AEC designed the plan to measure and quantify the results. The ECM measures include:

1. Replace 163 existing 15,000 BTU McQuay Dx and electric resistance heating PTACs with GE Zoneline 7,000 BTU heat pumps and add wireless thermostats.

2. Replace 179 existing 15,000 BTU McQuay Dx and electric resistance heating PTACs with GE Zoneline 12,000 BTU heat pumps and add wireless thermostats.

3. Implement a wireless thermostat mesh-network that is monitored and controlled by an energy management control system.

Measures #1 and #2 will involve removing and replacing existing HVAC equipment with a more efficient technology and adding thermostatic control. The two new models have dramatically different energy results and thus are reflected as separate measures.

Measure #3 will tie the new thermostats into a wireless mesh network and control them by the energy and demand management software. With the direct integration to the property management software at the front desk, the "unsold" rooms will be deeply setback. The system will allow **control thermostate** to perform demand forecasting and reduction as well as monitor the energy use of each PTAC.

GOALS AND OBJECTIVES

Gross kWh and peak kW savings

- Total kiloWatt hour forecasted reduction is 1,821,204 kWh
- Total peak kiloWatt reduction is 266 kW

The specific objective of this M&V project is to create a realization rate based on applications. The realization rate is the actual savings, based on monitored data, versus the projected savings presented in the applications.

BUILDING CHARACTERISTICS

The building characteristics of the building are summarized below:

Table 1: Building Characteristics

Characteristic	Value
Building size	180,000 SF

Number of stories	17	
Age	27 years old	
HVAC system	2 15,000 BTU PTAC in each suite	
Thermostat	Integral to unit	

Figure 1: Building site photo

DATA PRODUCTS AND PROJECT OUTPUT

- Measured data used to model annual Pre/Post load shapes
- Verify heating/cooling runtime hrs reduced through occupancy controls
- Peak demand savings verification
- Annual Energy Savings verification

M&V OPTION

IPMVP Option A

Case No. 13-1129-EL-EEC Appendix D Page 62 of 339

DATA ANALYSIS

Two sets of data were recorded. "Pre" data refers to data recorded with the original equipment. "Post" data was recorded after the energy conservation measures (ECM) are applied. In this study the Pre data was recorded during the cooling season and the Post data was recorded during the heating season. This left the challenge of using the data to verify the energy saving under different conditions. The Pre and Post units operate differently when either heating or cooling, however, from the data there is a lot of information and the following steps were used to show that our analysis concludes that **predicted realization** rate.

There are two main aspects to the energy savings on this project. The first is the installation of efficient equipment and second, occupancy controls that will setback thermostats in unsold rooms.

FIELD DATA

Field procedures are repeated as written for both the Pre measurement period and Post measurement period.

Survey data

• PTAC unit(s) make and model

One-time measurements

• PTAC kW with logger installed and compressor running. This measurement is used to correlate the recorded PTAC amps to kW

Time series data on controlled equipment

- PTAC unit power (Amps)
- PTAC return and Supply temperatures (F)

Set up loggers for 5 minute instantaneous readings. The loggers were deployed for 3 weeks. The data that was retrieved was reviewed for quality. Any data that appeared to be inaccurate was removed. The actual time period for the usable data was 25.5 days Pre retrofit, during the cooling season, and 15.5 days of data after the retrofit during the heating season.

DATA ACCURACY

Table 2: Data accuracy by sensor

Measurement	Sensor	Accuracy	Notes

Temperature	MDL thermistor	±0.5°	
Current	Magnelab CT	±1%	> 10% of rating

VERIFICATION AND QUALITY CONTROL

- 9. Visually inspect time series data for gaps
- 10. Compare readings to data sheet values; identify out of range data
- 11. Look for physically impossible combinations e.g. supply << Return air and no current draw (unit is cooling)

RECORDING AND DATA EXCHANGE FORMAT

- 6. MDL binary files
- 7. Excel spreadsheets

RESULTS SUMMARY

DATA ANALYSIS

Two sets of data were recorded. "Pre" data refers to data recorded with the original equipment. "Post" data is recorded after the energy conservation measures (ECM) are applied. In this study the Pre data was recorded during the cooling season and the Post data was recorded during the heating season. This left the challenge of using the data to verify the energy saving under different conditions. The Pre and post units operate differently when either heating or cooling, however, from the data there is a lot of information and the following steps were used to show that our analysis concludes that **a lot of information** did meet their predicted realization rate.

There are two main aspects to the energy savings on this project. The first is the installation of efficient equipment and second, occupancy controls that will setback thermostats in unsold rooms.

Unoccupied Room setback

The first step was to determine the Pre and post run time percentages of the units in the room. Setbacks are programmed from the main office; this and more accurate thermostats installed in the rooms contribute to runtime savings.

Convert raw Amp data to kW using spot measurements

Case No. 13-1129-EL-EEC Appendix D Page 64 of 339

$$kW_{measured} = A_{measured} \times \frac{kW_{spot}}{A_{mod}}$$

- The kW data for each room was charted
- A function was written to count points with kW > .2
- The total number of points greater than .2 kW was converted to hrs and divided by the number of hrs that the MDLs logged. The result was hrs/day that each unit ran

$$\frac{ON_{Total}}{12} = HRS$$

$$\frac{HRS}{Total HRS \frac{12}{24}} = \frac{HRS}{DA1}$$

Assumption: kW measurements less than .2 represent a unit that is not running

- This process was repeated for the Post data
- The final answer is the Post divided by the Pre

$$%Runtime = \frac{\frac{Post HRS}{DAY}}{\frac{Pre HRS}{DAY}}$$

Assumption: The hrs/day that the PTAC runs is representative of occupancy and thermostat control savings. The occupancy rate of the hotel would affect this value, however, it is not considered in our model.

Efficient Equipment

The Pre data was recorded during the cooling season and the Post data during the heating season. This situation allowed us to use each set of measured data as a baseline for our annual model. The baseline was adjusted for the changes in equipment to model the projected use before and after the retrofit.

Cooling

 Data was plotted, separated by Bedroom and Living Room units. The value for each room type was averaged to find the per unit energy average and then multiplied by the number of rooms of that type. That data was again averaged per hour and summed daily. This was graphed. From the graph a regression line was plotted that represented average daily kWh vs OAT.

 $kW_{total} = avgkW_{bedroom} \times 179 + avgkW_{LivingRoom} \times 163$

Assumption: Bedroom units use more energy therefore they are the larger PTAC unit. 179 12,000 BTU units and 163 7,000 BTU units are being installed

• The formula for the regression line was multiplied by TMY3 to model the cooling kWh in a typical year. This value represents daily kWh and TMY3 data is given in hours. The results must be divided by 24.

$$kWh = \left(m \times (TEMP) + b\right) / 24$$

Where: *m & b are values from the regression line*

Assumption: The regression line crossed the x axis at 55 deg, this temperature was used as the cut off for the cooling data

• The first stage in the model is to compare the energy use for the same conditions based on the improved efficiency of the new equipment. This is done by multiplying each type of equipment by the ratio of the new and old EERs. EER stands for Energy Efficiency Ratio.

$$kWh_{EER} = kWh_{pre} \times \frac{EER_{post}}{EER_{pre}}$$
$$EER = \frac{BTU/Hr_{output}}{Watt_{input}}$$

 The final improvement in energy saving will be made by multiplying the above value by the run time ratio calculated earlier. With improved run time and efficiency the final number will represent Post cooling values.

$$kWh_{past} = kWh_{EER} \times \%$$
runtime

Heating

- Post data was plotted, as before, separated by Bedroom and Living Room units. The
 value for each room type was averaged to find the per unit energy average and then
 multiplied by the number of rooms of that type. That data was again averaged per hour
 and then summed daily. This was graphed. From the graph a regression line was
 plotted that represented average daily kWh vs OAT.
- The formula for the regression line was multiplied by TMY3 to model the heating kWh in a typical year. This value represents daily kWh and TMY3 data is given in hours so the results must be divided by 24.

$$kWh = \left(m \times (TEMP) + b\right) / 24$$

Where: m & b are values from the regression line
Assumption: 55 deg was used as the upper limit of the heating data.

