PUCO	EXHIBIT FILING	73
Date of Hearing:	2-20-13	
Case No	201-EL-ROR	
PUCO Case Caption:	the Matter of the	<u> </u>
Review of the Alt	ernative Energy Ride	!
Contained in the Ta	riffs of OhioEdison	
Company, The Cheve	land Electric Illumina	ting
Company, and The	2 Tadedo Edison Camp	any
¥ 1	Y Y	· (
List of exhibits being filed:		
OCC 10-11	1-17 2 14	
		REC
		- - - - - - - - - -
	······································	RETING DI PH 3: 54
		54
	·	
	· · · · · · · · · · · · · · · · · · ·	 .
		_
	6	—
Reporter's Signature:	2-25-13	

.

s

FILE

۰.

BEFORE THE PUBLIC UTILITIES COMMISSION OF OHIO

In the Matter of the :
Review of the Alternative :
Energy Rider Contained in :
the Tariffs of Ohio Edison: Case No. 11-5201-EL-RDR
Company, The Cleveland :
Electric Illuminating :
Company, and The Toledo :
Edison Company. :

PROCEEDINGS

before Mr. Gregory Price and Ms. Mandy Chiles, Attorney Examiners, at the Public Utilities Commission of Ohio, 180 East Broad Street, Room 11-A, Columbus, Ohio, called at 10:00 a.m. on Wednesday, February 20, 2013.

VOLUME II

ARMSTRONG & OKEY, INC. 222 East Town Street, Second Floor Columbus, Ohio 43215-5201 (614) 224-9481 - (800) 223-9481 FAX - (614) 224-5724

- - -

Case No. 11-5201-EL-RDR In The Matter Of The Review Of The Alternative Energy Rider Contained in the Tariffs Of Ohio Edison Company, The Cleveland Electric Illuminating Company, and The Toledo Edison Company

RESPONSES TO REQUEST

EA Set 1 -

INT-12 Please provide the names of the FirstEnergy personnel that were routinely involved in decisions regarding REC purchases and decisions regarding the method of procurement. For each individual, please provide:

- a. Name;
- b. Position in First Energy;
- e. Role/function with respect to RECs procurement issues;
- d. Prior experience in procurement (i.e., RECs, power supply, natural gas) on behalf of a utility;
- c. Number of years of industry experience; and
- f. Highest educational degree obtained.

Response:

- a. Dean Stathis
- b. Director Regulated Commodity Sourcing
- c. Management of the REC RFP and procurements. Interface between Navigant RFP Manager and FirstEnergy Ohio Company to purchase required number of RECS. Management approval for non-RFP purchases.
- d. Manager Natural Gas Transactions- responsibilities included procurement of natural gas for both Company-owned generating units and certain gas-fired Non-Utility Generators ("NUGs") Financial Trader, Power Supply group JCP&L and its Pennsylvania affiliates – responsibilities included identification of power supply risks and the deployment of financial hedge instruments to offset these associated risk. Manager, Commodity Sourcing Department – responsibilities included the procurement of energy, capacity and related services to support JCP&L's obligation for the provision of Basic Generation Service ("BGS"). Director, Regulated Commodity Sourcing – Current position.
- e. September 1981-Present (30,5 Years)
- f. Master of Arts degree in Economics.
- a. Richard Schreader
- b. Manager Regulated Commodity Sourcing, JCP&L and East
- c. Logistical coordination between Navigant RFP Manager and sellers of RECS to complete REC contracts and deliveries in PJM GATS. Recommend and implement other purchases outside the Navigant RFPs to fulfill the REC requirements.
- d. Risk Management emphasis on regulated procurement activities, and the associated supplier master agreements, including developing agreements for the

companies' rate filings, and executing contracts resulting from the auctions and RFP processes. Manager, PA Commodity Sourcing – Currently responsible for the design and implementation of commodity supply plans for the FirstEnergy Pennsylvania utilities.

- e. June 1977-Present (35 Years)
- f. Associate Electrical Engineering degree, and have a Pennsylvania Professional Engineering License.

BEFORE THE PUBLIC UTILITIES COMMISSION OF OHIO

)

)

)

)

)

)

In the Matter of the Annual Alternative Energy Status Report of Ohio Edison Company, The Cleveland Electric Illuminating Company and The Toledo Edison Company

In the Matter of the Application of Ohio Edison Company, The Cleveland Electric Illuminating Company and The Toledo Edison Company for a Force Majeure Determination for Their In-State Solar Resources Benchmark Pursuant to R.C. § 4928.64(C)(4)(a) Case No. 11-2479-EL-ACP

I. INTRODUCTION

Pursuant to Rule 4901:1-40-05 of the Ohio Administrative Code ("O.A.C."), Ohio Edison Company ("Ohio Edison"), The Cleveland Electric Illuminating Company ("CEI") and The Toledo Edison Company ("Toledo Edison") (collectively, the "Companies") submit their Annual Status Report ("Report") for the period January 1, 2010 through December 31, 2010 ("Reporting Period"). This Report addresses the Companies' 2010 baselines and benchmarks utilizing the methodology set forth in R.C. § 4928.64, and O.A.C. 4901:1-40 and the Companies' compliance with the 2010 Renewable Energy Portfolio Standard Benchmarks ("2010 Benchmarks") set forth in R.C. § 4928.64(B)(2) for the Reporting Period.¹ Further, pursuant to R.C. §4928.64(C)(4)(a), the Companies also include in this filing an application for a force majeure determination from the Commission related to the Companies' Ohio Solar Benchmark, the basis for which is explained in detail below.

10,

{01102443.DOC:1 }

¹ The statute also contemplates the Companies meeting an advanced energy portfolio benchmark by the year 2025 However, the report for that benchmark is not due to be filed until 2025. O.A.C. 4901-1-40-05(A)(2).

The Companies made aggressive efforts to meet their 2010 Benchmarks. As a result, the Companies are pleased to inform the Commission that they are in compliance with their statutory Non-Solar 2010 Benchmarks. Further, the Companies complied with the benchmarks of R.C. § 4928.64(B)(3) by achieving exactly half of their 2010 Non-Solar Benchmarks from in-state facilities with the other half coming from facilities located in adjacent states. As demonstrated below and in Exhibit A to this Report, the Companies met their 2010 Non-Solar Benchmarks by obtaining Non-Solar Renewable Energy Credits ("RECs").

In addition, the Companies exceeded their performance from 2009 by obtaining all of the Solar Renewable Energy Credits ("SRECs") necessary to meet the 2010 Out-of-State Solar Benchmark, including any shortfall that carried over from 2009. The Companies were able to obtain 1,629 of the 3,206 SRECs ("Ohio SRECs") that they needed to meet the 2010 Ohio Solar Benchmark. However, despite their best efforts, the Companies fell short of meeting their 2010 Ohio Solar Benchmark by 1,577 Ohio SRECs. Accordingly, along with this Annual Status Report, the Companies are requesting a force majeure determination from the Commission for the 2010 Ohio Solar Benchmark pursuant to R.C. § 4928.64(C)(4)(a).²

II. ANNUAL STATUS REPORT

O.A.C. 4901:1-40-05(A) requires that each electric utility file "an annual alternative energy portfolio status report analyzing all activities undertaken in the previous calendar year to demonstrate how the applicable alternative energy portfolio benchmarks and planning requirements have or will be met." O.A.C. 4901:1-40-05(A) also requires that the Commission

² The Companies previously filed a force majeure application on January 24, 2011, in Case No. 11-0411-EL-ACP. Subsequent to that filing, the Companies were able to secure an additional 1,517 Ohio SRECs. The Companies withdrew the application on April 11, 2011, and hereby file a new request for a force majeure determination regarding their compliance with their Ohio Solar Benchmark.

Staff conduct an annual compliance review of the electric utility's compliance with benchmarks under the alternative energy portfolio standard.

A. BASELINES

O.A.C. 4901:1-40-03(B) provides that an electric utility's baseline for compliance with the alternative energy resource requirements shall be determined using the following methodology:

... the baseline shall be computed as an average of the three preceding calendar years of the total annual number of kilowatt-hours of electricity sold under its standard service offer to any and all retail electric customers whose electric load centers are served by that electric utility and are located within the electric utility's certified territory. The calculation of the baseline shall be based upon the average, annual, kilowatt-hour sales reported in that electric utility's three most recent forecast reports or reporting forms.

į

1

ł

In compliance with Rule 4901:1-40-03(B) set forth above, the Companies calculated their total annual number of kilowatt-hours of electricity sold to their respective retail electric customers under their standard service offer ("SSO") for each of calendar years 2007, 2008, and 2009 utilizing their three most recent reporting forms (herein referred to respectively as, the "2007 Sales", "2008 Sales" and "2009 Sales")³. The Companies then averaged their respective 2007 Sales, 2008 Sales and 2009 Sales to compute their respective 2010 baselines ("2010 Baseline"). The Companies did not make any adjustments to their 2010 Baselines.

The Companies' respective 2010 Baselines, as defined in Section 4901:1-40-03(B)(2), and 2010 Benchmarks are shown on Exhibit A to this Report. The Companies' 2010 Baselines total 45,500,576 MWh based on the average of the Companies' total annual number of kilowatt-

³ The actual kilowatt hours sold in each of 2007, 2008, and 2009 were reported on the SE -1 Monthly Historical Electricity Data, Part A.

hours of electricity sold to their respective retail electric customers under their standard service offer for the prior three years (2007-09).⁴

B. BENCHMARKS

The Companies then calculated their respective 2010 Benchmarks in accordance with R.C. § 4928.64(B)(2) and O.A.C. 4901:1-40-03(A) and as amended by the Commission in its March 10, 2010, Finding and Order, Case No. 09-1922-EL-ACP. By 2025, the Companies must provide twenty-five (25) percent of their electricity from alternative energy resources (both renewable and advanced). R.C. § 4928.64(B). Half of the twenty-five (25) percent must be supplied from renewable energy resources. R.C. § 4928.64(B)(2). The law further requires that at least one-half (.5) percent of the twenty-five (25) percent must be supplied from solar energy resources by 2025. *Id.* The law sets annual benchmarks for both renewable energy and solar energy. *Id.* For 2010, the Companies' benchmark was to supply 0.50% of their electricity supply from renewable energy resources and 0.010% of their electricity supply from solar energy resources. *Id.* The Commission's rules state that the Companies are to procure at least one half of the renewable and solar energy resources from facilities located in Ohio, and the remainder can come from out-of state facilities but they must be deliverable into Ohio. O.A.C. 4901:1-40-03(A)(2)(a).

The Companies' 2010 Benchmarks are based on the renewable benchmark equal to 0.50% of their 2010 Baselines. Exhibit A to this Report depicts each company's baseline; the number of RECs and SRECs (both Ohio and Out-of-State) each company needed to obtain to

⁴ Ohio Edison's 2010 Baseline is 20,479,586 MWh; CEP's 2010 Baseline is 16,337,169 MWh; Toledo Edison's 2010 Baseline is 8,683,821 MWh.

meet its 2010 Benchmark; and the number of RECs and SRECs (both Ohio and Out-of State) that each company actually obtained.

1. 2010 Non-Solar Benchmarks

The Companies were able to meet one hundred (100) percent of their 2010 Non-Solar Benchmarks. As discussed below, the Companies diligently and proactively procured RECs from existing renewable resources generated within Ohio and other states deliverable into Ohio to comply with the both the Ohio and Out-of-State 2010 Non-Solar Benchmarks. These RECs were obtained through requests for proposals ("RFPs") conducted by the Companies.

2. 2010 Ohio and Out-of State Solar Benchmarks

Through the Companies' aggressive efforts, they were also able to comply fully with their 2010 Out-of-State Solar Benchmark. However, while the Companies made good faith efforts to comply fully with their 2010 Ohio Solar Benchmark, as discussed below, they were unable to achieve one hundred (100) percent of the 2010 Ohio Solar Benchmark. The Companies were required to obtain 6,375 total SRECs,⁵ At least half of the SRECs were to be generated in Ohio – the Ohio Solar Benchmark – with the other half generated either in Ohio or within a state deliverable to Ohio – the Out-of-State Solar Benchmark. The Companies have satisfied their Out-of-State Solar Benchmark. Despite the lack of sufficient solar renewable resources, the Companies were able to obtain 1,629 of the 3,206 Ohio SRECs, or 51% needed to comply with their Ohio Solar Benchmark. The Companies' efforts to satisfy the Ohio Solar Benchmark, and the reasons they were unable to do so, are fully detailed below in their request for a force majeure determination.

⁵ This number includes the number of SRECs needed to satisfy the Companies' 2010 benchmark (4,550) plus the amount by which the Companies fell short of their 2009 benchmarks (1,825).

III. **REQUEST FOR FORCE MAJEURE DETERMINATION**

Pursuant to R.C. § 4928.64(C)(4)(a), the Companies hereby request that the Commission make a force majeure determination regarding compliance with their 2010 Ohio Solar Benchmark. The Companies have made aggressive efforts to meet the 2010 Ohio Solar Benchmark, but such efforts have been unsuccessful for reasons beyond their control and through no fault of their own. In granting the Companies' 2009 force majeure request in Case No. 09-1922-EL-ACP, the Commission noted that the Companies would be responsible "for meeting the statutory SER benchmarks through all means available."⁶ The Companies took this instruction seriously, but they discovered that they could not meet the 2010 Ohio Solar Benchmark even after using all means available to them.

ţ

Although the Companies have pursued a variety of channels to procure SRECs, sufficient SRECs originating in Ohio simply have not been available for purchase by the Companies. For example, the Companies sponsored four RFPs,⁷ solicited known suppliers for SRECs, contacted SREC brokers, and participated in a number of SREC auctions. The Companies also considered SREC banking and long-term contracts. Despite these efforts, the Companies could not obtain enough Ohio SRECs to satisfy their 2010 Ohio Solar Benchmark. Thus, the Companies request that the Commission act pursuant to R.C. § 4928.64(C)(4) and O.A.C. 4901:1-40-06 to reduce, because of force majeure, the Companies' 2010 Ohio Solar Benchmark to the level of Ohio SRECs they purchased towards their Ohio Solar Benchmark, namely 1,629 Ohio SRECs.

 ⁶ See Finding and Order, issued Mar. 10, 2010, in Case No. 09-1922-EL-ACP ("March 10th Order").
 ⁷ One of the Companies' RFPs was conducted after the filing of their initial 2010 force majeure application in Case No. 11-0411-EL-ACP.

A. FORCE MAJEURE STANDARD

Pursuant to R.C. § 4928.64(C)(4)(c), if the Commission determines that solar energy resources "are not reasonably available" to meet the Companies' Ohio Solar Benchmark, the Commission shall modify that compliance obligation as appropriate. In order for the Commission to waive or defer the Ohio Solar Benchmark, it must determine that the Companies made "a good faith effort to acquire sufficient ... solar energy resources to so comply [with their Ohio Solar Benchmark], including, but not limited to, by banking or seeking renewable energy resource credits or by seeking the resources through long-term contracts." R.C. § 4928.64(C)(4)(b). The Companies made such a good faith effort to acquire sufficient solar energy resources to comply with their 2010 Ohio Solar Benchmark. However, the supply of Ohio-based solar energy resources was insufficient to allow the Companies to satisfy their 2010 Ohio Solar Benchmark.

B. THE COMPANIES' ATTEMPTS TO SATISFY THEIR OHIO SOLAR BENCHMARK

1. Requests for Proposal

As stipulated by the parties in Case No. 08-935-EL-SSO ("ESP 1") and approved by the Commission, the Companies first attempted to satisfy their solar benchmarks through RFPs. In the ESP 1, the parties specifically stipulated that "[r]enewable energy resource requirements for the period January 1, 2009 through May 31, 2011 will be met using a separate RFP process to obtain Renewable Energy Credits."⁸ The Companies' RFPs were independently managed by Navigant Consulting, Inc. ("NCI"). NCI possesses extensive experience with SREC RFPs and

8 ESP Stipulation at p. 10, Case No. 08-935-EL-SSO (Feb. 19, 2009).

was engaged to conduct two RFPs in 2009, one RFP in 2010, and one RFP in 2011. Each of these RFPs solicited 2010 or carlier vintage SRECs.

In their 2009 Annual Report, which is incorporated herein by reference, the Companies documented NCI's extensive efforts to secure RECs and SRECs in the two RFPs held in 2009. In addition, for the RFP held in 2010, NCI contacted more than two thousand clean energy/solar developers, marketers, owners, aggregators, and brokers. NCI blanketed Ohio and contiguous states with information regarding the Companies' RFP and conducted extensive outreach efforts. NCI, on behalf of the Companies, also personally contacted via telephone nearly five hundred parties known or expected to have solar facilities. On July 15, 2010, NCI hosted an RFP informational session through a webinar in which approximately 100 participants registered. As a result of the RFPs held in 2009 and 2010, the Companies' 2010 Ohio Solar Benchmark and 759 SRECs that were used to satisfy in part the Companies' Out-of-State Solar Benchmark. The Companies also procured 4,469 SRECs that will be used to help satisfy the Companies' benchmarks in 2011.

Despite the fact that the Companies had already filed a force majeure request in 2011, the Companies continued to make a good faith effort to procure Ohio SRECs that could be used to comply with their 2010 Ohio Solar Benchmark. Thus, the Companies' held an RFP in 2011, which resulted in the Companies obtaining eleven (11) Ohio SRECs to apply towards their 2010 Ohio Solar Benchmark.⁹

Ľ

8

⁹ In this last RFP, only Ohio SRECs were solicited because the other three categories of renewable benchmarks for 2010 had been fulfilled.

Lastly, in the two 2009 RFPs, the Companies contracted to have delivered certain Ohio SRECs in 2011. Thus, in March 2011, the Companies received delivery of Ohio SRECs that were originally intended to be used to help satisfy the Companies' benchmarks in 2011. However, upon receipt of the Ohio SRECs' certificates, the Companies discovered that the Ohio SRECs could be used to satisfy its 2010 Ohio Solar Benchmark. This event allowed the Companies to procure 51% of their 2010 Ohio Solar Benchmark rather than the 3% originally contemplated in their initial force majeure application. The Companies continue to search for any Ohio SRECs, so that it can comply with its Ohio Solar Benchmarks now and into the future. Nevertheless, due to the lack of Ohio Solar Resources, the Companies believe that they have found all Ohio SRECs that can be used to comply with its 2010 Ohio Solar Benchmark and must seek force majeure relief from the Commission.

2. Auctions and Spot Purchases

Following the 2010 RFP, while the Companies had contracted for enough RECs to meet their 2010 Non-Solar Benchmarks, the Companies still needed to find more SRECs. Thus, the Companies reached out to known SREC suppliers and brokers to negotiate bilateral agreements. The Companies also established accounts to participate in the following SREC auctions: PJM Envirotrade SREC auction platform ("SAGE"); the SREC Trade Platform ("SREC Trade"); and the Flett Exchange auction platform ("Flett"). The Companies communicated and interacted with these entities on a regular basis seeking to purchase SRECs as they became available to satisfy both their Out-of-State Solar Benchmark and Ohio Solar Benchmark. On December 7, 2010, the Companies procured the remaining SRECs necessary to fulfill their Out-of-State Solar Benchmark, but not the remaining Ohio SRECs to fulfill their Ohio Solar Benchmark.

1

9

3. Long-Term Contracts

To satisfy their Ohio Solar Benchmark, the Companies also considered entering into long-term contracts with qualified suppliers. The Companies had discussions with, and received proposals, from two large SREC suppliers regarding long-term contracts for the purchase of SRECs. However, neither of these suppliers could commit to long-term contracts that would supply Ohio SRECs that the Companies could use to comply with their 2010 Solar Benchmarks. Rather, these long-term contract opportunities were to supply SRECs from 2011 and into the future. Nevertheless, the Companies were able to purchase forty-five (45) Ohio SRECs from one of these two companies to apply towards their 2010 Ohio Solar benchmarks under a one year bilateral agreement. Entering into a long-term contract with either of those suppliers would not have cured the Companies' 2010 Ohio Solar Benchmark shortfall.

Moreover, pursuant to the Stipulation in ESP 2 the Companies will conduct an RFP to purchase renewable energy credits using a long-term contract. The Companies' application for approval to conduct an RFP to purchase renewable energy credits using ten-year contracts is pending before the Commission in Case No. 10-2891-EL-ACP. In Staff's comments to the Companies' initial force majcure application, it requested information regarding how the Companies' 2010 Ohio Solar Benchmark shortfall could be incorporated into this RFP process. If the Companies' application is approved by the Commission and the RFP is successful, the Companies will enter into long-term contracts with the successful bidders for the purchase of SRECs.¹⁰ These SRECs will be used towards meeting future compliance requirements, including any shortfall that the Commission incorporates into its 2011 Ohio Solar Benchmark as

ł

1.

¹⁰ Further, entering into long-term contracts outside of this process, could have been interpreted as being inconsistent with the ESP 2 Stipulation, especially if the Companies would have procured enough SRECs so that the long-term contract RFP contemplated in the ESP 2 would have been rendered moot.

a result of this proceeding, assuming the suppliers can generate enough Ohio SRECs in 2011 to meet that benchmark.

While the Companies will conduct an RFP and enter into a long-term contract or contracts, pursuant to the ESP 2, these long-term contracts will impact customers. As recent ycars have shown, the Companies' Standard Service Offer electricity sales continue to decline due to high levels of shopping and can fluctuate year-to-year. As of December 2010, approximately 70% of the Companies' distribution deliveries were based on generation provided by competitive suppliers last year, making it very difficult for the Companies to predict what their baseline will be over the long term. Indeed, a summary of the Electric Choice Sales Switch Rates for the quarter ending December 31, 2010, illustrates that, on average, the Companies have higher switch rates than any of the other Ohio utilities.¹¹ The more the Companies' customers shop, the less RECs the Companies need for purposes of complying with state law. Thus, the Companies' strategy in purchasing RECs through RFPs, spot markets and auctions has been both prudent and reasonable for the Companies' standard service customers from whom the Companies' recover their costs to comply with the state's alternative energy laws. In the future, if current shopping rates continue, the Companies' alternative energy benchmarks could either stay the same or decline. Thus, the Companies must carefully consider these factors when entering into any long-term contracts with suppliers so as to minimize customer costs and purchasing more RECs than needed for compliance.

4. <u>Construction of Solar Generation</u>

The Companies also considered the construction of solar generation facilities, but they ultimately did not move forward with that option for several reasons. First and foremost, the

¹¹ See summary of switch rates attached as Exhibit B.

Companies are *distribution* utilities. They own no generation facilities. The Companies lack the expertise and technical know-how necessary to construct, maintain and operate solar generation facilities. Instead, the Companies have acted consistently with the goals of S.B. 221 and attempted to finance the construction of solar generation in Ohio through their RIP process, attempts to enter into long-term contracts, residential purchase program, participation in SREC auctions, and short-term SREC purchases.

Several commentators to the Companies' initial force majeure application have suggested that S.B. 221 requires the Companies to build solar facilities if they cannot comply with their benchmarks through other alternatives. This suggestion is contrary to the goals of S.B. 221 as well as its express language. S.B. 221's renewable benchmarks were primarily focused on promoting investment in *private* renewable generation by third parties. Thus, R.C. § 4928.64(C)(4)(b) references the acquisition of solar energy resources by an EDU through banking, credits or long-term contracts and makes no mention of construction of solar facilities.

5. Residential REC Purchase Program

The Companies also attempted to satisfy their solar benchmark through their Residential REC Purchase Program ("Residential Program"). The Companies worked with The Office of the Ohio Consumers' Council ("OCC") to devise and implement the Residential Program in the ESP 1, a program that the OCC ultimately agreed to when it entered into the stipulation in the ESP 1. Under this program, customers may install renewable energy resources, including solar resources. In their comments to the Companies' initial force majeure application, both the OCC and Solar Alliance criticize the annual re-setting of REC purchase prices under the program. However, the stipulation in the ESP 1, which the OCC signed, provides that residential customers are paid the market price of RECs so that they can take advantage of any increases in

12

those prices. Currently, the Companies only have eight customers under contract and have obtained 51 2010 Ohio SRECs from this program for their 2010 compliance, which was all possible Ohio SRECs that the residential program provided.¹² In 2010, the Companies procured all possible SRECs that the residential program provided.

C. SUFFICIENT SRECS DO NOT EXIST IN OHIO

The Companies have actively and reasonably pursued all options of procuring Ohio SRECs, banked Ohio SRECs and long-term contracts through RFPs, contacts with suppliers, offers by brokers, and successful bids through the auction platforms. Yet, through no fault of their own, they have not been able to meet their Ohio Solar Benchmark. The Companies' aggressive efforts toward compliance demonstrate that an insufficient number of SRECs is available for the Companies to meet the 2010 Ohio Solar Benchmark.

Further, the Companies performed assessments of the Ohio market for the availability of qualified Ohio SRECs. Specifically, the Companies directed NCI, in connection with their RFPs in 2009 and 2010, to assess the availability of qualified Ohio SRECs. NCI concluded that the Ohio SREC market is constrained. In conjunction with their participation in the SREC Trade auction, SREC Trade informed the Companies that there were relatively few solar renewable resources in operation in Ohio. Similarly, the Companies discussion with and market data they obtained from Flett evidenced a constrained market for Ohio SRECs, and that few suppliers were currently participating in SAGE. The Companies will continue to explore opportunities in the nascent Ohio SREC market to spur private investment in renewable resources consistent with the

13

¹² These SRECs have not been delivered to the Companies and thus were not included in the total amount of SRECs the Companies have procured to comply with their Ohio Benchmark.

goals of S.B. 221. However, as demonstrated above, a 2010 force majeure determination is necessary.

IV. <u>CONCLUSION</u>

As demonstrated above, the Companies achieved full compliance with the 2010 renewable energy benchmark and Out-of-State Solar Benchmark in R.C. § 4928.64(B)(2). While the Companies were unable to fully meet the Ohio Solar Benchmark, their inability to do so was because of circumstances beyond their control despite their good faith efforts. Therefore, the Companies respectfully request that the Commission: (i) make a force majeure determination regarding their 2010 Ohio Solar Benchmark and (ii) reduce their 2010 Ohio Solar Benchmark to the level of SRECs that the Companies acquired in 2010.

Respectfully submitted,

/s/ Carrie M. Dunn

Kathy J. Kolich (0038855) Counsel of Record Carrie M. Dunn (0076952) FIRSTENERGY SERVICE COMPANY 76 South Main Street Akron, OH 44308 (330) 384-4580 (330) 384-4580 (330) 384-4580 (330) 384-3875 (fax) kjkolich@firstenergycorp.com cdunn@firstenergycorp.com ATTORNEYS FOR OHIO EDISON COMPANY, THE CLEVELAND ELECTRIC ILLUMINATING COMPANY AND THE TOLEDO EDISON COMPANY

EXHIBIT A

Line No.	Year	Company's SSO Retail Electric Sales	Baseline	Renewable Energy Resource Target %	Solar Energy Target %	Renewable Energy Resource Benchmark	Solar Energy Resource Benchmark - SRECS	Ohio Renewable Less Solar Benchmark - RECS	All Renewable Less Solar Benchmark - RECS	OHIO Solar Energy Resource Benchmark	All Solar Energy Resource Benchmark
(1)	(2)	(3)	(4)	(5)	(9)	(7)=(4)*(5)	(8)=(4)*(6)	(9)=((7)- (8))/2	(10)=(7)-(8) - (9)	(11)=(8)/2	(12)=(8)- (11)
н и м	2007 2008 2008	Ohio Edison Company 21,354,818 21,040,189 19 043 752	pany								
9 7 N 49	2010 2009 Car 2010 Re	2010 2009 Carry Forward 2010 Revised Benchmark (if necessary)	20,479,586 necessary)	0.50%	0.01%	102,398	2,048	50,175	50,175	1,024 412 1,436	1,024 397 1,421
~	2010 Com	2010 Ohio All Renewable (OH), Zone: OH Compliance REC's retired in GATS	e (OH), Zane: Of ed in GATS	Т				50,175	50,175	730	1,421
	Column Column Column	Column (3) = 2007 through 2009 From PUCO Form(s) Column (4) = simple average of preceding three years Column (5) and (6) from OAC 4901;1-40-03 (A) Column (7) thru (12) = calculation of benchmarks	009 From PUCC of preceding th 2 4901;140-03 (ation of benchm	m(s) ears	SE-1: Monthly Hi from Column (3)	SE-1: Monthly Historical Electricity Data, Part A from Column (3)	ity Data, Part A				

EXHIBIT A 2010 ALTERNATIVE ENERGY BENCHMARKS AND COMPLIANCE RECONCILIATION

•

Page 1 of 4

ļ

Line No.	Year	Company's SSO Retail Electric Sales	Baseline	Renewable Energy Resource Target %	Solar Energy Target %	Renewable Energy Resource Benchmark	Solar Energy Resource Benchmark - SRECS	Chio Renewable Less Solar Benchmark - RECS	All Renewable Less Solar Benchmark - RECS	OHIO Solar Energy Resource Benchmark	All Solar Energy Resource Benchmark
Ξ	(2)	(3)	(4)	(5)	(8)	(7)=(4)*(5)	(8)=(4)*(6)	(9)=((7)- (8))/2	(10)=(7)-(8) - (9)	(11)=(8)/2	(12)=(8)- (11)
- 0	The 2007 2008	The Cleveland Electric Illuminating Company 07 17,403,753 08 17,157,556	: Illuminating C	ompany							
ŝ	2009	14,450,199	÷								
ব	2010		16,337,169	0.50%	0.01%	81,686	1,634	40,026	40,026	817	817
2	2009 Cal	2009 Carry Forward								339	325
G	2010 Rei	2010 Revised Benchmark (if necessary)	necessary)							1,156	1,142
~	2010 Comj	2010 Ohio All Renewable (OH), Zone: OH Compliance REC's retired in GATS	e (OH), Zone: O ed in GATS	H.				40,026	40,026	587	1,142
	Column	Column (3) = 2007 through 2009 From PUCO Form(s) Column (4) = simple average of preceding three years	009 From PUC	O Form(s) SE Iree years fron	SE-1: Monthly Hi from Column (3)	SE-1: Monthly Historical Electricity Data, Part A from Column (3)	ity Data, Part A				

2 Column (5) and (6) from OAC 4901:1-40-03 (A) Column (5) and (6) from OAC 4901:1-40-03 (A) Column (7) thru (12) = calculation of benchmarks

Page 2 of 4

•

.