• The original equipment used electric resistance heating, the new equipment will attempt to control temperature with the heat pump first and utilize resistance heating as a backup. Resistance heat has a Coefficient of Performance (COP) of 1, while the heat pumps have COPs of 3.6 and 3.4 for the Bedroom and Living Room units respectively. This model is done in a similar way to the cooling EER calculations except in reverse.

$$kWh_{COP} = kWh_{Post} \times \frac{COP_{pre}}{COP_{post}}$$
$$COP = \frac{Watt_{output}}{Watt_{input}}$$

 Because the new units have resistance heat as a back up this has to be accounted for. The data can be graphed as kW vs time, from this two distinct bands can be seen in the power. The first band is roughly 200 - 1000 W and the second band is between 2500-3500 W. The first band is the heat pump and the second is made when the resistance heat kicks in. A statement was written to distinguish values between 200 and 1000 W. If the data fell in this range it was multiplied by the COP to model a unit with only resistance heating.

Assumption: Data that falls between .2 – 1.0 kW is heat Pump Data

• As in the Cooling model the final step was to reapply the % runtime ratio.

$$kWh_{pre} = kWh_{COP} \div \%runtime$$

Savings Verification and Realization Rate:

 Compare Pre/Post values to obtain total kWh/year savings. Once the savings are calculated, the realization rate is calculated by the following formula:

Realization Rate = $kWh_{actual} / kWh_{application}$

CALCULATION OUTPUT

The following Table summarizes energy savings as the results of this energy conservation measure.

Table 3: Data analysis results and realization rate

Criteria Bedroom Living Room

和自然系型发展。			Adjusted Total	
PRE - Running				
hrs/day (Power>				
200W)	20.1	19.1	····	
POST - Running				
	39	49		
	0.0	<u> </u>		
difference based				
on Pre and Post				
nun hra/day	19%	25%	22%	
and the second	Commentation in a second second			
Cooling	DRF LWh	KWh schusted for		
Regression	(measured)	EER	control	
Total kWh	1,032,059	791,566	175,681	anna - Landaran (r. 2011) Marsun - La Innarah Marshadagaring
Peak kW	258	199	N/A	
	Adjusted			
		Pump COD	(menured)	
	2,788,599	618,905	266,800	A A Y Y NOTE I A YERE HAR A PARTY OF A
Peak kW	N/A	767	284	
Total	Pre		Post III	savings is
Energy kWb	3,820,657		442,482	3,378,175.81
Peak kW	767		284	483
	A0 10 050 10	,	8 50 000 04	***
Dollare	\$343,859.16		\$39,823.34	\$304,035.82
		Acolication	Nodelad	
Realization rate	ang an	an na hear an	a na	
(%)		1,821,204	3,378,175.81	185.49%

Site Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
3,378,176	1,284,468	2.63	483	234	2.07	483	182	2.65

Case No. 13-1129-EL-EEC Appendix D Page 68 of 339

Site 4

Cool Roof Retrofit

-

_

M&V Plan Results Summary

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED IN: April 2011

INTRODUCTION

Architectural Energy Corporation was hired to evaluate the Duke Energy custom incentive program addressing upgrades to the roof of the **Energy**. The measures were to replace the existing roof with a white membrane "cool roof" to reduce the heat gain on by the building envelope, as well as add insulation to the roof deck providing for better space conditioning retention.

Energy savings were estimated at 36,983 kWh, or near \$3,300 annually. These calculations were initially completed by the roofing contractor to complete the installation.

GOALS AND OBJECTIVES

The project goal was electric use savings of 36,983 kWh annually. The specific objective of this M&V project was to complete a post-implementation site survey of the existing building systems and new roof to determine the energy reduction in heating and cooling needs of the building. Ultimately, a realization rate can be determined to validate the intended energy savings.

PROJECT CONTACTS

Approval shall be requested from the two Duke Energy contacts listed below prior to making direct contact with the Customer or undertaking work on this M&V Plan.

Duke Energy M&V Administrator	Frankie Diersing	
Duke Energy Account Manager	Ira Poston	
Customer Contact		
Site Location		

DATA PRODUCTS AND PROJECT OUTPUT

• SurveyIT model output comparison of existing 'black' and retrofit 'white' roof systems.

M&V OPTION

IPMVP Option D

Case No. 13-1129-EL-EEC Appendix D Page 70 of 339

DATA ANALYSIS

Survey Form data entry into SurveyIT program provides DOE2 analysis output of improved building performance.

FIELD DATA

These are examples of the data collected to obtain a complete picture of the building operation.

Completion of Building Survey Form:

- 1. General Information
 - Size, building type
 - Areas included
- 2. Areas
 - Occupancy schedules, holidays
 - Lighting schedules, plug loads
 - Thermostat setpoints
- 3. HVAC Systems
 - Make/model, type, capacity, efficiency
 - Quantity, location, control method
- 4. Zones
 - Exterior surfaces (if applicable)
 - Roof (if applicable)
 - Window types and geometry (if applicable)
- 5. Spaces
 - Occupancy style
 - Lighting, miscellaneous equipment
- 6. Important Details
 - Domestic water heating, kitchen equipment
 - Exterior lighting and other schedules
 - Meters serving the building
 - Space/Zone/Area assignment and association

VERIFICATION AND QUALITY CONTROL

12. Review Error Logs for critical issues or unintended data omission.

13. Review size and type of building for reliable reduction proposal.

RECORDING AND DATA EXCHANGE FORMAT

8. DOE2 text output files.

Case No. 13-1129-EL-EEC Appendix D Page 71 of 339

RESULTS SUMMARY

DATA ANALYSIS

1. Verify Proposed Measures Were Implemented:

The "cool roof" was installed on the per the scope intended.

2. <u>Calculation Methodology:</u>

A Survey Form was filled out for the building during a site walk following the roof install. The information requested by the form helps attain a complete picture of the facility operation and equipment necessary to determine annual energy use. This form was then transferred directly to a MS Access Database (SurveyIT) that runs DOE2 (Department of Energy) software to calculate the building energy performance and a host of other information. From these outputs, the necessary annual energy use in kWh and Therms can be compared to determine the savings attributed to the roofing retrofit performed for this measure.

3. Model Calibration

Once the inputs were defined, as-built model was calibrated to billing data. A comparison of the simulated monthly kWh from the calibrated model and the monthly utility bills is shown below:

Case No. 13-1129-EL-EEC Appendix D Page 72 of 339

The calibration statistics are summarized below. Note, the calibration statistics are better than the targets established by ASHRAE Guildeline 14 - Measurement of Energy and Demand Savings.

Parameter	Calibration Result	ASHRAE Guideline 14 Target
RMS Error	0.5%	+/- 15%
Mean Bias Error	0.1%	+/- 5%
Maximum monthly deviation	-13.5%	Not addressed

4. Savings Verification and Realization Rate:

Pre/Post values are compared to obtain annual kWh and Therm savings for the facility. Once the savings are calculated, the realization rate is calculated by the following formula:

Realization Rate = kWh_{actual} / kWh_{application}

CALCULATION OUTPUT

Below are two tables that demonstrate achieved savings based on the DOE2 calculation through ModelIT. Only electricity savings was included here due to only that commodity being included on the Rebate Application.

Savings reported in Application:

Commodity	Value
Electricity	36,983
Natural Gas	0
Cost	\$ 3,328

Following Installation of 'Cool Roof':

	4 700	
1 Flortricity	4.798	l kWh

	a d	initial Cost Savings
Electricity	\$	432

Realization Rate: 4,798 / 36,983 = 13%

*Notes:

- A rate of \$0.09 per kWh was used to estimate cost savings, taken from the Application breakout of cost per kWh.

Site Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
4,798	10,100	0.48	13	4	3.22	8	3	2.65

Case No. 13-1129-EL-EEC Appendix D Page 74 of 339

M&V Summary

Site 5

Prepared by Architectural Energy Corporation February, 2011

Introduction

Architectural Energy Corporation was hired by TecMarket Works to evaluate the Duke Energy custom incentive evaluation program for n for the population, 5 specific stores were selected for sampling and data-logging. The following ECM measures were the target of the data analysis:

- 1. Emerson E-2 Energy Management System
 - System provides remote control of:
 - a. HVAC
 - b. Milk cooler
 - c. Display freezer
 - d. Walk-in freezer
 - e. Water heater
 - f. Ice storage
 - The E-2 system implements the following control strategies:
 - a. Space temperature setpoints and setback
 - b. Case temperature reset
 - c. Anti-sweat heater controls
 - d. HVAC and lighting scheduling
 - e. Peak demand limiting
 - f. Rotational load shedding
- 2. LED case lighting for milk cooler and freezer
 - Replace T12 case lighting for GE LED case lighting

Goals and Objectives

The projected savings goals identified in the application are:

• Total population (n stores) reduction of 4,900,840 kWh.

Specific objectives of this M&V project were to verify the actual:

- Annual gross kWh savings
- Summer peak kW savings (at actual peak and grid peak)
- kWh and kW realization rates

Building Characteristics

The building characteristics of each store are summarized below:

Characteristic	Value	
Building size	3200 SF	
Number of stories	1	
Age	Varies from 23 – 69 years old	
HVAC system	1-2 rooftop units	
Refrigeration system	1 walk-in cooler with remote condensing unit	
	1 walk-in freezer with remote condensing unit	_
	1 ice chest	
Water heater`	l electric water heater	

Data Products and Project Output

- Model predicting pre/post kWh as a function of outdoor temperature
- Summer peak demand savings
- Annual Energy Savings

M&V Option

I. IPMVP Option A

Field Data Points

- 1.. Survey existing equipment and note the following information:
 - Refrigerated case lighting survey
 - Refrigerated case make and model
 - Thermostat type and setpoints
 - Canopy lighting survey
 - RTU make and model
 - Condensing unit(s) make and model
 - Water heater make and model
- 2. Data loggers were installed to trend amperage for the following equipment at 5 minute intervals over the course of 1 month (each pre and post ECM implementation) for each of the 5 selected locations. Supply and return temperatures for each RTU were also logged.
 - HVAC unit(s)
 - Milk cooler

- Hardening freezer
- Ice chest
- Domestic hot water heater
- Ice cream display case(s)
- 3. Spot watt measurements were taken for all logged equipment during data logger installation. The following readings were taken at a single point in time and simultaneously compared to instantaneous data logger readings:
 - Kilowatts
 - Amperage
 - Voltage
 - Power factor

Data Accuracy

Measurement	Sensor	Accuracy	Notes
Temperature	MDL thermistor	±0.5°	
Current	Magnelab CT	±1%	> 10% of rating

Verification and Quality Control

- 14. Visually inspect time series data for gaps
- 15. Compare readings to nameplate values; identify out of range data

Recording and Data Exchange Format

- 9. MDL binary files
- 10. Excel spreadsheets

Data Analysis Summary

EMS Data Analysis

- 1. The following calculations were performed for each piece of logged equipment for both the pre and post logged interval data:
- Find ratio of kW to amps for each piece of equipment from spot watt measurements.
- Multiply Logged amperage interval data by kW/amp ratio to obtain 5 minute interval kW.
- Convert 5 minute interval kW to kWh by multiplying by 5/60.
- Sum 5 minute kWh values per day to obtain kWh/day.
- Average daily outside air temperatures.

• Regress HVAC and refrigeration kWh/day into a temperature dependent load model. Form of the regression equation is:

 $kWh/day = a + b \times T_{ava}$

where:

kWh/day = daily energy consumption T_{avg} = Daily average drybulb temperature

- Average daily TMY3 outside air temperature data.
- Extrapolate each equipment regression by plugging in average daily TMY3 outside air temperature data to obtain kWh/day for the year.
- Sum kWh/day extrapolations to obtain kWh/year.
- Compare Pre/Post kWh/year to show kWh decrease/increase due to ECM implementation.

Refrigerated Case Anti-sweat heater control (Deemed Savings)

1. A deemed savings of 1674 kWh/year per door of each refrigerated case was included in the sample savings estimation. This value was obtained from the Duke Energy measure savings database, which is derived from DOE-2 simulations of anti-sweat heater control performance in prototypical grocery stores. A deemed savings approach was used because it was not cost-effective to monitor the power going to the anti-sweat heaters given the relatively small savings expected from the anti-sweat heater controls.

Refrigerated Case LED Lighting Data Analysis

- 1. A survey which included lighting fixture type, count and wattage was conducted for each of the 5 sampled locations.
- 2. The following calculations were performed for each piece of logged equipment for both the pre and post logged interval data:
 - Use the following formula to obtain total fixture kW:

$$kW_{total} = a \times \frac{b}{1000}$$

Where:

a = Number of fixtures

b = Fixture wattage

• Determine direct kWh/year (kWh consumed by lighting) by using the following equation:

 $kWh / year_{direct} = kW_{total} \times 8760$

• Determine indirect kWh/year (kWh converted to heat) by using the following equations:

$$kWh/year_{indirect(milkcooler)} = a \times 0.37 \times \frac{3.413}{b}$$

Where:

a = kWh/year_{direct} b = Equipment energy efficiency ratio (EER)

$$kWh / year_{indirect(selfserve)} = a \times \left(\frac{1}{b}\right) \times \left(0.37 \times \frac{3.413}{c}\right) + 0.63$$

Where:

 $a = kWh/year_{direct}$

b = RTU coefficient of performance (COP)

- c = Equipment energy efficiency ratio (EER)
- Sum direct and indirect values to obtain total kWh/year
- Compare Pre/Post values to obtain total lighting kWh/year savings.

Outdoor Lighting Data Analysis

- 1. Outdoor lighting calculations were based on an assumed "time on." Store hours for non-24 hr stores was assumed to be 5 am to 1 am.
- 2. "Pre" calculations were done assuming the timer was set for the worst case during the year or the winter solstice and operated at that time for the entire year.
- 3. "Post" calculations were done based on actual sunrise/sunset times during the year to simulate the photocell operation.
 - Calculate "hours on" by determining hours from store open to sunrise and from sunset to store close.
 - Calculate kWh savings per year by using the following equation:

 $kWh/year = a \times b \times c$

Where:

a = Number of fixtures

b = kW per fixture

c = Total estimated "hours on"

• Compare Pre/Post values to obtain total lighting kWh/year savings.

Population Extrapolation

Sample kWh/year savings were extrapolated to the population of n stores by using the following equation:

$$kWh/year_{totalsavings} = \frac{a \times b}{c}$$

Where:

a = Total Sample Savings

b = Total kWh/year for entire population (actual billing usage)

c = Total sample kWh/year (actual billing usage)

Results Summary

The following results account for benefits of the EMS retrofit and the case lighting LED retrofit. The estimated savings attributable to the EMS retrofit reflect the new on/off scheduling at those stores that close at night as well as the rotational load shedding for all stores.

Savings attributable to the LED retrofit are assumed to be constant regardless of outdoor air temperature. The retrofitted case lights were not trended during either the Pre or Post survey period and are assumed to be energized 24/7, regardless of store operating schedule.

During data analysis, it was noted that outside air dampers on all sampled RTU's were shut and not operating.

A summary of the estimated annual savings from the 5 sampled stores is shown in the Table 1, broken out by the HVAC and refrigeration savings expected from the EMS system and the refrigeration LED case lighting.

Table 1

Sile Sile	EMS Restration Rate	Case LEO Lighting	Resization Rela
Site 1	68%	106%	108%
Site 2	27%	108%	74%
Site 3	67%	103%	84%
Site 4	99%	68%	76%
Site 5	56%	106%	99%
	Ave	erage Sample RR =	88%

Realization rates for the EMS and refrigerated case LED ECM's at the sampled stores are noted in Table 2. On average, the sampled stores achieve a realization rate of 88%.

Ta	ble	2
0.003		-21 C 24

	Resilzation	Retes	
Site	EMS Realization Rate	Case LED Lighting Realization Rate	Total Realization Rate
Site 1	68%	106%	108%
Site 2	27%	108%	74%
Site 3	67%	103%	84%
Site 4	99%	68%	76%
Site 5	56%	106%	99%
	Ave	rage Sample RR =	88%

When extrapolated to the entire population of n stores, the realization rate dropped slightly to 77%. The overall population realization rate was determined by dividing the estimated population savings by the total expected kWh savings. A summary of the estimated annual savings for all UDF stores is shown in Table 3.

Ta	ble	3

Sample Total Usage	1729120	kWh
Population Savings	3775031	kWh
Total Population RR	77%	

Evidence of peak demand reduction is shown in Table 4. Peak demand from actual billing data was compared from 2009 to 2010 in the months of June, July, and August. The greatest peak demand reductions were noted in the month of July.