•--

3

EXHIBIT A 2010 ALTERNATIVE ENERGY BENCHMARKS AND COMPLIANCE RECONCILIATION

•

. . .

Line No.	Year	Company's SSO Retail Electric Sales	Baseline	Renewable Energy Resource Target %	Solar Energy Target %	Renewable Energy Resource Benchmark	Solar Energy Resource Benchmark - SRECS	Ohio Renewable Less Solar Benchmark - RECS	Ali Renewable Less Solar Benchmark - RECS	OHIO Solar Energy Resource Benchmark	All Solar Energy Resource Benchmark
Ē	(3)	(3)	(4)	(5)	(9)	(7)=(4)*(5)	<pre>{8)=(4)*(6)</pre>	(9)=((7)- (8))/2	(10)=(7)-(8) - (9)	(11)=(8)/2	(12)=(8)- (11)
- 2 1 1 4 2 4 2 4	Th 2007 2008 2009 2010 2010 Car	The Toledo Edison Company 2007 9,228,709 2008 9,006,924 2009 7,815,831 2009 7,815,831 2010 8,683,8 2010 Revised Benchmark (if necessary)	ompany 8,683,821 necessary)	0.50%	0.01%	43,419	888	21,276	21,275	44 180 180 180	54 172 606
~	2010 Comp	2010 Ohio All Renewable (OH), Zone: OH Compliance REC's retired in GATS	s (OH), Zone: O ed in GATS	Ŧ				21,276	21,275	312	909

Column (4) = simple average of preceding three years from Column (3) Column (5) and (6) from OAC 4901:1-40-03 (A) Column (7) thru (12) = calculation of benchmarks

Page 3 of 4

•

Ì

:

. .

EXHIBIT A 2010 ALTERNATIVE ENERGY BENCHMARKS AND COMPLIANCE RECONCILIATION

L ,

, •

Line No.	Year	Company's SSO Retail Electric Sales	Baseline	Renewable Energy Resource Target %	Solar Energy Target %	Renewabie Energy Resource Benchmark	Solar Energy Resource Benchmark - SRECS	Ohio Renewable Less Solar Benchmærk - RECS	Ali Renewable Less Solar Benchmark - RECS	OHIO Solar Energy Resource Benchmark	All Solar Energy Resource Benchmark
Ð	ଚ	(2)	(†)	(5)	(9)	(7)=(4)*(5)	(8)=(4) [•] (6)	(9)=((7)- (8))/2	(10)=(7)-(8) - (9)	(11)=(8)/2	(12)=(8)- (11)
T N M 4 N 60	2007 2008 2009 2009 2010 2010 Rev	Total Ohio 2007 47,987,280 2008 47,987,280 2008 47,204,669 2009 41,309,782 2010 45,500,5 2000 Carry Forward 45,500,5 2010 Revised Bernchmark (if necessary)	45,500,576 necessary)	0.50%	0.01%	227,503	4,550	111,477	111,476	2,275 931 3,206	2,275 894 3,169
~	2010 Coun	2010 Ohio All Renewable (OH), Zone: OH Compliance REC's retired in GATS	» (OH), Zone: D ed in GATS	Ţ				111,477	111,476	1,629	3,169

Column (4) = simple average of preceding three years from Column (3) Column (5) and (6) from OAC 4901:1-40-03 (A) Column (7) thru (12) = calculation of benchmarks

Page 4 of 4

EXHIBIT A 2010 ALTERNATIVE ENERGY BENCHMARKS AND COMPLIANCE RECONCILIATION

•

÷

EXHIBIT B

Summary of Switch Rates from EDUs to CRES Providers in Terms of Sales For the Month Ending December 31, 2010 (MWb)

Provider Name	EDU Service Área	Quarter Ending	Year	Residential Sales	Commerciai Sales	industriai Salos	Total Seins
Cleveland Electric Illuminating Company	CEI	31-Dec	2010	137790	76393	248022	474617
CRES Providers	CEI	31-Dec	2010	355824	453132	217666	1042468
Total Sales	CEI	31-Dec	2010	493414	529526	405888	1517085
EDU Share	CEI	31-Dec	2010	27.93%	14.43%	53.26%	31.28%
Electric Choice Sales Switch Rates	CEI	31-Dac	2010	72.07%	85.57%	46.74%	68.72%

Provider Name	EDU Service Area	Quarter Ending	Year	Residential Seles	Commercial Sales	industriai Sales	Total Salus
Duke Energy Ohlo	DUKE	31-De¢	2010	466902	148852	48433	677497
CRES Providers	DUKE	31-Dec	2010	160952	469367	337559	1012790
Tolal Sales	DUKE	31-Dac	2010	827854	610319	385992	1690287
EDU Share	DUKE	31-Dec	2010	74,36%	24.21%	12.55%	40.08%
Electric Choice Sales Switch Rates	DUKE	31-Dec	2010	25,64%	76.79%	87.45%	59.92%

Provider Name	EDU Service Aroa	Quarter Ending	Year	Residential Sales	Commerciai Sales	industriai Sales	Total Sales
Columbus Southern Power Company	CSP	31-Dec	2010	616431	573843	360948	1555700
CRES Providers	CSP	31-Dec	2010	1	97595	19366	116962
Total Sales	ĊSP	31-Dec	2010	616432	871438	380314	1672662
EOU Share	CSP	31-Dec	2010	100.000%	85.468%	94.908%	93.007%
Electric Choice Sales Switch Rates	CSP	31-Dec	2010	0.000%	14.535%	5.092%	6.993%

Provider Name	EDU Service Area	Quarter Ending	Year	Residentiai Seles	Commercial Sales	Industrial Sales	Total Salus
The Dayton Power and Light Company	DPL	31-Dec	2010	331451	158847	51428	588724
CRES Providers	DPL	31-Dec	2010	65	136504	235502	448572
Total Sales	DPL	31-Dec	2010	331516	295351	286930	1037298
EDU Share	DPL	31-Dec	2010	99.98%	63.78%	17.92%	56.7 6%
Electric Choice Sales Switch Rates	DPL	31-Dec	2010	0.02%	48.22%	82.08%	43.24%

Source: PUCO, Division of Market Monitoring & Assessment. Note1: Total sales includes residential, commercial, industrial and other sales. Note2: The switch rate calculation is intended to present the broadest possible picture of the state of retail electric competition in Ohio. Appropriate calculations made for other purposes may be based on different data, and may yield different results.

"Preliminary Date - will update upon receipt of additional CRES data

.

Summary of Switch Rates from EDUs to CRES Providers in Terms of Sales For the Month Ending December 31, 2010 (MWh)

Provider Name	EDU Service Area	Quarter Ending	Year	Residential Sales	Commercial Sales	Industria) Seles	Total Sales
Ohio Edison Company	OEC	31-Dec	2010	347736	119728	173749	653628
CRES Providers	OEC	31-Dec	2010	477048	495207	357812	1342376
Total Sales	OEC	31-Dec	2010	824784	614935	531561	1996003
EDU Share	OEC	31-Deo	2010	42,16%	19.47%	32.69%	32.75%
Electric Choice Sales Switch Rates	OEC	31-Dec	2010	57.84%	80.63%	67.31%	67.25%

Provider Name	EDU Service Area	Quarter Ending	Year	Rosidontial Sales	Commercial Sales	Industriai Salos	Tolai Ssies
Ohio Power Company	OP	31-Dec	2010	628585	485896	1116821	2238888
CRES Providers	OP	31-Dec	2010	o	954	0	954
Tolal Sales	OP	31-Dec	2010	528585	486650	1116621	2239842
EDU Share	OP	31-Dec	2010	100.00%	99.80%	100.00%	99.96%
Electric Choice Sales Switch Rates	OP	31-Dec	2010	0.00%	0.20%	0.00%	0.04%

Provider Name	EDU Service Area	Quarter Ending	Year	Residential Sales	Commercial Sales	industrial Sales	Total Salos
Toledo Edison Company	TE	31-Dec	2010	102530	43700	115020	265504
CRES Providers	TΕ	31-Dec	2010	119121	203072	244991	569300
Total Sales	TE	31-Dec	2010	221651	246772	380011	834804
EDU Share	TE	31-Dec	2010	46,26%	17.71%	31.95%	31.80%
Electric Choice Sales Switch Rates	TE	31-Dec	2010	53.74%	82.29%	68.05%	68.20%

į

Source: PUCO, Division of Market Monitoring & Assessment.

•

٠

Note1: Total sales includes residential, commercial, industrial and other sales.

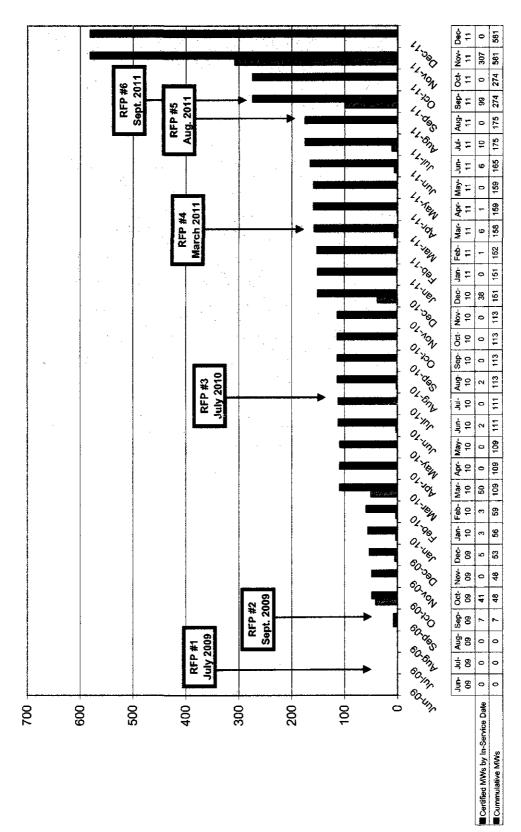
Note2: The switch rate calculation is intended to present the broadest possible picture of the state of retail electric competition in Chilo. Appropriate calculations made for other purposes may be based on different data, and may yield different results.

*Preliminary Data - will update upon receipt of additional CRES data

This foregoing document was electronically filed with the Public Utilities

Commission of Ohio Docketing Information System on

4/15/2011 4:26:55 PM


in

Case No(s). 11-2479-EL-ACP

Summary: Annual Report of Ohio Edison Company, The Cleveland Electric Illuminating Company and The Toledo Edison Company Regarding Their Alternative Energy Status and Application of Ohio Edison Company, The Cleveland Electric Illuminating Company and The Toledo Edison Company for a Force Majeure Determination electronically filed by Ms. Carrie M Dunn on behalf of Ohio Edison Company and The Cleveland Electric Illuminating Company and The Toledo Edison Company

Month Credits Could Be Produced Based Upon PUCO Certification or Technology In-Service

Facility Capacity from PUCO Application (WW)

In-State All Renewable PUCO Certified MWs by In-Service Month

ŝ

DWS-2

OCC Set 3-INT-2 Attachmen

Data Source:

http://www.puco.ohio.gov/puco/index.cfm/industry-information/industry-topics/ohioe28099s-renewable-and-advanced-energy-portfolio-standard/ - "List of Approved Cases"

For projects < 1MW the In-Service Date is assumed to be the certification date. For projects > 1MW the certification application was reviewed to determine the In-Service date for REC creation as compared to the PUCO approval date. The later date was then used for reporting purposes herein.

Several biomass facilities in the Commission's report are shown with a capacity value of zero. This report did not attempt to assign a value to any of these facilities.

Cases #s 09-0739 & 10-1382 are for the certification of the same units using different fuel types. The capacity for these units was only counted once.

OCC Set 3-INT-2 Attachmen

*

.

•

Exhibit DWS#2

In-State All Renewable PUCO Certified MWs By Month

Certification	Ohio Non-Solar	Cummulative	Certified MWs By	Cummulative MWs
Month	Certified MWs	Certified MWS	In-Service Date *	By In-Service Date
Jun-09	0	0	0	0
Jul-09	0	0	0	0
Aug-09	0	0	0	0
Sep-09	L .	7	7	7
Oct-09	41	48	41	48
Nov-09	0	48	0	48
Dec-09	5	53	5	53
Jan-10	3	56	3	56
Feb-10	3	59	3	20
Mar-10	50	109	50	109
Apr-10	0	109	0	109
May-10	177	286	0	109
Jun-10	2	288	2	111
Jul-10	0	288	0	111
Aug-10	2	290	2	113
Sep-10	0	290	0	113
Oct-10	49	339	0	113
Nov-10	5	344	0	113
Dec-10	38	382	38	151
Jan-11	0	382	0	151
Feb-11	1	383	1	152
Mar-11	6	389	6	158
Apr-11		390	1	159
May-11	0	390	0	159
Jun-11	1	391	6	165
Jul-11	10	401	10	175
Aug-11	3	404	0	175
Sep-11	66	503	66	274
Oct-11	0	503	0	274
Nov-11	304	807	307	581
Dec-11	0	807	0	581
	807		581	

Data Source: http://www.puco.ohio.gov/puco/index.cfm/industry-information/industry-topics/ohioe28099s-renewable-and-advanced-energy-portfolio-standard/ - "List of Approved Cases"

* For projects < 1MW the In-Service Date is assumed to be the certification date. For projects > 1MW the certification application was reviewed to determine the In-Service date for REC creation as compared to the PUCO approval date. The later date was then used for reporting purposes herein.