Table 4

	in the mand Real	iction (2009 to 2010	
	June	July	August
	(WM)	(kW)	(KW)
Site 1	2.4	7.2	6
Site 2	8	9.8	5.8
Site 3	9.6	10,4	8
Site 4	2.97	2.9	1.98
Site 5	2.2	2.2	0.8

The average peak demand reduction is 6.46 kW per store. Total peak demand savings over the n store project is 588 kW.

Figures 1-5 depict graphs of energy consumption and savings for the metered equipment (HVAC and refrigeration) in each of the sampled stores over the course of 1 year.

Case No. 13-1129-EL-EEC Appendix D Page 82 of 339

Figures 6-16 depict kWh/day vs. average daily outside air temperature for the 5 sampled stores. The rooftop units were the only load that showed a strong temperature dependence. The RTU loads were separated from the r kWh/day were then extrapolated for the year by substituting TMY3 outside air temperatures into the linear regression equations for both pre and post ECM install.

Case No. 13-1129-EL-EEC Appendix D Page 86 of 339

Site Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

T STRUET TO JOC	rander roject cavings and realization rate							
Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
3,775,031	4,832,346	0.78	588	552	1.07	588	0	N/A

Final Project Savings and Realization Rate

Case No. 13-1129-EL-EEC Appendix D Page 88 of 339

Site 6

Refrigerated Case Lighting Retrofits

M&V Plan Results Summary

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED IN: March 2011

INTRODUCTION

Architectural Energy Corporation was hired by TecMarket Works to evaluate the Duke Energy custom incentive evaluation program for 60 **Sector 100** stores in the Cincinnati area. Of the population, five specific stores were selected for sampling and data-logging. The following ECM measures were the target of the data analysis:

LED refrigerated case lighting was the target of the data analysis. Fluorescent case lighting was replaced by LED case lighting, controlled by motion sensors.

OBJECTIVES

The specific objectives of this M&V project were to verify the actual annual gross kWh savings, as well as the summer peak kW savings associated with the lighting retrofits.

Post data was obtained from the following 5 stores:

Store	<u>Suburb</u>	Address	<u>City</u>
1			
2			
3			
4			
5			

DATA PRODUCTS AND PROJECT OUTPUT

- Average pre/post load shapes by daytype for controlled equipment
- Summer peak demand savings
- Annual Energy Savings

M&V OPTION

IPMVP Option A

DATA ANALYSIS

5. Convert time series data on logged equipment into post average load shapes by daytype. Estimate peak demand savings.

Case No. 13-1129-EL-EEC Appendix D Page 90 of 339

FIELD DATA POINTS

Calendar schedule:

• Post data should be gathered during a time period when the store is expected to operate under normal conditions (i.e., not during the holidays)

Store survey data:

- Store #
- Survey all cases and condensing units that are part of the retrofit project for store • Case lighting survey
 - number of LED sticks or fluorescent lamps
 - Case lighting on/off schedule (PRE only)
- Record locations of installed loggers by logger number and case name or number
- Photos
 - o store front
 - o typical case front and typical condensing unit
 - o typical logger installation

Time series data on controlled equipment:

• Lighting status loggers on all cases that are part of the retrofit project (set up for 3 week deployment.)

VERIFICATION AND QUALITY CONTROL

- 16. Visually inspect time series data for gaps
- 17. Compare readings to nameplate values; identify out of range data

RECORDING AND DATA EXCHANGE FORMAT

11. Excel spreadsheets

DATA ANALYSIS SUMMARY

Refrigerated Case LED Lighting Data Analysis

3. A survey which included lighting fixture type, count and wattage was conducted for each of the 5 sampled locations.

- 4. The following calculations were performed for each piece of logged equipment for both the pre- and post-logged interval data:
 - Use the following formula to obtain total fixture kW:

$$kW_{total} = a \times \frac{b}{1000}$$

Where:

a = Number of fixtures b = Fixture wattage

• Determine direct kWh/year (kWh consumed by lighting) by using the following equation:

$$kWh/year_{direct} = kW_{total} \times 8760 \times F$$

Where:

F= percentage of time that the lighting equipment is ON. For the PRE- measurements, this number is 100%. For POST- measurements, the number is less than 100%, and originates from the logger data collected.

• Determine indirect kWh/year (kWh converted to heat) by using the following equations:

 $kWh / year_{indirect(milkcooler)} = a \times COP$

Where:

a = kWh/year_{direct} COP = Equipment energy efficiency (Coefficient of Performance)

- Sum direct and indirect values to obtain total kWh/year
- Compare Pre/Post values to obtain total lighting kWh/year savings.

Population Extrapolation

Sample kWh/year savings were extrapolated to the population of 60 stores by using the following equation:

Case No. 13-1129-EL-EEC Appendix D Page 92 of 339

 $kWh/year_{totalsavings} = \overline{a} \times b$

Where:

 \overline{a} = Average kWh/year savings per sample LED stick b = Total number of LED sticks installed

RESULTS SUMMARY

The following results account for benefits of the case lighting LED retrofit. The estimated savings attributable to the LED retrofit are assumed to be constant regardless of outdoor air temperature. The retrofitted case lights were trended only during the Post survey period, as the schedules during the Pre period assumed to be energized 24/7, regardless of store operating schedule.

During data analysis, it was noted that outside air dampers on all sampled RTU's were shut and not operating.

A summary of the estimated annual savings from the 5 sampled stores is shown in the Table 1, broken out by the consumption and demand savings from the LED case lighting measure.

Store	Pre-Runtime	Post- Runtime	Total kWh Savings/Year	Peak Demand Savings (kW)
1	8,760	7,936	120,607	13
2	8,760	5,825	146,175	15
3	8,760	8,716	132,830	15
4	8,760	8,699	143,045	16
5	8,760	6,517	133,327	14
Average	8,760	7,539	135,197	14.6

Table 1

Figures 1 and 2 show example hours-of-operation profiles for the retrofitted LED case lighting, as controlled by motion sensors. Figure 1 is from the floral refrigeration case in Store 1, while Figure 2 is from one of the refrigerated cases in Store 2.

Figures 3, 4, and 5 display images of the lighting and data logging operations.

Case No. 13-1129-EL-EEC Appendix D Page 94 of 339

Figure 10: Mounting position of a light data logger.

Figure 11: One of the sampled refrigerated cases.

Case No. 13-1129-EL-EEC Appendix D Page 95 of 339

Figure 12: Store.

RESULTS

Store 1

Knowns:						
Compressor COP:	0.35					
Existing Florescent:	248 lamps	58 watts	34.384	Lighting only		
Base runhours:	8760 hours		19.42	Lighting and	refrigeration to remove heat	
New LED:	231 sticks	20 watts	4.62	Lighting only		
motion sensor savines	0.09404.96	of orior runhours	6.74	Lighting and	refrigeration to remove heat	
runtime of LED:	7936 hours			enginen ig anno	in the second	
	/ 550 110/2/3		13 19	KW.	170305 124 KIMA SEEDE	
Evisting Land of Closeroom	-		13, 10	N. T	TODOLOGI KWIN BEFORE	
Eusting coad of Piorescen						
Lamp wattage + Kerrigerat	ion load because	ot lamp wattage in the ca	ise;			
[254 lamps * 58w/lamp * 8	760 hours/year*1,	/ 1000 watts/kW} + { 254 ;	amps * 58w/lamp * 87	50 hours/year	"1/1000 watts/kW]"0.35 COP}	
	170,105 kWh/	/ear				
New Load of LED:						
Stick wattage + Refrigerati	on load because o	of stick wattage in the case	e:			
[224 sticks * 20w/stick *87	50 hours/year * 1/	1000 watts/kW *.7 ontime	e] + {[224 sticks * 20w/	stick *8760 ho	urs/year * 1/1000 watts/kW *.7 ontime]	* 0.35 COP}
	49,498 kWh/y	/ear				
					49498.1393 KWH AFTER	
Energy Savings from Flore:	cent to LED Case I	Lighting:	13.18 kW			
-						

120,607 KWH SAVINGS

.

170,105 49,498 • 120,607 kWh/yaar

Store 2

Knowns:					
Compressor COP:	0.35				
Existing Florescent:	267 Jamps	58 watts	15.486 Lighting of	only	
Base runhours:	8760 hours		20.91 Lighting	and refrigeration to remove heat	
New LED:	235 sticks	20 watts	4.7 Lighting c	only	
motion sensor savings:	0.335 % of prior	runhours	6.35 Lighting	and refrigeration to remove heat	
runtime of LED:	5825 hours				
			14.56 KW	183137.436 KWH BEFORE	
Existing Load of Profescer	nti Alter di schi di di				
Lamp wattage + Keingera	ition load because of lamp w	attage in the case:	Bullome # 8760 hours (
[254 lamps Saw/lamp *	a/ou nours/year* 1/ 1000 wat	(204 Jamps - 5	ew/ismp - 6760 neurs/y	ear 1/ IGE/ watts/ kwj 10.35 COP}	
	185,157 KWN/year				· ·
Nau I and of 150s					
Stick wattage + Refrigeral	tion load because of stick w	stage in the race			I
1734 sticks * 20w/stick *8	760 hours /vear * 1/1000 wat	nuise in me cose. ht/kW = 7 ontimel + //77	A sticks * 70w/stick *876	Ghours/wear # 1/1000 watts /kW *	7 optime1 # 0 35 COP1
Tetabolity solelander o	26 967 kWh/wear	Given is optimely first	450CK3 204/50CK 0/0	Chousyyea: 1/1000 waits/km	romaniej - 0.35 COrj
+	Suppose Reality year	· ·	·	36067 162 MARH ASTER	• • •
· · · · ·		e e e e e	a an	SUSULIUS KITTER	
Energy Savines from Flor	scent to LED Case Lighting:	14	.56 KW		
and a set of the second se	183.137 36	967 = 146.	175 kWh/year	146.175 KWH SAVINGS	
Site 3					
		· ·			
				· · · · ·	
Knowns:					
Compressor COP:	0.35				
Existing Florescent:	276 Tamps	58 watts	16.008 Lighting o	only	
Base runhours:	8760 hours	and an and a second	21.61 Lighting	and refrigeration to remove heat	
		1			
New LED:	240 sticks	20 watts	4.8 Lighting o	inly	e e e a ser e se e se e se e se e se e s
motion sensor savings:	0.005 % of prior i	unhours	6.48 Lighting	and refrigeration to remove heat	
runtime of LED:	8716 hours		1		
			15.13 KW	189310.608 KWH BEFORE	
Existing Load of Florescer			and a second second	and the second second	a an
Lamp wattage + Refrigera	tion load because of lamp w	attage in the case:			
(254 lamps * 58W/lamp *)	8/60 hours/year*1/1000 wat	(\$/KWJ + ([254 lamps * 5	sw/lamp * s/ou nours/ye	ear 1/1000 watts/kwj=0.35 COPj	
	189,311 KWN/YEW		and the second second		
Manu Load of 1679				1	· · ·
Stick wattage + Defricerent	ion land because of stations	ttage in the care.			
1774 eticke # 20w/etick #0	Hon road because of stick wa	www.www.wom. www.www.wom.	l sticks 7 70w/stick #9760	hours waar * 1/1000 watte /M/ * 1	Continual # 0.35 COPI
LEE- SUCKS - 20W/SUCK - 8/	56 A91 Mark August	3/514 ./ URINE + 1(22		o nours/year 1/1000 watts/kw *	onomal . 0.55 CON
1. A.	TOWART VIEW ACS		10 - C C C C C C C C	SEARD 975 MARI ATTER	
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		JOHOLSTO RUITAFIEN	
Energy Sindney from Eler	scent to LFD Case (letting	16	13 KW		
annan Mit mannen Mit versiegt zichtet	199 211 . 54	481 * 123	D with higher	132 830 KINH SAVING	
	- 20	ورغيتين – مريد	and a start of Keeler	134,000 KWH 34VINU3	

Site 4

14					
Knowns:	4.75				
Compressor COP:	0.35				
Existing Florescent:	301 Jamps	58 watts	17.458 Lighting of	ulv	
Base runhours:	8760 hours		23.57 Lighting a	nd refrigeration to remove heat	
New LED:	270 sticks	20 watts	5.4 Lighting or	1V	
motion sensor savings:	0.007 % of pric	or runhours	7.29 Lighting a	nd refrigeration to remove heat	
runtime of LED:	8699 hours			•	
		1	16.28 KW	206458.308 KWH BEFORE	1
Existing Load of Florescent	1				
Lamp wattage + Refrigerati	on load because of lamp	wattage in the case:			
[254 lamps * 58w/lamp * 8]	60 hours/year*1/1000 w	atts/kWI + ([254 lamps	* 58w/lamp * 8760 hours/ye	ar*1/1000 watts/kW]*0.35 COP}	
·	206.458 kWh/year				
New Load of LED:					
Stick wattage + Refrigeratio	n load because of stick	wattage in the case	· · · · · ·		
1224 sticks * 20w/stick *876	0 hours/waar * 1/1000w	atts /kW * 7 optime} +/	274 sticks * 20w/stick *8760	hours/year * 1/1000 watts/kW * 7/	natime i * 0 35 COPI
(and seems now) seems of	61.413 Wh/year	acoten a onemel . I	22430000 200030000	the strengthere in	success and a
	anian stant in			63413 3772 KWA AFTER	
		•	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	03413.3772 RUM AFTER	
Engrav Caulage from Blome	nent te IED Care Linkie	1.20	16 78 144		
enerth mendle unit tioles	10C ALO	C2 A12	DOLD NOT LAND LINES		1. A.
CHA C	200,430	(CS)443	Shares was in Acar	145,045 KWH 3AVINO3	
Site S			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	and the second second	
Knowns:					1. A.
Compressor COP:	0.35				
- / · · ·		·	·		
Existing Florescent:	248 lamps	58 watts	14.384 Lighting or	hy	
Base runhours:	8760 hours		19.42 Lighting a	nd refrigeration to remove heat	
· · · · ·			· · · · · · · · · · · · · · · · · · ·		
New LED:	209 sticks	20 watts	4.18 Lighting or	λly	
motion sensor savings:	0.256 % of pric	or runhours	5.64 Lighting a	nd refrigeration to remove heat	
runtime of LED:	6517 hours				
			13.78 KW	170105.184 KWH BEFORE	
Existing Load of Florescent					
Lamp wattage + Refrigerati	on load because of lamp	wattage in the case:	A State of the		
(254 lamps * 58w/lamp * 87	'60 hours/year* 1/1000 w	ratts/kW] + ([254 lamps '	* 58w/lamp * 8760 hours/ye	ar*1/1000 watts/kW]*0.35 COP}	
4	170,105 kWh/year				
New Load of LED:	· · · · · ·				
Stick wattage + Refrigeratio	in load because of stick	wattage in the case:			
[224 sticks * 20w/stick *876	0 hours/year * 1/1000 wa	atts/kW *.7 ontime] + {[224 sticks * 20w/stick *8760	hours/year = 1/1000 watts/kW *.7 c	ontime} * 0.35 COP}
	36,778 kWh/year				
				36777.9139 KWH AFTER	
Energy Savings from Flores	cent to LED Case Lighting	p - 2 - 2	13.78 kW		
	170,105 -	36,778 = 13	8,327 kWh/yem	133,327 KWH SAVINGS	

Results Summary

The data from the five sampled stores were combined to obtain an average savings per LED stick installed. The results are summarized below:

Store	kWh	kW	Sticks	kWh/stick	kW/stick
1	120,607	13.2	231	522.1	0.057
2	146,175	14.6	235	622.0	0.062
3	132,830	15.1	240	553.5	0.063
4	143,045	16.3	270	529.8	0.060
5	133,327	13.8	209	637.9	0.066
Total	675,984	72.9	1,185	570.5	0.062

The sample produced an average savings of 570.5 kW and 0.062 kW per LED stick installed. The total project savings were based on a total of 9,802 LED sticks installed.

	Expected	Evaluated
Number of Sticks	9802	9802
kWh per stick	611.3	570.5
kW per stick	0.070	0.062
Total kWh	5,991,963	5,591,557
Total kW	686	603

Project Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
5,591,557	5,991,963	0.93	603	686	0.88	603	686	0.88

Case No. 13-1129-EL-EEC Appendix D Page 99 of 339

Site 7

Refrigeration Compressor Updates

M&V Plan Results Summary

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED IN: March 2011

INTRODUCTION

Architectural Energy Corporation was hired to evaluate the Duke Energy custom incentive program addressing upgrades to the **Exercise Content** refrigeration equipment. The measures were to replace an old refrigeration compressor rack and condenser systems (Rack 'A' and Rack 'B') with two new more efficient systems.