TOTAL RENEWABLI
5,285
TOTAL RENEWABLE ENERGY CASES APPROVED SINCE 6/25/2009:

LE ENERGY CAPACTY IN MEGAWATTS (MW): 3,677.37

First Case Filed, June 25, 2009. First Case Approved, August 31, 2009.
 Co-Fired Projects. Neted under Capacity (NNV), have not been included in the megawatt capacity atminary.

OCC Set 3-INT-2 Attachment 1

fficate ID Technology Capacity (NW) Nameplate (MW	BATS-0007 Wind	10/15/2009 09-BIO-OH-GATS-0012 Biomass 0.6	10/15/2009 09-BIO-OH-GATS-0013 Biomass 10.91	Biomass	Biomass	6	SS	en en
In-Service Certificate ID	09/30/2009 09-M	10/15/2009 09-B		•	•	10/28/2009 09-M	12/02/2009 09-B	12/09/2009 09-B
Approved		10/15/2009	10/15/2009	10/15/2009	10/15/2009	10/28/2009	12/02/2009	12/09/2009
Case No.	09-0724	09-0526	09-0562	09-0563	09-0561	09-0705	09-0612	09-0730
State	P	н	Ð	Ð	P	통	Ы	Ы
2009 Cases - Sorted by Approval Date (Case Count: 81) (Total MW: 1,477.21) Name Of Renewable Generating Facility	American Municipal Power / OMEGA JV 6	quasar - Buckeye Biogas	Lorain County	Ottawa	Carbon Limestone	Parks Administration Headquarter	Bellefontaine Gas Producers LLC	P. H. Glattelter Company - Chillicothe Facility

,

R

1

)

:

i

•

OCC Set 3-INT-2 Attachment

.

TOTAL RENEWABLE ENERGY CASES APPROVED SINCE 6/25/2009: 5,285

First Case Filed, June 25, 2009. First Case Approved, August 31, 2009.
 Co-Field Projects, Brand under Capacity (MM), have not been inducided in the megawatt capacity summary.

TOTAL RENEWABLE ENERGY CAPACTY IN MEGAWATTS (NW): 3,677.37

2010 Cases - Sorted by Approval Date (Case Count: 744) (Total MW: 1,010.48) Name Of Renewable Generating Facility Killen Generating Station Rosenberger Residential Wind Energy South Point Biomass Generation Plant (South Point Power) Picwey Generating Station Picwey Store Unit 1 Bridgewater Dait y Anaenclot Digester Hoover Road Landfill Gas to Energy Project Stockwell Wind Turbine 2.5 kW Accon BlosoRds to energy Project Phase 1 Peerl Road Wreckfing and Salvage, Inc. Augitate Hytronelectric Plant James and Mary Wenning DBA Wenning Pouthy University of Chicimati, Utilibes (1) Contesvite Generating Station Unit 3 Upper Scoto Valey Wind Conneaut Schools Wind Conneaut City Wind Muskingum River Plant Indian Lake HS Wind Research Project Watter C. Beckjord Generating Station University of Cincinnati, Utilities (2) Model

Rock-Tenn Company NovoTec Energy Group Plant 1 Smart Papers Holdings LLC

	(MMV) ec							165				600			0 0		136				1125		1425		19.6			
	Nameplate (MW)																											
	Capacity (MW)	2.7	0.335	0.12	1.09	1.8	4 9	0	0.2	0.6	0.4		0.01	171		12	0	1.2	1.6	0.0025	•	49		0.01			37.8	329.0675
	ຮື					~												-										
																						Abandoned Coal Mine Methene						
	echnology'	1385	18.65	-	Hydroelectric	18.85	1855	1955	-	_	-	1865	-	1855	18.85	-	SSBI	1000	1965	-	1256	Indoned Cot	18/55	-	1856	Solid Waste	Solid Weste	
	Tech	Biomass	Biomass	Mind	Бу́Н	Biomeas	Biomass	Blomass		Wind	-	Biomass	Mind	Biomass	Biomeas	Wind	Blomass	Biomess	Biomaes	Mind	Biomass		Biomass	brilW	Blomass	Pips	Plos	
	Certificate ID	01/20/2010 10-BIO-OH-GATS-0017	M/20/2010 10-BIO-OH-GATS-0021	02/13/2010 10-WND-OH-GATS-0045	02/24/2010 10-HYD-OH-GATS-0060	02/27/2010 10-BIO-OH-GATS-0066	03/24/2010 10-BIO-OH-GATS-0074	20112010 10-BIO-OH GATS-0105	03/31/2010 10-WND-OH-GATS-0108	03/31/2010 10-WND-OH-GATS-0110	03/31/2010 10-WND-OH-GATS-0111	0400/2010 10-BIO-OH-GATS-0106	04/11/2010 10-WND-OH-GATS-0128	09/30/2012 10-BIO-OH-GATS- 0156	052372010 10-BIO-OH-GATS-0312	06/13/2010 10-WND-DH-GATS-0224	0002/2010 10-BIO-OH-GATS-0129	06/26/2010 10-BIO-OH-GATS-0236	08/17/2010 10-BIO-OH-GATS-0345	08/23/2010 10-WND-OH-GATS-0423	05/2013 10-BIO-OH-GATS- 0315	10/15/2010 10-CMM-OH-GATS-0472	0/15/2010 10-BIO-OH-GATS-0463	0/25/2010 10-WND-OH-GATS-0585	1027/2010 10-BIO-OH-GATS-0297	36/01/2011 10-SWE-OH-GATS-0693	12/15/2010 10-SWE-OH-GATS-0694	
	In-Service	01/20/2010	01/20/2010	02/13/2010	02/24/2010	02/27/2010	03/24/2010	-	03/31/2010	03/31/2010								06/26/2010	08/17/2010	_		•		**		06/01/2011	12/15/2010	
	Approved	01/20/2010	01/20/2010	02/13/2010	02/24/2010	02/27/2010	03/24/2010	03/31/2010	03/31/2010	03/31/2010	03/31/2010	04/06/2010	04/11/2010	05/19/2010	05/23/2010	06/13/2010	08/22/2010	06/26/2010	08/17/2010	08/23/2010	09/08/2010	10/15/2010	10/15/2010	10/25/2010	10/27/2010	11/10/2010	12/15/2010	
	Case No.	09-1808	08-1879	09-1923	09-1062	09-1007	08-0739	09-1860	10-0097	10-0099	10-0100	00-0891	10-0124	09-1043	10-0387	10-0434	09-1042	10-0370	10-0848	10-0856	09-1023	10-1382	10-0911	10-1235	10-0177	10-0242	10-0254	
_	State	£	₹	₹	₹	₹	₹ 	₹	₹	₽	₹	₹	P	₹	₽	₹	₹	₹	₹	₹	₹	Ŧ	₹	₹	₹	₹	₹	

TOTAL RENEWABLE ENERGY CASES APPROVED SINCE 6/25/2009: 5,285

TOTAL RENEWABLE ENERGY CAPACTY IN MEGAWATTS (MW): 3,677.37

First Case Filed, June 25, 2009. First Case Approved, August 31, 2009.
 Ce First Projects, listed under Capacity (MN), here not been included in the megawatt capacity unmary.

2011 Cases - Sorted by Approval Date (Case Count: 3,190) (Total MW: 901.35)									
Name Of Renewable Generating Facility	State C	Case No. /	Approved	In-Service (n-Service Certificate ID	Technology	Fechnology Capacity (MW) Nameplate (MW)	Vameplate (MW)	
P.H. Glatfelter Company - Chillicothe Facility (2)	₽ F	0-1060	01/27/2011 (01/27/2011	1/27/2011 11-BIO-OH-GATS-0187	Biomass	0	92.8	<u>م</u>
Ada Wind, LLC	₹	0-0433	02/02/2011 (02/02/2011	2/02/2011 11-WND-OH-GATS-0186	Wind	0.4		
Sheffield Lake Wind, LLC	₽	0-0435	02/09/2011 (2/09/2011	/2/09/2011 11-WND-OH-GATS-0300	Wind	0.1		
Sheiby Road Wind, LLC	₽	0-0437	02/09/2011 (02/09/2011	02/09/2011 11-WND-OH-GATS-0302	Wind	0.1		
Rock Road Wind, LLC	ਦ ਦ	I0-0438	02/09/2011 4	02/09/2011	02/09/2011 11-WND-OH-GATS-303	Wind	0.1		
Merblehead Wind, LLC	¥ ₹	0-0470	02/09/2011 (02/09/2011	02/09/2011 11-WND-OH-GATS-0304	Wind	0.4		
VAN ERK DAIRY LLC	•	11-0028	03/06/2011 (03/08/2011	03/08/2011 11-BIO-OH-GATS-0450	Biomass	0.45		
Suburban Landfill Generator	Ţ	11-0256	03/28/2011 (03/28/2011	3/28/2011 11-BIO-OH-GATS-0584	Biomass	5.6		
Central Ohio BioEnergy	÷ ₹	11-0694	04/11/2011 (04/11/2011	04/11/2011 11-BIO-OH-GATS-0813	Biomass	-		
Stoneacre Farms	-	1-0990	04/27/2011	04/27/2011	14/27/2011 11-WND-OH-GATS-1016	Wind	0.01		
Quasar - Zanesville Energy	₽	10-0692	06/29/2011	06/29/2011	06/29/2011 11-BIO-OH-GATS-1553	Biomass	0.91		
Bay View Co-Generation Plant	-	9-1913	07/06/2011 (07/06/2011	7/06/2011 11-BIO-OH-GATS-1565	Biomass	10		
V.H. Cooper & Co., Inc.	÷ ₹	1-2986	08/07/2011	11/15/2011	1/15/2011 11-WND-OH-GATS-1985	Wind	e		
Conesville Generating Station (Units 3, 4, 5, 6)	£	1-3201	08/28/2011	08/26/2011	08/28/2011 11-BIO-OH-GATS-2159	Biomass	0	1695	ഗ
Paulding Wind Farm il LLC	E E	1-4395	09/20/2011 (09/20/2011	09/20/2011 11-WND-OH-GATS-2448	Wind	8		
Owens Community College 50 kW Wind Turbine	£	1-4242	11/14/2011	11/14/2011 -	1/14/2011 11-WND-OH-GATS-2931	Wind	0.05		
Blue Creek Wind Farm	₽	1-5177	11/28/2011	11/28/2011	11/28/2011 11-WND-OH-GATS-3072	Wind	304		
							425.12		

1

ł

•

•

•

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Report NREL/TP-6A20-51946 July 2012

Contract No. DE-AC36-08GO28308

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro

Prepared under Task Nos. SA10.1012 and SA10.20A4

	NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 • www.nrel.gov	Technical Report NREL/TP-6A20-51946 July 2012 Contract No. DE-AC36-08GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

> U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: <u>mailto:reports@adonis.osti.gov</u>

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>http://www.ntis.gov/help/ordermethods.aspx</u>

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

 \odot

Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

Acknowledgments

For their valuable contributions, the authors would like to thank Paul Denholm, Craig Turchi, Sean Ong, Eason Drury, Matt Mowers, Trieu Mai, Randolph Hunsberger, Anelia Milbrandt, Marc Schwartz, Chad Augustine, Andrew Perry, and Mike Meshek of the National Renewable Energy Laboratory and Douglas Hall from the Idaho National Laboratory. The authors would also like to thank peer reviewers Irene Xiarchos from the U.S. Department of Agriculture and Phillip Brown from the Congressional Research Service.

Executive Summary

The National Renewable Energy Laboratory (NREL) routinely estimates the technical potential of specific renewable electricity generation technologies. These are technology-specific estimates of energy generation potential based on renewable resource availability and quality, technical system performance, topographic limitations, environmental, and land-use constraints only. The estimates do not consider (in most cases) economic or market constraints, and therefore do not represent a level of renewable generation that might actually be deployed.

This report is unique in unifying assumptions and application of methods employed to generate comparable estimates across technologies, where possible, to allow cross-technology comparison. Technical potential estimates for six different renewable energy technologies were calculated by NREL, and methods and results for several other renewable technologies from previously published reports are also presented. Table ES-1 summarizes the U.S. technical potential, in generation and capacity terms, of the technologies examined.

The report first describes the methodology and assumptions for estimating the technical potential of each technology, and then briefly describes the resulting estimates. The results discussion includes state-level maps and tables containing available land area (square kilometers), installed capacity (gigawatts), and electric generation (gigawatthours) for each technology.

Technology	Generation Potential (TWh) ^a	Capacity Potential (GW) ^ª		
Urban utility-scale PV	2,200	1,200		
Rural utility-scale PV	280,600	153,000		
Rooftop PV	800	664		
Concentrating solar power	116,100	38,000		
Onshore wind power	32,700	11,000		
Offshore wind power	17,000	4,200		
Biopower ^b	500	62		
Hydrothermal power systems	300	38		
Enhanced geothermal systems	31,300	4,000		
Hydropower	300	60		

Table ES-1. Total Estimated U.S. Technical Potential Generation and Capacityby Technology

^a Non-excluded land was assumed to be available to support development of more than one technology.