Energy savings were estimated at 50% and 8% of current use, for Rack 'A' and 'B' respectively. Pre and post-retrofit power measurements on controlled equipment were conducted on a sample of the rack compressors to validate energy savings.

GOALS AND OBJECTIVES

The project goal was electric use savings of 190,998 kWh annually. The specific objective of this M&V project was to complete a pre and post implementation site survey of the compressor racks in order to determine the true power reduction. Ultimately, a realization rate can be determined to validate the intended energy savings.

PROJECT CONTACTS

Approval shall be requested from the two Duke Energy contacts listed below prior to making direct contact with the Customer or undertaking work on this M&V Plan.

Duke Energy M&V Administrator	Frankie Diersing	
Duke Energy Account Manager	Ira Poston	
Customer Contact		
Site Location		

DATA PRODUCTS AND PROJECT OUTPUT

- Average pre/post load shapes by day type for controlled equipment.
- Model predicting pre/post kWh as a function of outdoor temperature.
- Summer peak-demand savings.
- Annual energy savings verification.

M&V OPTION

IPMVP Option A

DATA ANALYSIS

6. Convert time series data on logged equipment into pre/post average load shapes by daytype.

Refrigeration Rack and Condenser kW

7. Regress data into a temperature dependent load model. Form of the regression equation is:

$$kWh/day = a + b \times T_{ave}$$

Where:

kWh/day = Daily energy consumption

 T_{avg} = Daily average dry-bulb temperature (°F)

- a, b = Constants determined during regression development
- 8. Apply equation above to TMY3 data processed into average dry-bulb temperature for each day of the year.
- 9. Create diagnostic plots
 - a) Plot time series fan and compressor kW; look for cycling

FIELD DATA

Applies to Pre and Post Installation:

- 7. Survey Data
 - Rack nameplate and photo
 - Condenser nameplate and photo
 - Compressor nameplate and photo
- 8. One-time Measurements
 - Compressor and condenser kW, amps and power factor (fan and fan plus compressor)
 - Case or walk-in temperatures
- 9. Time Series Data on Controlled Equipment
 - For each Rack A and B, obtain amps from a sample of the Rack compressors and the remote condensing unit.
 - Outside air temperature
- 10. Set up loggers for 5 minute instantaneous readings. Deploy for 3 weeks. Anticipate installing:
 - (1) Onset Weatherstation
- (1) U-12 with 4 CTs on Rack 'A'
- (1) U-12 with 4 CTs on Rack 'B'
- (1) U-12 with 1 CT on remote condensing unit serving Rack 'A'
- (1) U-12 with 1 CT on remote condensing unit serving Rack 'B' (if remote condensing units are in close proximity, then maybe can get away with a single U-12 for both)

DATA ACCURACY

Measurement	Sensor	<u>Accuracy</u>	Notes
Temperature	MDL thermistor	±0.5°	
Current	Magnelab CT	±1%	> 10% of rating

VERIFICATION AND QUALITY CONTROL

18. Visually inspect time series data for gaps.

19. Compare readings to nameplate values; identify out of range data.

RECORDING AND DATA EXCHANGE FORMAT

- 12. Hobo U-12 binary files.
- 13. Excel spreadsheets.

RESULTS SUMMARY

DATA ANALYSIS

5. Verify Proposed Measures Were Implemented:

The compressor racks were installed as planned at **to** operate the refrigeration system.

6. Calculation Methodology:

Power measurements were first collected and compared for the pre-install and post-install scenarios. A regression equation was determined for each case and they are shown here.

Making energy consumption (kWh) a function of outside air temperature allowed for an approximation the refrigeration system energy consumption for the entire year based on Version 3 of the Typical Meteorological Year (TMY3) weather data. An example of this TMY analysis is displayed in the table here.

NOAA	NOAA	NOAA	NOAA	CALC	CALC	CALC	CALC
Date	Time	Dry Bulb	RH	Dry Bulb	PRE input	POST Input	Input Savings
[M/D/Y]	[H:M]	[C]	[%]	[F]	kWh/Day	kWh/Day	kWh/Day
1/1	12:30	-2.4	67.8	27.6	1994.3	1294.8	699.5
1/2	12:30	-5.7	69.4	21.7	1923.2	1287.2	636.0
1/3	12:30	-7.7	70.5	18.2	1880.8	1282.7	598.0
1/4	12:30	-1.4	72.8	29.4	2016.1	1297.1	719.0
1/5	12:30	3.1	64.4	37.6	2114.7	1307.5	807.2
1/6	12:30	0.5	68.6	32.9	2058.7	1301.6	757.1
1/7	12:30	1.7	73.7	35.1	2085.4	1304.4	781.0
1/8	12:30	-0.5	59.2	31.2	2037.4	1299.3	738.1
:	:	:	;	:	: :	:	: :
:	:	:	:	:	: :	:	: :

Table 12: Daily Extrapolation of the Regression Equations in Figure 1.

	1	lotai s			845,199	485,011	360,188
12/31	12:30]	3.1	77.5	37.6	2115.7	1307.6	808.1
12/30	12:30	6.7	67.3	44.0	2192.8	1315.8	877.0
12/29	12:30	1.2	65.3	34.1	2073.0	1303.1	769.9
12/28	12:30	-4.8	78.0	23.3	1942.7	1289.3	653.4
12/27	12:30	-3.2	67.2	26.3	1978.7	1293.1	685.6
12/26	12:30	0.2	54.7	32.4	2052.5	1300.9	751.6

The figure below shows these extrapolated results in total.

Figure 14: Annual Power Consumption Reduction from This Measure.

Cost savings rates applied to the energy savings reference the \$0.10 per kWh mentioned in the rebate application PDF and it is also applied in the calculation to approximate cost savings.

Peak demand savings were estimated from the regression equations. According to the TMY3 dataset, the daily average temperature on the hottest day of the year is 88.1°F. Evaluating the pre and post regression equations at 88.1°F yields the following:

Daily Average				
Temperature	kWh/day pre	kWh /day post	kWh/day Savings	Avg kW savings
88.1	2726.6	1372.	1354.	56.4

Refrigeration compressor hourly load data are generally constant over the day, so the daily average demand savings is a reasonable estimate of the peak hourly savings. Note: the application did not claim any kW savings for this project.

7. Savings Verification and Realization Rate:

Compare Pre/Post values to obtain total kWh/year savings. Once the savings are calculated, the realization rate is calculated by the following formula:

Realization Rate = $kWh_{actual} / kWh_{application}$

CALCULATION OUTPUT

The following Excel Tables demonstrate real achieved savings and summarize the results of the refrigeration system retrofit. For additional details, see included post-retrofit measurement and calculation spreadsheets.

Reported in Application:

Designation	Vil	Units
Pre-install Annual Energy Use	812,177	kWh
Post-install Annual Energy Use	621,179	kWh
Expected Savings	190,998	kWh
Converted Cost Savings	\$ 19,100	

Reported Following Installation:

Descrition	Vile	Linis .
Pre-install Annual Energy Use	845,199	kWh
Post-install Annual Energy Use	485,011	kWh
Realized Annual Energy Savings	360,188	kWh
Converted Cost Savings	\$ 36,019	

kWh Realization Rate: 360,188 / 190,998 = 189%

*Notes:

- A rate of \$0.10 per kWh was used to estimate cost savings, taken from the calculation Excel file and use at the time of the application. (See page 24-26 of the application PDF)

Final Project Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Case No. 13-1129-EL-EEC Appendix D Page 106 of 339

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
360,188	190,343	1.89	56	34	1.65	56	10	5.86

Site 8 M&V Summary

Schools "House Bill" Application

Replacement of Exterior Lighting Fixtures Prepared by Dan Bertini December, 2011

Introduction

This document summarizes the 3rd-party M&V activity and findings for a Non-Residential Custom Incentive application submitted by Schools. Capital funding for the project was provided by the Ohio State Legislature. The application covers 21 schools in the measures covered in the application. The three measures in the application are:

ECM-1 - Electrostatic "Dynamic" Filters

• Electrostatic "Dynamic" filters containing activated carbon media will reduce the required amount of ventilation air by code thereby reducing associated energy costs to condition outdoor air.

ECM-2 - Replacement of Exterior Lighting Fixtures

• Exterior lighting fixtures will be replaced with new lower wattage induction type incandescent fixtures.

ECM-3 - Summer Ventilation Controls

• Implementation of reduced summer outdoor air ventilation schedules via the DDC control system to reduce ventilation in select buildings during summer months when school is not in session, thereby reducing associated energy costs.

Goals and Objectives

The projected savings goals identified in the application are:

ЕСМ	Vendor Estimated	Duke Projected
1	819	-
2	475,031	······································
3	109,276	-
Total	642,515	699,752

The objective of this M&V project will be to verify the actual:

- Annual gross kWh savings
- Summer peak kW savings
- kWh & kW Realization Rates

Project Contacts

Duke Energy M&V Admin.	Frankie Diersing	
Duke Energy BRM	Mike Harp	
Customer Contact		

Site Locations/ECM's

Site	Address	Sq. Footage/Age	ECM's Implemented
		62675/22	1,2,3
		74652/18	1,2,3
		64543/32	2
		85197/32	2
		76612/16	2,3
		79612/16	2,3
		76138/3	2,3
		76138/3	2,3
		60620/18	2,3
		60070/20	2,3
		66792/20	2,3
		83903/48	2
		75874/37	2
		126903/2	2
		22616/34	2
		50600/49	2
		113777/7	2
		27000/7	2
		90901/7	2
		320551/13	2
		320551/13	2

M&V Option

IPMVP Option A

Data Analysis

• ECM-2

Calculated kWh/year saved for each fixture type as follows:

 $kWh/year = a \times b \times c$

where

a = fixture number

b = fixture wattage savings

c = yearly operating hours

Results of Field Survey and Data Logging

• ECM-2

Fixture counts and their respective wattages were obtained at a sample of 9 of the 21 facilities identified in the project. Actual observed fixture counts and wattages matched the expected counts almost perfectly, the only exception being at **sector and wattages**, where 21 of the highest wattage pole fixtures were expected but only 17 were counted. The actual saved wattage therefore amounted to 98% of expected. However, replacement work has yet to be carried out at 2 of the 9 schools sampled. In fact, according to the vendor, as of this date work has yet to be carried out at 3 schools in all. Final completion is scheduled to be in January, 2011.

In the application all the lights were assumed to operate 4004 hours per year. By contrast, actual operating hours of 2913 and 3630 were logged at 2 of the facilities, respectively. By weighting them equally, since the two schools' lighting wattages are equal, the actual operating hours are therefore assumed to be 3272 hrs, or 82% of expected.

ECM-1 and ECM-3.

Savings for ECM-1 are small (0.1%) compared to the total project savings, thus the evaluation team accepts the vendor estimated savings. Savings for ECM-3 represent about 19% of the savings. Since the savings for ECM-3 occur over the summer, it was not possible to evaluate this measure. The vendor estimated savings were accepted.

Realization Rate and Annual Savings

- ECM-2
 - o 380,928 kWh/yr
 - o Realization rate: 80%

The savings for all measures at the nine sites where M&V was conducted are summarized below:

ЕСМ	Vendor Estimated	Evaluated
1	819	819
2	475,031	380,928
3	109,276	109,276
Total	585,126	491,023
Realization Rate		0.84

Savings Estimates from M&V Sample

The savings from the evaluated sites are extrapolated to the full project as shown below:

Full Project Savings

Parameter	kWh	Non-coincident kW
Total project estimated savings	699,752	63
Realization rate from M&V sample	0.84	0.98
Total project evaluated savings	587,214	61

Note: since the ECM-2 savings occur at night, the coincident peak savings are zero. ECM-1 peak savings are negligible. It was not possible to evaluate the peak demand savings associated with ECM-3.

Project Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
587,214	698,742	0.84	61	63	0.98	0	63	0.00

Case No. 13-1129-EL-EEC Appendix D Page 111 of 339

Site 9

Refrigerated Lighting Replacement

M&V Report

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

PREPARED IN: December 2011

Note: This project has been randomly selected from the list of applications for which incentive agreements have been authorized under Duke Energy's Smart \$aver® Custom Incentive Program.

The M&V activities described here are undertaken by an independent third-party evaluator of the Smart \$aver* Custom Incentive Program.

Findings and conclusions of these activities shall have absolutely no impact on the agreed upon incentive between Duke Energy and **Energy**.

Case No. 13-1129-EL-EEC Appendix D Page 112 of 339

INTRODUCTION

This report addresses M&V activities for a refrigerated case lighting retrofit at the theory of the transmission of transmission of the transmission of transmission o

ECM-1 – Refrigerated Lighting

The project involves a replacement of (77) 400 watt metal halide lamps with (35) Orion ENCF6PSWS 6 lamp T8 Cooler fixtures and (41) Orion ENCF6PIDS 6 lamp T8 Freezer fixtures. All fixtures are equipped with occupancy sensors. Freezer fixtures are equipped with dual switching; leaving 3 of the 6 bulbs on at all times even after occupancy sensors are activated.

GOALS AND OBJECTIVES

The projected savings goals identified in the application are:

Application Proposed Annual savings (kWh)	Application Proposed Peak Savings (kW)	Duke Projected Annual Savings (kWh)	Duke Projected Peak Savings (kW)
183,936	19	199,139	22

The objective of this M&V project were to verify the actual:

- Annual gross kWh savings
- Peak kW savings
- Summer Utility coincident peak kW savings
- kWh & kW Realization Rates

PROJECT CONTACTS

Duke Energy M&V Admin.	Frankie Diersing	
Duke Energy BRM	Roshena Ham	
Customer Contact		

SITE LOCATION

Address	

DATA PRODUCTS AND PROJECT OUTPUT

- Post retrofit survey of lighting fixtures
- Post retrofit time series data on logged equipment converted into average load shapes by day type
- Peak demand savings
- Coincident peak demand savings
- Annual Energy Savings

M&V OPTION

IPMVP Option A

M&V IMPLEMENTATION SCHEDULE

• Monitoring period included both weekday and weekend periods.

FIELD SURVEY POINTS

Post – installation

Survey data (for all equipment logged)

- Lighting survey
 - o Fixture Type
 - o Fixture Count
 - o Fixture wattage
 - o Current lighting on/off scheduling
- Conducted the Post retrofit survey after the customer performed the lighting retrofit.
- Spot measured the lighting load connected to the circuit by measuring the kW load and current of the circuit during the post retrofit survey. Spot measured the lighting load at the panel.
- Pre-retrofit operating hours and pre fixture information was recorded from the application. Interviewed the building owner/operator to verify pre fixture information in application is correct.
 - Mon-Sat; Half-day on Sunday (8,112 hours, pre-retrofit)
- Determined how lighting is controlled and recorded the controller settings

- During the post survey, verified that all existing fixture specifications and quantities are consistent with the application. Differences are noted below:
 - Cooling shipping area used five(5) 4-lamp versus five (5) 6-lamp fixtures.
 Remaining quantities and types are consistent
- During the post survey, verified that all pre (existing) fixtures were removed.
 Yes
- During the post survey, verified that all post (new) fixture specifications and quantities are consistent with the application.
 - o Yes
- Determine what holidays the building observes over the year, and if the lighting zones are disabled during the holidays.
 - o 5 holidays per year; lighting not disabled during holidays

Collected one-time measurements for all equipment logged (to establish ratio of kW/amp and simultaneous logger amp/temperature readings)

• Lighting circuits volts, amps, kW and power factor

DATA ACCURACY

Measurement	Sensor	Accuracy	Notes
Current	Magnelab CT	±1%	> 10% of rating

FIELD DATA LOGGING

- ECM-1
 - 1. Deployed dataloggers during post survey to measure operating hours
 - a. Deployed current measurement CT loggers to measure current at the panelboard, logging individual circuits.
 - 2. Set up loggers for 5 minute instantaneous readings and allowed loggers to operate between October 11 to November 2, 2011.