^b All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

Table of Contents

Acknowledgments	
Executive Summary	iv
List of Figures	vi
List of Tables	
Introduction	
Analysis	3
Solar Power Technologies	3
Wind Power Technologies	5
Biopower Technologies	5
Geothermal Energy Technologies	
Hydropower Technologies	7
Results	
Solar Power Technologies	
Wind Power Technologies	
Biopower Technologies	
Geothermal Energy Technologies	9
Hydropower Technologies	9
Discussion	
References	
Appendix A. Exclusions and Constraints, Capacity Factors, and Power Densities	
Appendix B. Energy Consumption by State	32

List of Figures

Figure 1. Levels of potential	1
Figure 2. Total estimated technical potential for urban utility-scale photovoltaics in	
the United States	10
Figure 3. Total estimated technical potential for rural utility-scale photovoltaics in the	
United States	11
Figure 4. Total estimated technical potential for rooftop photovoltaics in the United	
States	12
Figure 5. Total estimated technical potential for concentrating solar power in the	
United States	13
Figure 6. Total estimated technical potential for onshore wind power in the United	
States	14
Figure 7. Total estimated technical potential for offshore wind power in the United	
States	15
Figure 8. Total estimated technical potential for biopower in the United States	16
Figure 9. Total estimated technical potential for hydrothermal power in the United	
States	17
Figure 10. Total estimated technical potential for enhanced geothermal systems in the	
United States	18
Figure 11. Total estimated technical potential for hydropower in the United States	19
Figure B-1. Electric retail sales in the United States in 2010 (EIA)	32

List of Tables

Table ES-1. Total Estimated U.S. Technical Potential Generation and Capacity by	
Technology	. iv
Table 2. Total Estimated Technical Potential for Urban Utility-Scale Photovoltaics by	
State	.10
Table 3. Total Estimated Technical Potential for Rural Utility-Scale Photovoltaics by	
State	
Table 4. Total Estimated Technical Potential for Rooftop Photovoltaics by State	.12
Table 5. Total Estimated Technical Potential for Concentrating Solar Power by State	.13
Table 6. Total Estimated Technical Potential for Onshore Wind Power by State	.14
Table 7. Total Estimated Technical Potential for Offshore Wind Power by State	.15
Table 8. Total Estimated Technical Potential for Biopower by State	.16
Table 9. Total Estimated Technical Potential for Hydrothermal Power by State	.17
Table 10. Total Estimated Technical Potential for Enhanced Geothermal Systems by	
State	
Table 11. Total Estimated Technical Potential for Hydropower by State	.19
Table 12. Total Estimated Technical Potential Generation and Capacity by	
Technology	
Table A-1. Exclusions and Constraints for Urban Utility-Scale Photovoltaics	.24
Table A-2. Capacity Factors for Utility-Scale Photovoltaics	.25
Table A-3. Exclusions and Constraints for Rural Utility-Scale Photovoltaics and	
Concentrating Solar Power	.26
Table A-4. Capacity Factors for Concentrating Solar Power	.26
Table A-5. Exclusions and Constraints for Onshore Wind Power	
Table A-6. Capacity Factor for Offshore Wind Power	.28
Table A-7. Conversion of Offshore Wind Speeds at 90 Meters to Power Classes	.28
Table A-8. Exclusions and Constraints for Offshore Wind Power	.29
Table A-9. Exclusions and Constraints for Enhanced Geothermal Systems	.30
Table A-10. Power Densities for Enhanced Geothermal Systems	.31
Table A-11. Exclusions and Constraints for Enhanced Geothermal Systems	.31
Table B-1. Electric Retail Sales by State, 2010	.32

Introduction

Renewable energy technical potential, as defined in this study, represents the achievable energy generation of a particular technology given system performance, topographic limitations, environmental, and land-use constraints. The primary benefit of assessing technical potential is that it establishes an upper-boundary estimate of development potential (DOE EERE 2006). It is important to understand that there are multiple types of potential—resource, technical, economic, and market—each seen in Figure 1 with its key assumptions.

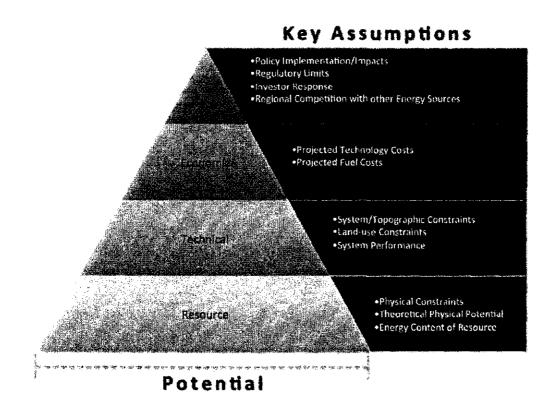


Figure 1 is based on Table 4-1 in the 2011 update of DOE EERE (2006).

Although numerous studies have quantified renewable resource potential, comparing their results is difficult because of the different assumptions, methodologies, reporting units, and analysis time frames used (DOE EERE 2006). A national study of resource-based renewable energy technical potential across technologies has not been publicly available due to the challenges of unifying assumptions for all geographic areas and technologies (DOE EERE 2006).

This report presents the state-level results of a spatial analysis calculating renewable energy technical potential, reporting available land area (square kilometers), installed capacity (gigawatts), and electric generation (gigawatt-hours) for six different renewable electricity generation technologies: utility-scale photovoltaics (both urban and rural), concentrating solar power, onshore wind power, offshore wind power, biopower, and enhanced geothermal systems. Each technology's system-specific power density (or equivalent), capacity factor, and land-use constraints (Appendix A) were identified using published research, subject matter experts, and analysis by the National Renewable Energy Laboratory (NREL). System performance estimates rely heavily on NREL's Systems Advisor Model (SAM)¹ and Regional Energy Deployment System (ReEDS),² a multiregional, multi-time period, geographic information system (GIS) and linear programming model. This report also presents technical potential findings for rooftop photovoltaic, hydrothermal, and hydropower in a similar format based solely on previous published reports.

We provide methodological details of the analysis and references to the data sets used to ensure readers can directly assess the quality of data used, the data's underlying uncertainty, and impact of assumptions. While the majority of the exclusions applied for this analysis focus on evaluating technical potential, we include some economic exclusion criteria based on current commercial configuration standards to provide a more reasonable and conservative estimation of renewable resource potential.

Note that as a technical potential, rather than economic or market potential, these estimates do not consider availability of transmission infrastructure, costs, reliability or time-of-dispatch, current or future electricity loads, or relevant policies. Further, as this analysis does not allocate land for use by a particular technology, the same land area may be the basis for estimates of multiple technologies (i.e., non-excluded land is assumed to be available to support development of more than one technology).

Finally, since technical potential estimates are based in part on technology system performance, as these technologies evolve, their technical potential may also change.

¹ For more information, see <u>http://sam.nrel.gov/</u>.

² For more information, see <u>http://www.nrel.gov/analysis/reeds/</u>.

Analysis

Solar Power Technologies Utility-Scale Photovoltaics (Urban)

We define urban utility-scale photovoltaics (PV) as large-scale PV deployed within urban boundaries on urban open space. The process for generating technical estimates for urban utility-scale PV begins with excluding areas not suitable for this technology. We first limit areas to those within urbanized area boundaries as defined by the U.S. Census Bureau (ESRI 2004) and further limit these areas to those with slopes less than or equal to 3%. Parking lots, roads, and urbanized areas are excluded by identifying areas with imperviousness greater than or equal to 1% (MRLC n.d.). Additional exclusions (Table A-1) are applied to eliminate areas deemed unlikely for development. The remaining land is grouped into contiguous areas and areas less than 18,000 square meters (m²) are removed to ensure that total system size is large enough to be considered a utility-scale project.³ This process produces a data set representative of the final available urban open space suitable for PV development. We obtain state-level annual capacity factors using the National Solar Radiation Database Typical Meteorological Year 3 (TMY3) data set (Wilcox, 2007; Wilcox and Marion, 2008) (Table A-2) and the SAM model. The PV system assumed in this analysis was a 1-axis tracking collector with the axis of rotation aligned north-south at 0 degrees tilt from the horizontal, which has a power density of 48 MW per square kilometer (MW/km²) (Denholm and Margolis 2008a). State technical potential generation is expressed as:

> State $MWh = State\sum[urban open space (km^2) \cdot power density \left(48\frac{MW}{km^2}\right)$ \cdot state capacity factor (%) \cdot 8760 (hours per year)]

Utility-Scale Photovoltaics (Rural)

We define rural utility-scale PV as large-scale PV deployed outside urban boundaries (the complement of urban utility-scale PV). Technical potential estimates for rural utility-scale PV begin by first excluding urban areas as defined by the U.S. Census Bureau's urbanized area boundaries data set. We calculate percent slope for areas outside the urban boundaries and eliminate all areas with slopes greater than or equal to 3%. Federally protected lands, inventoried roadless areas, and areas of critical environmental concern are also excluded, as they are considered unlikely areas for development. Table A-3 contains the full list of exclusions. To limit the available lands to only larger PV systems, a 1-km² contiguous area filter was applied to produce a final available land layer. Finally, we calculate technical potential energy generation for this available land with the same annual average capacity factors, system design, and power density as for urban utility-scale PV, expressed as:

State $MWh = State\sum[available land (km^2) \cdot power density \left(48\frac{MW}{km^2}\right)$ \cdot state capacity factor (%) \cdot 8760 (hours per year)]

³ Depending on the PV system, 18,000 m² produces roughly a 1-MW system.

Rooftop Photovoltaics

We obtained rooftop PV estimates from Denholm and Margolis (2008b), who obtained floor space estimates for commercial and residential buildings from McGraw-Hill and scaled these to estimate a building footprint based on the number of floors. Average floor estimates were obtained from the Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS) (DOE EIA 2005) and the 2003 Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2003). Denholm and Margolis (2008b) calculated roof footprint by dividing the building footprint by the number of floors. They estimated 8% of residential rooftops⁴ and 63% of commercial rooftops' were flat. Orientations of pitched roofs were distributed uniformly. Usable roof area was extracted from total roof area using an availability factor that accounted for shading, rooftop obstructions, and constraints. Base estimates resulted in availability of 22% of roof areas for residential buildings in cool climates and 27% available in warm/arid climates. Denholm and Margolis (2008b) estimated commercial building availability at 60% for warm climates and 65% for cooler climates. Estimated average module efficiency was set at 13.5% with a power density for flat roofs of 110 W/m^2 and 135 W/m² for the rest. Denholm and Margolis (2008b) then aggregated state PV capacity to match Census Block Group populations; they then calculated capacity factors for the closest TMY station and applied these to the closest population group.

Concentrating Solar Power

We define concentrating solar power (CSP) as power from a utility-scale solar power facility in which the solar heat energy is collected in a central location. The technical potential estimates for CSP were calculated using satellite-modeled data from the National Solar Radiation Database (Wilcox, 2007), which represent annual average direct normal irradiance (DNI) as kilowatt-hours per square meter per day (kWh/m²/day) from 1998 to 2005 at a 10-km horizontal spatial resolution. We consider viable only those areas with DNI greater than or equal to 5 kWh/m²/day (Short et al. 2011).⁶ Capacity factor values used in this analysis were generated for a trough system, dry-cooled with six hours of storage and a solar multiple⁷ of 2, with a system power density of 32.8 MW/km².⁸ The capacity factors for each resource class (Table A-4) are generated using the SAM model and TMY3. Land, slope, and contiguous area exclusions are consistent with rural utility-scale PV (Table A-3). Technical state energy generation was expressed as:

State $MWh = State \sum [available land(km^2) \cdot power density \left(32.895 \frac{MW}{km^2}\right)$ \cdot state capacity factor (%) \cdot 8760 (hours per year)]

⁴ Based on estimates from Navigant Consulting

⁵ Based on Commercial Building Energy Consumption Survey (CBECS) database

⁶ Technology improvements may lead to improved performance in the future that could affect this threshold.

⁷ The field aperture area expressed as a multiple of the aperture area required to operate the power cycle at its design capacity.

⁸ Craig Turchi, NREL CSP Analyst, personal communication

Wind Power Technologies Onshore Wind Power

We define onshore wind power as wind resource at 80 meters (m) height above surface that results in an annual average gross⁹ capacity factor of 30% (net capacity factor of 25.5%), using typical utility-scale wind turbine power curves. AWS Truepower modeled the wind resource data using its Mesomap[®] process to produce estimates at a 200-m horizontal spatial resolution. These resource estimates are processed to eliminate areas unlikely to be developed, such as urban areas, federally protected lands, and onshore water features, Table A-5 includes a full list of exclusions. We estimate annual generation by assuming a power density of 5 MW/km² (DOE EERE 2008)¹⁰ and 15% energy losses to calculate net capacity factor.¹¹

Offshore Wind Power

We define suitable offshore wind resource as annual average wind speed greater than or equal to 6.4 meters per second (m/s) at 90 m height above surface.¹² The offshore wind resource data consists of a composite of data sets modeled to estimate offshore wind potential generated by AWS Truepower for the Atlantic Coast from Maine to Massachusetts, Texas, Louisiana, Georgia, and the Great Lakes. Other areas are included using near-shore estimates from onshore-modeled wind resources from published research (Schwartz et al. 2010). Because no offshore or near-shore estimates were available for Florida or Alaska (at the time of this publication), these states are omitted from the technical potential calculations. The offshore resource data extend 50 nautical miles from shore, and in some cases have to be extrapolated to fill the extent (Schwartz et al. 2010). We further filter the resource estimates to eliminate shipping lanes, marine sanctuaries, and a variety of other areas deemed unlikely to be developed. Table A-8 contains a full list of exclusions. Our annual generation estimates assume a power density of 5 MW/km² and capacity factors based on wind speed interval and depth-based wind farm configurations to account for anchoring and stabilization for the turbines as developed by NREL analysts for use in the ReEDS model (Musial and Ram 2010).

Biopower Technologies Biopower (Solid and Gaseous)

We obtained county-level estimates of solid biomass resource for crop, forest, primary/secondary mill residues, and urban wood waste from Milbrandt (2005, updated in 2008)¹³ who reported the estimates in bone-dry tonnes (BDT) per year. We calculate technical potential energy generation assuming 1.1 MWh/BDT, which represents an average solid biomass system output with an industry-average conversion efficiency of

⁹ Gross capacity factor does not include plant downtime, parasitic power, or other factors that would be included to reduce the output to the "Net" capacity factor.

¹⁰ Represents total footprint; disturbed footprint ranges from 2% to 5% of the total

¹¹ For more information, see http://www.windpoweringamerica.gov/wind_maps.asp.

¹² This is a typical wind turbine hub-height for offshore wind developments.

¹³ For more information, see <u>http://www.nrel.gov/gis/biomass.html</u>.

20%, and a higher heating value (HHV) of 8,500 BTU/lb (Ince 1979). From Milbrandt (2005, partially updated in 2008),¹⁴ we obtained county-level estimates of gaseous biomass (methane emissions), from animal manure, domestic wastewater treatment plants, and landfills; all estimates were reported in tonnes of methane (CH₄) per year. We calculate technical potential energy generation assuming 4.7 MWh/tonne of CH₄, which represents a typical gaseous biomass system output with an industry-average conversion efficiency of 30% (Goldstein et al), and a HHV of 24,250 BTU/lb. Other biomass resources (such as orchard/vineyard pruning's and black liquor) were not included in this study due to data limitations. Also, this analysis assumed that all biomass resources considered were available for biopower and did not evaluate competing uses such as biofuels production. The data from Milbrandt (2005, updated in 2008)¹⁵ illustrates the biomass resource currently available in the United States. Subsequent revisions of this analysis could evaluate projected U.S. resource potential, including dedicated energy crops such as those provided by the recent U.S. DOE update (DOE 2011) of the billionton study (Perlack et al. 2005).