LOGGER TABLE

The following table summarizes all logging equipment used to measure the above noted ECM's:

Area	Hobo U-12	20 amp CT's	Post- Monitoring Notes	# of fixtures monitored
Cooler #1	1	1	1 chan	8
Cooler Shipping		1	1 chan	4
Cooler #2			Not Monitored	
Freezer #1 (Dual Switched)	1	2	2 chan	6
Freezer Shipping (Dual Switched)		2	2 chan	5
Freezer #2 (Dual Switched)	1	2	2 chan	8
Cooler Meat			Not monitored	
Total		8		

DATA ANALYSIS

• ECM-1

1. "Synthesized" Pre time series data by using the following equation:

$$\frac{kWh}{year_{pre}} = No._{fixtures} * Watts_{fixture} * HoursOn_{year}$$

- 2. Converted time series data on logged equipment into pre/post average load shapes by day type.
- 3. The Post annual kWh was calculated using the following equations:

Weekdays:

Weekends:

$$\frac{kWh}{year_{post}} = \sum \left| \frac{kW_{spot}}{Ampacity_{spot}} * Current_{ume-measured} * \frac{5\min_{intervals}}{\frac{60\min}{hour}} * \frac{24hour}{day} * \frac{104days}{year} \div \frac{WEdays}{monitoringperiod} \right|$$

Annual Total:

$$\frac{kWh}{year} = \sum \left[\frac{kWh}{year} + \frac{kWh}{year} + \frac{kWh}{year} + \frac{kWh}{year} \right]$$

4. The annual kWh *saved* was calculated using the previous data in the following equation:

 $\frac{hWh_{saved}}{year} = \frac{kWh_{pre}}{year} - \frac{kWh_{post}}{year}$

Interactive effects of lighting savings on refrigeration system were also included.

VERIFICATION AND QUALITY CONTROL

- 20. Visual inspection of time series data identified no problems
- 21. Compared readings to nameplate and spot-watt values and identify no problems

RECORDING AND DATA EXCHANGE FORMAT

14. Hobo logger binary files

15. Excel spreadsheets

POST DATA RESULTS

The post-data results were based on three loggers deployed as shown in the lighting logger table above. The shipping cooler area had different fixtures than the other areas, being 4-lamp fixtures as opposed to the 6-lamp fixtures installed elsewhere. In summary a total of (77) 400watt metal halide fixtures were replaced with 71 high bay, 6 lamp T8 fixtures with occupant sensor control, and five 4 lamp T8 fixtures in the Cooler Shipping area. There are 35 new fixtures in cooler area and 41 fixtures in freezer area. The pre-install estimated savings for replacing the (77) metal halides is 183,936 kWh per year.

The following table summarizes the energy and demand savings resulting from these ECMs. The projected annual savings based on post install trend data is 196,398 kWh based on the lighting savings alone, and 247,604 kWh when the additional savings due to reducing the refrigeration load is included. The refrigeration load reduction was based on a chiller efficiency of 0.8 kW/ton for the coolers, and 1.0 kW/ton for the freezers.

	Existing	Fixtures I	Replaced		Post Retrofit Results			Lighting	Savings	Refrigeration Savings		Total S	avings	
						Average	Equivalent		Energy	Demand	Energy	Demand	Total	Total
			Annual	Annual		Watt per	Full Load	Annual	savings	Savings	savings	Savings	Energy	Demand
Area	Qty	Watts	Hours	kWh	Qty	Fixture	Hours	kWh	(kWh)	(kW)	(kWh)	(kW)	Savings	Savings
Cooler	30	465	8112	113,162	29	221; 145	5,202	31,371	81,791	7.9	18,610	1.8	100,401	9.7
Freezer	47	465	8112	177,288	47	221	6,035	62,681	114,607	11.5	32,596	3.3	147,202	14.7
Total	77			290,450	76			94,053	196,398	19.4	51,206	5.1	247,604	24.5

The realization rate for these ECMs relative to the savings claimed in the application is shown in the following table. The energy and demand savings exceed the projected savings.

Realization Rate	Energy	Demand
Lighting only	107%	102%
Lighting and Refrigeration savings	135%	129%

The graphs below show the average daily load shapes for the monitored areas. These plots average the entire monitoring period into the three day types shown. The lights in the Cooler Shipping area are on continuously. The occupancy sensors reduce the lighting load for the other areas throughout the three day types.

Case No. 13-1129-EL-EEC Appendix D Page 118 of 339

From the monitored load profiles above, the average % of full load at 2pm on a weekday in the cooler is 85.8%, while the average % of full load at 2pm on a weekday in the freezer is 77.4%. The coincident peak kW savings are summarized below:

••••• Freezer #2

Freezer#1

Actuality Leave Semana Actuals									
Area	% full load at 2pm	Lighting CP kW Savings	Refrigeration CP kW Savings	Total CP kW Savings					
Cooler	85.8%	8.5	1.9	10.4					
Freezer	77.4%	13.8	4.0	17.8					
Total		22.3	5.9	28.2					

Coincident Peak Demand Savings

0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00

50%

40%

30%

20% 10% 0% 11.1.11

Project Savings Summary

The evaluated savings were compared to the final savings estimates from the DSMore runs. This comparison is shown in the Table below:

Case No. 13-1129-EL-EEC Appendix D Page 119 of 339

Final Project Savings and Realization Rate

Evaluated kWh Savings	Expected kWh Savings	kWh RR	Evaluated NCP kW Savings	Expected NCP kW Savings	NCP kW RR	Evaluated CP kW Savings	Expected CP kW Savings	CP kW RR
247,604	191,139	1.30	25	22	1.12	28.2	22	1.29

Case No. 13-1129-EL-EEC Appendix D Page 120 of 339

Site 10

Parking Lot Lighting Replacement

M&V Report

PREPARED FOR: Duke Energy Ohio

PREPARED BY: Architectural Energy Corporation 2540 Frontier Avenue, Suite 100 Boulder, Colorado 80301

> PREPARED IN: December 2011 Version 1.0

Note: This project has been randomly selected from the list of applications for which incentive agreements have been authorized under Duke Energy's Smart \$aver® Custom Incentive Program.

The M&V activities described here are undertaken by an independent third-party evaluator of the Smart \$aver® Custom Incentive Program.

Findings and conclusions of these activities shall have absolutely no impact on the agreed upon incentive between Duke Energy and **Sector**.

INTRODUCTION

This report addresses M&V activities for new LED parking lot lighting fixtures in 10 stores in the Cincinnati area.

The net effect was a reduction in power consumption by the lighting fixtures.

Note: ECM's have already been installed and implemented for this application. Data collection was for Post install only.

The measures included:

ECM-1 - Area Lighting

ECM-1 involves replacing lighting fixtures in the parking area of 10 **sector stores** stores. Fixtures to be replaced are as follows:

- (13) existing 250w MH fixtures will be replaced with 71w LED fixtures.
- (82) existing 400w MH fixtures will be replaced with 71w LED fixtures.
- (38) existing 1000w MH fixtures will be replaced with 138w LED fixtures.

GOALS AND OBJECTIVES

The projected savings goals identified in the application are:

Facility	Application Proposed Annual savings (kWh)	Application Proposed Peak Savings (kW)	Duke Projected savings (kWh)	Duke Projected savings (kW)
Store #58	66,576	7	-	•
Store #63	74,854	9	-	-
Store #65	43,231	5	-	-
Store #67	31,702	4	-	-
Store #71	34,584	4	-	-
Store #74	24,624	3	•	•
Store #75	37,063	5	•	-
Store #550	87,074	11	-	-
Store #551	52,200	6	-	-
Store #552	91,743	11	-	-
Total	543,651	65	543,654	62

The objective of this M&V project was to verify the actual:

Annual gross kWh savings

Case No. 13-1129-EL-EEC Appendix D Page 122 of 339

- Summer peak kW savings
- Summer Utility coincident peak kW savings
- kWh & kW Realization Rates

PROJECT CONTACTS

Approval has not yet been granted from the Duke Energy contacts listed below to plan and schedule the site visit with the Customer.

Duke Energy M&V Admin.	Frankie Diersing	
Duke Energy BRM	Terry Holt	
Customer Contact		

SITE LOCATIONS/ECM's

Store	Address	Area	250w	400w	1000w
			(71w)	(71w)	(138w)
а		2960	-	10	5
b		2800	3	6	7
С		3500	-	15	-
d		2560	-	11	-
е		3040	-	12	-
f		2640	1	8	-
g		2640	-	5	3
h		4784	3	5	9
i		4784	3	6	4
j		4784	3	4	10

DATA PRODUCTS AND PROJECT OUTPUT

- Post retrofit survey of lighting fixtures
- Summer peak demand savings
- Coincident peak demand savings
- Annual Energy Savings

IPMVP Option A