Geothermal Energy Technologies Hydrothermal Power Systems

For identified hydrothermal and undiscovered hydrothermal, we used estimates from Williams et al. (2008), who estimated electric power generation potential of conventional geothermal resources (hydrothermal), both identified and unidentified in the western United States, Alaska, and Hawaii. Williams et al. derived total potential for identified hydrothermal resources by state from summations of volumetric models for the thermal energy and electric generation potential of each individual geothermal system (Muffler, 1979). For undiscovered hydrothermal estimates, we used resource estimates generated by Williams et al. (2009) that used logistic regression models of the western United States to estimate favorability of hydrothermal development and thus, to estimate undiscovered potential. In all cases, exclusions included public lands, such as national parks, that are not available for resource development.

Enhanced Geothermal Systems

We derive technical potential estimates for enhanced geothermal systems (EGS)¹⁶ from temperature at depth data obtained from the Southern Methodist University's (SMU) Geothermal Laboratory.¹⁷ The data ranged from 3 km to 10 km in depth. We consider viable those regions at each depth interval with temperatures $\geq 150^{\circ}$ C. We apply known potential electric capacity (MW_e/km³) to each temperature-depth interval to estimate total potential at each depth interval based on the total volume of each unique temperature-

¹⁴ For more information, see <u>http://www.nrel.gov/gis/biomass.html</u>.

¹⁵ For more information, see <u>http://www.nrel.gov/gis/biomass.html</u>.

¹⁶ Deep enhanced geothermal systems (EGS) are an experimental method of extracting energy from deep within the Earth's crust. This is achieved by fracturing hot dry rock between 3 and 10 kilometers (km) below the Earth's surface and pumping fluid into the fracture. The fluid absorbs the Earth's internal heat and is pumped back to the surface and used to generate electricity.

¹⁷ Maria Richards, SMU Geothermal Laboratory, e-mail message to author, May 29, 2009. Data set featured in *The Future of Geothermal Energy* (MIT 2006)

depth interval, shown in Table A-10. Electric generation potential calculations summarize the technical potential (MW) at all depth intervals, electric generation potential (GWh) at all depth intervals with a 90% capacity factor, and annual electric generation potential (GWh) only at optimum depth. We determine optimum depth by a quantitative analysis¹⁸ of levelized cost of electricity (LCOE). An optimum depth is found because drilling costs increase with depth while temperature, and therefore power plant efficiency, generally increase with depth so that power plant costs decrease with depth. Because drilling costs are increasing while power plant costs are decreasing on a per-MW basis, at some point there is a minimum. The optimum depth assumes that the EGS reservoir has a height or thickness of 1 km.

Hydropower Technologies Hydropower

Source point locations of hydropower estimates were provided by the Idaho National Laboratory and were taken from Hall et al. (2006). The point locations were based on a previous study (Hall et al. 2004) that produced an assessment of gross power potential of every stream in the United States. To generate their own estimates, Hall et al. developed and used a feasibility study and development model. The feasibility study included additional economic potential criteria such as site accessibility, load or transmission proximity, along with technical potential exclusions of land use or environmental sensitivity. Sites meeting Hall et al. (2006) feasibility criteria were processed to produce power potential using a development model that did not require a dam or reservoir be built. The development model assumed only a low power (<1 MWa) or small hydro (>= 1 MWa and <= 30 MWa) plant would be built. To produce state technical potentials, we aggregated the previously mentioned source point locations to the state level.

¹⁸ We used the quantitative analysis method from Augustine (2011).

Results

For each technology, we provide a brief summary of our findings along with a figure (map) showing the total estimated technical potential for all states and a table listing the total estimated technical potential by state.

Solar Power Technologies Utility-Scale PV (Urban)

The total estimated annual technical potential in the United States for urban utility-scale PV is 2,232 terawatt-hours (TWh). Texas and California have the highest estimated technical potential, a result of a combination of good solar resource and large population. Figure 2 and Table 2 present the total estimated technical potential for urban utility-scale PV.

Utility-Scale PV (Rural)

Rural utility-scale PV leads all other technologies in technical potential. This is a result of relatively high power density, the absence of minimum resource threshold, and the availability of large swaths for development. Texas accounts for roughly 14% (38,993 TWh) of the entire estimated U.S. technical potential for utility-scale PV (280,613 TWh). Figure 3 and Table 3 present the total estimated technical potential for rural utility-scale PV.

Rooftop PV

Total annual technical potential for rooftop PV is estimated at 818 TWh. States with the largest technical potential typically have the largest populations. California has the highest technical potential of 106 TWh due to its mix of high population and relatively good solar resource. Figure 4 and Table 4 present the total estimated technical potential for rural utility-scale PV.

Concentrating Solar Power

Technical potential for CSP exists predominately in the Southwest. The steep cutoff of potential, as seen in Figure 5, can be attributed to the resource minimum threshold of 5 kWh/m2/day that was used in the analysis. Texas has the highest estimated potential of 22,786 TWh, which accounts for roughly 20% of the entire estimated U.S. annual technical potential for CSP (116,146 TWh). Figure 5 and Table 5 present the total estimated technical potential for concentrating solar power.

Wind Power Technologies Onshore Wind Power

Technical potential for onshore wind power, which is present in nearly every state, is largest in the western and central Great Plains and lowest in the southeastern United States. While the wind resource intensity in the Great Plains is not as high as it is in some areas of the western United States, very little of the land area is excluded due to insufficient resource or due to other exclusions. In the eastern and western United States, the wind resource is more limited in coverage and is more likely to be impacted by environmental exclusions. Texas has the highest estimated annual potential of 5,552 TWh, which accounts for roughly 17% of the entire estimated U.S. annual technical potential for onshore wind (32,784 TWh). Figure 6 and Table 6 present the total estimated technical potential for onshore wind power.

Offshore Wind Power

Technical potential for offshore wind power is present in significant quantities in all offshore regions of the United States. Wind speeds off the Atlantic Coast and in the Gulf of Mexico are lower than they are off the Pacific Coast, but the presence of shallower waters there makes these regions more attractive for development. Hawaii has the highest estimated annual potential of 2,837 TWh, which accounts for roughly 17% of the entire estimated U.S. annual technical potential for offshore wind (16,975 TWh). Figure 7 and Table 7 present the total estimated technical potential for offshore wind power.

Biopower Technologies

Biopower (Solid and Gaseous)

Solid biomass accounts for 82% of the 400 TWh total estimated annual technical potential of biopower; of that, crop residues are the largest contributor. Gaseous biomass has an estimated annual technical potential of 88 TWh, of which landfills were the largest contributor. Figure 8 and Table 8 present the total estimated technical potential for biopower.

Geothermal Energy Technologies Hydrothermal Power Systems

In the assessment, 71 TWh of electric power generation potential is the estimated total from existing (identified) hydrothermal sites spread among 13 states. An additional 237 TWh of undiscovered hydrothermal resources are estimated to exist among these same states. Figure 9 and Table 9 present the total estimated technical potential for hydrothermal power systems.

Enhanced Geothermal Systems

The vast majority of the geothermal potential for EGS (31,344 TWh) within the contiguous United States is located in the westernmost portion of the country. The Rocky Mountain States, and the Great Basin particularly, contain the most favorable resource for EGS (17,414 TWh). However, even the central and eastern portions of the country have 13,930 TWh of potential for EGS development. Note that, especially in western states, a considerable portion of the EGS resource occurs on protected land and was filtered out after exclusions were applied. Figure 10 and Table 10 present the total estimated technical potential for enhanced geothermal systems.

Hydropower Technologies Hydropower

According to Hall et al. (2006), technical potential for hydropower exists predominately in the Northwest and Alaska with a combined total estimated at 69 TWh annually, which accounts for roughly 27% of the entire estimated U.S. annual technical potential for hydropower (259 TWh). Figure 11 and Table 11 present the total estimated technical potential for hydropower.

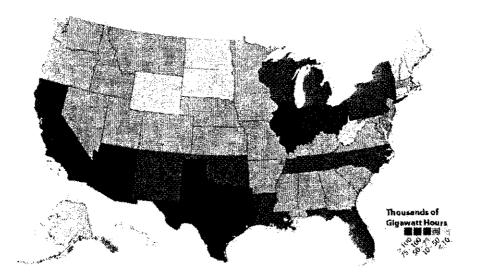
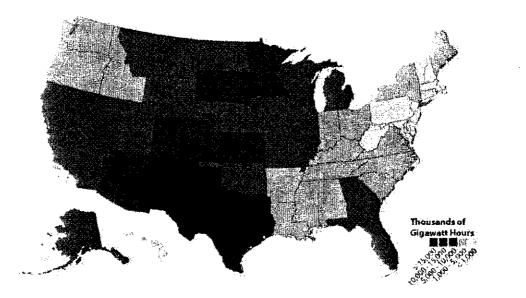



Figure 2. Total estimated technical potential for urban utility-scale photovoltaics in the United States

State	κм²	GW	GWh	State	KM ²	GW	GWh
Alabama	426	20	35,851	Montana	127	6	11,371
Alaska	2	<1	. 155	Nebraska	142	7	12,954
Arizona	1,096	53	121,306	Nevada	225	11	24,894
Arkansas	332	16	28,961	New Hampshire	49	2	3,790
California	2,321	111	246,008	New Jersey	527	25	44,307
Cotorado	399	19	43,471	New Mexico	646	31	71,356
Connecticut	101	5	7,717	New York	683	33	52,803
Delaware	190	9	14,856	North Carolina	789	38	68,346
District of Columbia	<1	<1	8	North Dakota	57	3	4,871
Florida	830	40	72,787	Ohio	1,190	57	86,496
Georgia	506	24	43,167	Okiahoma	534	26	50,041
Hawaii	35	7	3,725	Oregon	271	13	25,783
Idaho	251	12	23,195	Pennsylvania	754	36	56,162
Illinais	1,325	64	103,552	Rhode Island	24	1	1,788
Indiana	1,274	61	98,815	South Carolina	.398	19	33,835
lowa	324	16	27,092	South Dakota	51	2	4,574
Kansas	317	15	31,706	Tennessee	596	29	50,243
Kentucky	339	16	26,515	Texas	3,214	154	294,684
Louisiana	675	32	55,669	Utah	293	14	30,492
Maine	40	2	3,216	Vermont	22	1	1,632
Maryland	379	18	28,551	Virginia	326	16	27,451
Massachusetts	228	11	17,470	Washington	402	19	33,690
Michigan	699	34	50,845	West Virginia	42	2	3,024
Minnesota	419	20	33,370	Wisconsin	728	35	54,939
Mississippl	318	15	26,366	Wyoming	75	4	7,232
Missouri	377	18	30,549	U.S. Total	25,369	1,218	2,231,694

Figure 3. Total estimated technical potential for rural utility-scale photovoltaics in the United States

State	KM ²	GW	GWh	State	KM ²	G₩	GWh
Alabama	44,058	2,115	3,706,839	Montana	91,724	4,403	8,187,341
Alaska	187,608	9,005	8,282,976	Nebraska	101,457	4,870	9,266,757
Arizona	107,231	5,147	11,867,694	Nevada	77,751	3,732	8,614,454
Arkansas	57,239	2,747	4,986,389	New Hampshire	741	36	57,364
California	83,549	4,010	8,855,917	New Jersey	5,232	251	439,774
Colorado	94,046	4,514	10,238,084	New Mexico	147,652	7,087	16,318,543
Connecticut	256	12	19,628	New York	19,294	926	1,492,566
Delaware	3,483	167	272,333	North Carolina	48,892	2,347	4,232,790
District of Columbia	0	Ō	0	North Dakota	114,228	5,483	9,734,448
Florida	58,597	2,813	5,137,347	Ohio	49,908	2,396	3,626,182
Georgia	64,343	3,088	5,492,183	Oklahoma	99,641	4,783	9,341,920
Hawail	431	21	38,033	Oregon	39,267	1,885	3,740,479
Naho	42,613	2,045	3,936,848	Pennsylvania	7,430	357	\$53,356
illinois	103,524	4,969	8,090,985	Rhode Island	184	9	13.636
Indiana	62,891	3.019	4,876,186	South Carolina	32,399	1,555	2,754,973
lowa	83,763	4,021	6,994,159	South Dakota	111,350	5,345	10,008,873
Kansas	144,995	6,960	14,500,149	Tennessee	26,396	1,267	2,225,990
Kentucky	23,319	1,119	1,823,977	Texas	425,230	20,411	38,993,582
Louisiana	49,876	2,394	4,114,605	Utah	49,797	2,390	5,184,878
Maine	13,723	659	1,100,327	Vermont	739	35	54,728
Maryland	7,773	373	585,949	Virginia	22,378	1,074	1,882,467
Massachusetts	1,074	52	82,205	Washington	20,759	996	1,738,151
Michigan	71,741	3,444	5,215,640	West Virginia	729	35	52,694
Minnesota	135,627	6,510	10,792,814	Wisconsin	66,788	3,206	5,042,259
Mississippi	59,997	2,880	4,981,252	Wyoming	59,464	2,854	5,727,224
Missourí	65,767	3,157	5,335,269	U.S. Total	3,186,955	152,974	280,613,217

Table 3. Total Estimated Technical Potential for Rural Utility-Scale Photovoltaics by State^a

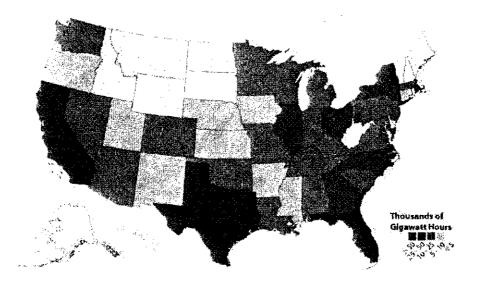


Figure 4. Total estimated technical potential for rooftop photovoltaics in the United States

State	GW	GWh	State	GW GW	GWh
Alabama	13	15,476	Montana	2	2,194
Alaska	1	NA	Nebraska	4	5,337
Arizona	15	22,736	Nevada	. 7	10,767
Arkansas	7	8,485	New Hampshire	2	2,299
California	76	106,411	New Jersey	14	15,768
Colorado	12	16,162	New Mexico	4	6,513
Connecticut	6	6,616	New York	25	28,780
Delaware	2	2,185	North Carolina	23	28,420
District of Columbia	2	2,490	North Dakota	Z	1,917
Fiorida	49	63,987	Ohio	27	30,064
Georgia	25	31,116	Oklahoma	9	12,443
Hawaii	3	NA	Oregon	8	8,323
Idaho	3	4,051	Pennsylvania	20	22,215
Illinois	26	30,086	Rhode Island	2	1,711
Indiana	15	17,151	South Carolina	12	14,413
lowa	7	8,646	South Dakota	2	2,083
Kansas	7	8,962	Tennessee	16	19,685
Kentucky	11	12,312	Texas	60	78,717
Louisiana	12	14,368	Utah	6	7,514
Maine	2	2,443	Vermont	1	1,115
Maryland	13	14,850	Virginia	19	22,267
Massachusetts	10	11,723	Washington	13	13,599
Michigan	22	23,528	West Virginia	4	4,220
Minnesota	12	14,322	Wisconsin	12	13,939
Mississippi	7	8,614	Wyoming	1	1,551
Missouri	13	16,160	U.S. Total	664	818,733

Table 4. Total Estimated Technical Potential for Rooftop Photovoltaics by State^a

12

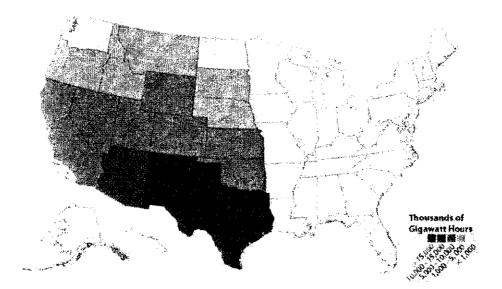


Figure 5. Total estimated technical potential for concentrating solar power in the United States

State	Kite	GW	SWN		KM ²	GW	GWh
Alabama	0	0	0	Montana	16,939	557	1,540,288
Alaska	0	0	G	Nebraska	53,305	1,753	4,846,929
Arizona	107,239	3,528	12,544,334	Nevada	77,760	2,558	8,295,753
Arkansas	0	0	0	New Hampshire	0	Ø	0
California	82,860	2,726	8,490,916	New Jersey	0	0	0
Colorado	94,173	3,098	9,154,524	New Mexico	147,748	4,860	16,812,349
Connecticut	0	0	0	New York	0	0	0
Delaware	Ŭ	0	Û	North Carolina	0	Û	0
District of Columbia	0	0	0	North Dakota	396	13	36,050
Florida	4	0	359	Ohio	0	0	0
Georgia	0	0	Ø	Oklahoma	\$5,113	1,813	5,068,036
Hawaii	168	ថ	15,370	Oregon	30,927	1,017	2,812,125
Idaho	38,523	1,267	3,502,877	Pennsylvania	0	0	0
filinois	0	0	0	Rhode Island	0	0	0
Indiana	0	0	0	South Carolina	0	0	0
lowa	0	0	0	South Dakota	17,922	590	1,629,660
Kansas	87,698	2,885	7,974,256	Tennessee	0	٥	D
Kentucky	0	0	0	Texas	235,398	7,743	22,786,750
Louisiana	0	0	0	Utah	49,799	1,638	5,067,547
Maine	0	0	0	Vermont	0	0	0
Maryland	0	0	0	Virginia	0	0	0
Massachusetts	0	0	0	Washington	1,778	59	161,713
Michigan	0	0	0	West Virginia	0	0	0
Minnesota	0	0	0	Wisconsin	٥	0	0
Mississippi	0	0	0	Wyoming	59,457	1,956	5,406,407
Missouri	0	0	0	U.S. Totai	1,157,209	38,066	116,146,245

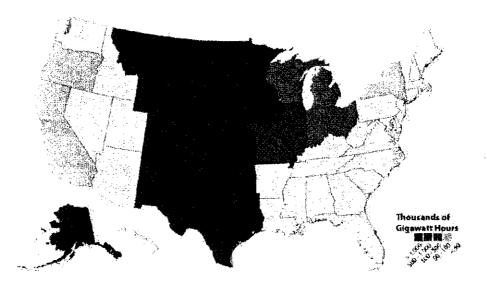


Figure 6. Total estimated technical potential for onshore wind power in the United States

State	KM ²		STWN	State	KM .	. GN	Gwh
Alabama	24	<1	283	Montana	188,801	944	2,746,272
Alaska	98,669	493	1,373,433	Nebraska	183,600	918	3,011,253
Arizona	2,181	11	26,036	Nevada	1,449	7	17,709
Arkansas	1,840	9	22,892	New Hampshire	427	21	5,706
California	6,822	34	89,862	New Jersey	26	<1	317
Colorado	77,444	387	1,096,036	New Mexico	98,417	492	1,399,157
Connecticut	5	<1	62	New York	5,156	26	63,566
Delaware	2	<1	22	North Carolina	162	<1	2,037
District of Columbia	0	0	0	North Dakota	154,039	770	2,537,825
Florida	<1	<1	<1	Ohio	10,984	55	129,143
Georgia	26	<1	323	Oklahoma	103,364	517	1,521,652
Hawəii	494	2	7,787	Oregan	5,420	27	68,767
Idaho	3,615	18	44,320	Pennsylvania	661	3	8,231
illinois	49,976	250	649,468	ithode Island	9	<1	130
Indíana	29,646	148	377,604	South Carolina	37	<1	428
lowa	114,143	571	1,723,588	South Dakota	176,483	882	2,901,858
Kansas	190,474	952	3,101,576	Tennessee	52	<1	766
Kentucky	12	<1	147	Texas	380,305	1,902	5,552,400
Louisiana	82	<1	935	Utah	2,621	13	31,552
Maine	2,250	11	28,743	Vermont	590	Э	7,796
Maryland	297	1	3,632	Virginia	359	2	4,589
Massachusetts	206	1	2,827	Washington	3,696	18	47,250
Michigan	11,808	59	143,908	West Virginia	377	2	4,952
Minnesota	97,854	489	1,428,525	Wisconsin	20,751	104	255,266
Mississippi	0	0	0	Wyoming	110,415	552	1,653,857
Missouri	54,871	274	689,519	U.S. Total	2,190,952	10,955	32,784,004

Table 6. Total Estimated Technical Potential for Onshore Wind Power by State³

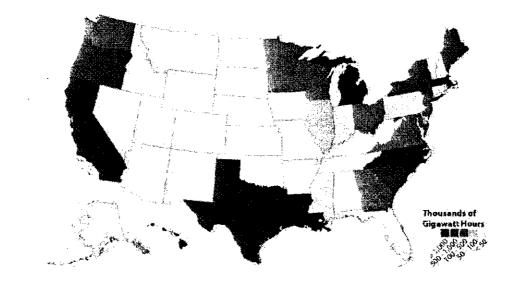


Figure 7. Total estimated technical potential for offshore wind power in the United States

State	KM ²	GW	GWh	State	KM²	GW	GWh
Alabama	0	0	0	Montana	NA	NA	NA
Alaska	NA	NA	NA	Nebraska	NA	NA	NA
Arizona	NA	NA	NA	Nevada	NA	NA	NA
Arkansas	NA	NA	NA	New Hampshire	691	3 (14,478
California	130,967	655	2,662,580	New Jersey	20,387	102	429,808
Colorado	NA	NA	NA	New Mexico	NA	NA	NA
Connecticut	1,434	7	26,545	New York	29,215	146	614,280
Delaware	3,008	.15	60,654	North Carolina	61,204	306	1,269,627
District of Columbia	NA	NA	NA	North Dakota	NA	NA	NA
Florida	1,930	10	34,684	Ohio	8,361	42	170,561
Georgia	11,726	59	220,807	Oklahoma	NA	NA	NA
Hawaii	147,389	737	2,836,735	Oregon	45,002	225	962,723
Idaho	NA	NA	NA	Pennsylvania	1,135	6	23,571
Illinois	3,174	16	66,070	Rhode Island	4,193	21	89,115
Indiana	9	<1	166	South Carolina	26,643	133	542,218
lowa	NA	NA	NA	South Dakota	NA	NA	NA
Kansas	· NA	NA	NA	Tennessee	NA	NA	NA
Kentucky	NA	NA	NA	Texas	54.289	271	1,101,063
Louisiana	68,123	341	1,200,699	Utah	NA	NA	NA
Maine	29,484	147	631,960	Vermont	NA	NA	NA
Maryland	10,382	52	200,852	Virginia	17,815	89	361,054
Massachusetts	36,815	184	799,344	Washington	24,193	121	488,025
Michigan	84,515	423	1,739,801	West Virginia	NA	NA	NA
Minnesota	5,843	Z9	100,455	Wisconsin	16,134	81	317,755
Mississippi	643	3	10,172	Wyoming	NA	NA	NA
Missouri	NA	NA	NA	U.S. Total	844,703	4,223	16,975,802

Table 7. Total Estimated Technical Potential for Offshore Wind Power by State^a



Figure 8. Total estimated technical potential for biopower in the United States

State	GW	GWh	State	GW	GWh
Alabama	2	12,727	Montana	<1	5,072
Alaska	<1	575	Nebraska	2	17,023
Arizona	<1	1,925	Nevada	<1	614
Arkansas	2	15,444	New Hampshire	<1	1,343
California	4	27,919	New Jersey	<1	3,523
Colorado	<1	4,138	New Mexico	<1	949
Connecticut	<1	909	New York	1	8,509
Delaware	<1	898	North Carolina	2	16,650
District of Columbia	<1	66	North Dakota	1	8,216
Florida	2	13,358	Ohio	2	14,372
Georgia	2	16,903	Oklahoma	<1	5,094
Hawaii	<1	724	Oregon	2	14,584
Idaho	<1	5,958	Pennsylvania	Z	13,446
Illinois	4	31,960	Rhode Island	<1	618
Indiana	2	17,920	South Carolina	1	8,415
lowa	4	28,928	South Dakota	1	8,615
Kansas	2	12,857	Tennessee	1	8,080
Kentucky	1	8,322	Texas	3	21,976
Louisiana	2	14,873	Utah	<1	862
Maine	<1	4,398	Vermont	<1	695
Maryland	1>	3,329	Virginia	1	10,365
Massachusetts	<1	2,149	Washington	2	13,826
Michigan	2	11,897	West Virginia	<1	2,688
Minnesota	3	21,391	Wisconsin	2	13,295
Mississippi	2	15,287	Wyoming	<1	\$53
Missouri	2	13,986	U.\$, Total	62	488,326

Table 8. Total Estimated Technical Potential for Biopower by State^a

^a Non-excluded land was assumed to be available to support development of more than one technology. All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

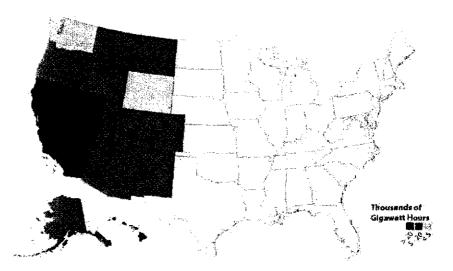


Figure 9. Total estimated technical potential for hydrothermal power in the United States

State	GW	GWh	State	GW	GWh
Alabama	<1	<1	Montana	<1	5,548
Alaska	2	15,437	Nebraska	4	<1
Arizona	. 1	8,330	Nevada	6	45,321
Arkansas	<1	<1	New Hampshire	<1	<1
California	17	130,921	New Jersey	<1	<1
Colorado	1	8,954	New Mexico	2	12,933
Connecticut	<1	<1	New York	<1	<1
Delaware	<1	<1	North Carolina	<1	<1
District of Columbia	<1	<1	North Dakota	<1	<1
Florida	<1	<1	Ohio	<1	<1
Georgia	<1	<1	Oklahoma	<1	<1
Hawaii	3	20,632	Oregon	2	18,200
Idaho	2	17,205	Pennsylvania	<1	<1
Illinois	<1	<1	Rhode Island	<1	<1
Indiana	<1	<1	South Carolina	<1	<1
lowa	<1	<1	South Dakota	<1	<1
Kansas	<1	<1	Tennessee	<1	<1
Kentucky	<1	<1	Texas	<1	<1
Louisiana	<1	<1	Utah	2	12,982
Maine	<1	<1	Vermont	<1	<1
Maryland	<1	<1	Virginia	<1	<1
Massachusetts	<1	<1	Washington	<1	2,547
Michigan	<1	<1	West Virginia	<1	<1
Minnesota	<1	<1	Wisconsin	<1	<1
Mississippi	<1	<1	Wyoming	<1	1,373
Missouri	<1	<1	U.S. Total	38	308,156

Table 9. Total Estimated Technical Potential for Hydrothermal Power by State^a

Figure 10. Total estimated technical potential for enhanced geothermal systems in the
United States

State	GW	GWh	State	G₩	GWh
Alabama	68	535,490	Montana	209	1,647,304
Alaska	NA	NA	Nebraska	118	927,996
Arizona	157	1,239,148	Nevada	160	1,262,175
Arkansas	80	628,622	New Hampshire	13	104,314
California	170	1,344,179	New Jersey	4	35,230
Colorado	159	1,251,658	New Mexico	180	1,417,978
Connecticut	7	56,078	New York	48	375,401
Delaware	3	22,813	North Carolina	53	420,741
District of Columbia	<1	698	North Dakota	104	820,226
Florida	47	374,161	Ohio	63	495,922
Georgia	45	353,206	Oklahoma	99	779,667
Hawaii	NA	NA	Oregon	116	914,105
Idaho	126	993,257	Pennsylvania	42	327,341
Illinois	86	676,056	Rhode Island	1	11,492
Indiana	55	434,258	South Carolina	46	364,105
lowa	77	606,390	South Dakota	117	921,973
Kansas	126	989,676	Tennessee	54	428,380
Kentucky	61	484,659	Texas	384	3,030,251
Louisiana	61	484,271	Utah	119	939,381
Maine	48	377,075	Vermont	5	35,617
Maryland	11	86,649	Virginia	37	290,737
Massachusetts	12	92,227	Washington	71	563,024
Michigan	58	457,850	West Virginia	33	261,376
Minnesota	47	369,785	Wisconsin	82	647,173
Mississippi	71	559,056	Wyoming	136	1,070,079
Missouri	106	835,445	U.S. Total	3,976	31,344,696

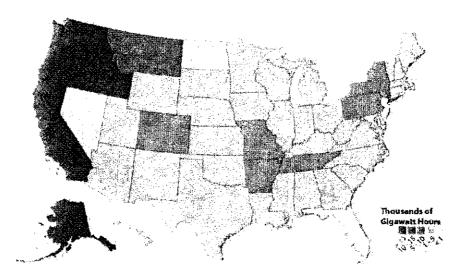


Figure 11. Total estimated technical potential for hydropower in the United States

State	Gount (କାର ସ୍ୱାନ୍ୟ କାର୍ଣ୍ଣ	5W	State	an Covers	G. GW	<
Alabama	2,435	<1.	4,103	Montana	6,859	3	14,547
Alaska	3,053	5	23,675	Nebraska	2,880	<1	3,142
Arizona	1,958	<1	1,303	Nevada	1,489	<1	846
Arkansas	3,268	1	6,093	New Hampshire	810	<1	1,741
California	9,692	7	30,024	New Jersey	402	<1	549
Colorado	5,060	2	7,789	New Mexico	1,810	<1	1,363
Connecticut	659	<1	922	New York	4,839	2	6,711
Delaware	25	<1	31	North Carolina	2,131	<1	3,037
District of Columbia	2	<1	<1	North Dakota	572	<1	347
Florida	493	1>	682	Ohio	1,791	<1	3,046
Georgia	2,100	<1	1,988	Okiahoma	2,824	<1	3,016
Hawail	437	<1	2,602	Oregon	7,993	4	18,184
Idaho	6,706	4	18,758	Pennsylvania	4,466	2	8,368
#Inois	1,330	1	4,883	Rhode Island	86	<1	59
Indiana	1,142	<1	2,394	South Carolina	889	<1	1,889
lowa	2,398	<1	2,818	South Dakota	1,712	<1	1,047
Kansas	3,201	<1	2,508	Tennessee	2,610	1	5,745
Kentucky	1,394	<1	4,255	Texas	4,366	<1	3,006
Louisiana	934	<1	2,423	Utah	3,394	<1	3,528
Maine	1,373	<1	3,916	Vermont	1,207	<1	1,710
Maryland	491	<1	814	Virginia	2,601	<1	3,657
Massachusetts	560	<1	1,197	Washington	7,310	6	27,249
Michigan	1,942	<1	1,181	West Virginia	1,711	1	4,408
Minnesota	1,391	<1	1,255	Wisconsin	1,863	1	2,287
Mississippi	1,536	<1	2,211	Wyoming	2,842	1	4,445
Missouri	5,089	2	7,198	U.S. Total	128,126	60	258,953

Table 11. Total Estimated Technical Potential for Hydropower by State^a

Discussion

Table 12 summarizes the estimated technical generation and capacity potential in the Unites States for each renewable electricity technology examined in this report. As estimates of technical, rather than economic or market, potential, these values do not consider:

- Allocation of available land among technologies (available land is generally assumed to be available to support development of more than one technology and each set of exclusions was applied independently)
- Availability of existing or planned transmission infrastructure that is necessary to tie generation into the electricity grid
- The relative reliability or time-of-productions of power
- The cost associated with developing power at any location
- Presence of local, state, regional or national policies, either existing or potential, that could encourage renewable development
- The location or magnitude of current and potential electricity loads.

While not a direct comparison, given the above considerations, one useful point of reference for the generation potential estimate is annual electricity retail sales in the United States. In 2010, aggregate sales for all 50 states were roughly 3,754 TWh (see Appendix B).

Generation Potential (TWh) ^a	Capacity Potential (GW) ^a
2,200	1,200
280,600	153,000
800	664
116,100	38,000
32,700	11,000
17,000	4,200
500	62
300	38
31,300	4,000
300	60
	(TWh) ^a 2,200 280,600 800 116,100 32,700 17,000 500 300 31,300

Table 12. Total Estimated Technical Potential Generation and Capacity by Technology

^a Non-excluded land was assumed to be available to support development of more than one technology.

^b All biomass feedstock resources considered were assumed to be available for biopower use; competing uses, such as biofuels production, were not considered.

Updates to these technical potentials are possible on an ongoing basis as resource, system, exclusions and domain knowledge change and data sets improve in quality and resolution. In this study, we identified areas of potential improvements that include the acquisition of localized PV capacity factors, updated exclusion layers, and the use of updated land-cover data sets.

References

Augustine, C. (October 2011). "Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input." NREL/TP-6A20-47459. Golden, CO: National Renewable Energy Laboratory.

Black & Veatch. (2009). Internal NREL Subcontract.

U.S. Bureau of Land Management (BLM). (2009). "Area of Critical Environmental Concern (ACEC)."

Conservation Biology Institute (CBI). (2004). Protected Areas Database. "State/GAP Land Stewardship."

Denholm, P.; Margolis, R. M. (2008a). "Land-Use Requirements and the Per-Capita Solar Footprint for Photovoltaic Generation in the United States." *Energy Policy*, (36:9); pp. 3531-3543.

Denholm, P.; Margolis, R. (2008b). "Supply Curves for Rooftop Solar PV-Generated Electricity for the United States." NREL/TP-6A0-44073. Golden, CO: National Renewable Energy Laboratory.

U.S. Department of Agriculture Forest Service (USFS). (2003). "National Inventoried Roadless Areas (IRA)."

U.S. Department of Energy. (2011). "U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry." R.D. Perlack and B.J. Stokes (Leads). ORNL/TM-2011/224. Oak Ridge, TN: Oak Ridge National Laboratory.

U.S. Department of Energy (DOE) Energy Information Administration (EIA). (2003). Commercial Buildings Energy Consumption Survey (CBECS): 2003 Detailed Tables. <u>http://www.eia.gov/emeu/cbecs/cbecs2003/detailed_tables_2003/detailed_tables_2003</u>. <u>html</u>. Accessed 2008.

U.S. Energy Information Administration (EIA). State Electricity Profiles. <u>http://205.254</u> .135.7/electricity/state/. Accessed 2012.

DOE EIA. (2005). Residential Energy Consumption Survey (RECS). <u>http://www.eia.gov/</u> <u>consumption/residential/data/2005/</u>. Accessed 2008.

DOE Office of Energy Efficiency and Renewable Energy (EERE). (October 2006, updated January 2011). "Report to Congress on Renewable Energy Resource Assessment Information for the United States." January 2011 (EPACT) Prepared by the National Renewable Energy Laboratory.

DOE EERE. (July 2008). "20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply." NREL/TP-500-41869. Golden, CO: National Renewable Energy Laboratory.

ESRI. (2003). "Airports and Airfields."

ESRI. (2004). "U.S. Census Urbanized Areas."

ESRI. (2007a). "Landmarks."

ESRI. (2007b). "U.S. Parks."

U.S. Geological Survey (USGS). (1993). "North America Land Use Land Cover (LULC)," version 2.0.

USGS. (2005). Federal and Indian Lands.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S.I.; Woods, R.; Schweizer, T. (2003). "Gas-Fired Distributed Energy Resource Technology Characteristics." NREL/TP-620-34783. Golden, CO: National Renewable Energy Laboratory.

Hall, D.G.; Cherry, S.J.; Kelly, S.R.; Lee, R.D.; Carroll, G.R.; Sommers, G.L.; Verdin, K.L. (April 2004). "Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources." DOE/ID-11111. U.S. Department of Energy.

Hall D.G.; Reeves, K.S.; Brizzee, J.; Lee, R.D.; Carroll, G.R.; Sommers, G.L. (January 2006). "Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants." DOE-ID-11263. Idaho National Laboratory.

Ince, P.J. (1979). "How To Estimate Recoverable Heat Energy in Wood or Bark Fuels." General Technical Report FPL 29. Madison, WI: United States Department of Agriculture, Forest Products Laboratory. <u>http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr29.pdf</u>.

Massachusetts Institute of Technology. (2006). "The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United in the 21st Century." INL/EXT0611746. Cambridge, MA: Massachusetts Institute of Technology. <u>http://</u> www1.eere.energy.gov/geothermal/future_geothermal.html

Multi-Resolution Land Characteristics (MRLC) Consortium. (n.d.). National Land Cover Database. <u>http://www.mrlc.gov/</u>. Accessed 2010.

Milbrandt, A. (December 2005). "A Geographic Perspective on the Current Biomass Resource Availability in the United States." NREL/TP-560-39181. Golden, CO: National Renewable Energy Laboratory.

Muffler, L.J.P., ed. (1979). "Assessment of geothermal resources of the United States — 1978." U. S. Geol. Survey Circ. 790. Arlington, VA: U.S. Geological Survey.

Musial, W.; Ram, B. (2010). "Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers." NREL/TP-500-40745. Golden, CO: National Renewable Energy Laboratory.

NREL. (2010). Electricity Generation and Consumption by State 2008. <u>http://en.openei</u>.org/datasets/node/60. Accessed 2010.

Perlack, R.; Wright, L.; Turhollow, A.; Graham, R.; Stokes, B.; Erbach, D. (2005). "Biomass as Feedstock for a Bioenergy and BioProducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply." ORNL/TM-2005/66. Oak Ridge, TN: Oak Ridge National Laboratory.

Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A. (2011). "Regional Energy Deployment System (ReEDS)." NREL/TP-6A2-46534. Golden, CO: National Renewable Energy Laboratory.

Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W. (June 2010). "Assessment of Offshore Wind Energy Resources for the United States." NREL/TP-500-45889. Golden, CO: National Renewable Energy Laboratory.

Williams, C.F.; Reed, M.J.; Mariner, R.H., DeAngelo, J.; Galanis, S.P., Jr. (2009). "Quantifying the Undiscovered Geothermal Resources of the United States." U.S. Geologic Survey, Geothermal Resources Council Transactions, v. 33. p. 995-1001.

Williams, C.F.; Reed, M.J.; Mariner, R.H., DeAngelo, J.; Galanis, S.P., Jr. (2008). "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States." U.S. Geological Survey Fact Sheet 2008-3082. Menlo Park, CA: U.S. Geological Survey.

Wilcox, S. (2007). "National Solar Radiation Database 1991-2005 Update: User's Manual." NREL/TP-581-41364. Golden, CO: National Renewable Energy Laboratory.

Wilcox, S.; Marion, W. (2008). "Users Manual for TMY3 Data Sets (Revised)." NREL /TP-581-43156. Golden, CO: National Renewable Energy Laboratory.

Appendix A. Exclusions and Constraints, Capacity Factors, and Power Densities

Slope Exclusion	> 3%	. <u> </u>
Contiguous Area Exclusion	< 0.018 km ²	
Land Type(s) Exclusion	Within Urban Boundaries	ESRI (2004)
	Landmarks	ESRI (2007a)
	Parks	ESRI (2007b)
	MRLC - Water	MRLC (n.d.)
	MRLC - Wetlands	MRLC (n.d.)
	MRLC - Forests	MRLC (n.d.)
	MRLC -Impervious Surface >= 1%	MRLC (n.d.)

Table A-1. Exclusions and Constraints for Urban Utility-Scale Photovoltaics

_

State	Capacity Factor	State	Capacity Factor	State	Capacity Factor
Alabama	0.200	Maine	0.191	Oklahoma	0.223
Alaska	0.105	Maryland	0.179	Oregon	0.227
Arízona	0.263	Massachusetts	0.182	Pennsylvania	0.177
Arkansas	0.207	Michigan	0.173	Rhode Island	0.176
California	0.252	Minnesota	0.189	South Carolina	0.202
Colorado	0.259	Mississippi	0.197	South Dakota	0.214
Connecticut	0.182	Missouri	0.193	Tennessee	0.201
Delaware	0.186	Montana	0.212	Texas	0.218
Florida	0.20 9	Nebraska	0.217	Utah	0.248
Georgia	0.203	Nevada	0.263	Vermont	0.176
Hawaii	0.210	New Hampshire	0.184	Virginia	0.200
Idaho	0.220	New Jersey	0.200	Washington	0.199
Illinois	0.186	New Mexico	0.263	West Virginia	0.172
Indiana	0.184	New York	0.184	Wisconsin	0.180
Iowa	0.199	North Carolina	0.206	Wyoming	0.229
Kansas	0.238	North Dakota	0.203		
Kentucky	0.186	Ohio	0.173		
Louisiana	0.196				

Table A-2. Capacity Factors for Utility-Scale Photovoltaics^a

^a (SAM)

	Suidi Fuwei	
Slope Exclusion	> 3%	
Contiguous Area Exclusion	< 1 km²	
Land Type(s) Exclusion	Urban Areas	ESRI (2004)
	MRLC - Water	MRLC (n.d.)
	MRLC - Wetlands	MRLC (n.d.)
	BLM ACEC Lands (Areas of Critical Environmental Concern) (BLM 2009)	BLM (2009)
	Forest Service IRA (Inventoried Roadless Area) (USFS 2003)	USFS (2003)
	National Park Service Lands	USGS (2005)
	Fish & Wildlife Lands	USGS (2005)
	Federal Parks	USGS (2005)
	Federal Wilderness	USGS (2005)
	Federal Wilderness Study Area	USGS (2005)
	Federal National Monument	USGS (2005)
	Federal National Battlefield	USGS (2005)
	Federal Recreation Area	USGS (2005)
	Federal National Conservation Area	USGS (2005)
	Federal Wildlife Refuge	USGS (2005)
	Federal Wildlife Area	USGS (2005)
	Federal Wild and Scenic Area	USGS (2005)

Table A-3. Exclusions and Constraints for Rural Utility-Scale Photovoltaics and Concentrating Solar Power

Table A-4. Capacity Factors for Concentrating Solar Power^a

Class	Kwh/m2/day	Capacity Factor	
1	5-6.25	0.315	
2	6.25–7.25	0.393	
3	7.25–7.5	0.428	
4	7.5–7.75	0.434	
5	> 7.75	0.448	
^a (SAM)			

.

Slope Exclusion	> 20%	
Distance Exclusion	< 3 km Distance to Excluded Area (does not apply to water)	
Land Type(s) Exclusion	50% Forest Service Lands (includes National Grasslands, excludes ridge crests)	USGS (2005)
	50% Department of Defense Lands (excludes ridge crest)	USGS (2005)
	50% GAP Land Stewardship Class 2 - Forest	CBI (2004)
	50% Exclusion of non-ridge crest forest (non- cumulative over Forest Service Land)	USGS (2005)
	Airports	ESRI (2003)
	Urban Areas	ESRI (2004)
	LULC - Wetlands	USGS (1993)
	LULC - Water	USGS (1993)
	Forest Service IRA (Inventoried Roadless Areas)	USFS (2003)
	National Park Service Lands	USGS (2005)
	Fish & Wildlife Lands	USGS (2005)
	Federal Parks	USGS (2005)
	Federal Wilderness	USGS (2005)
	Federal Wilderness Study Area	USGS (2005)
	Federal National Monument	USGS (2005)
	Federal National Battlefield	USGS (2005)
	Federal Recreation Area	USGS (2005)
	Federal National Conservation Area	USGS (2005)
	Federal Wildlife Refuge	USGS (2005)
	Federal Wildlife Area	USGS (2005)
	Federal Wild and Scenic Area	USGS (2005)
	GAP Land Stewardship Class 2 - State & Private Lands Equivalent to Federal Exclusions	CBI (2004)

Table A-5. Exclusions and Constraints for Onshore Wind Power

Depth	Class	Watts/m ²	Capacity Factor	
Shallow		<u> </u>		
0-30 meters	3	300-400	0.36	
0-30 meters	4	400–500	0.39	
0-30 meters	5	500–600	0.45	
0-30 meters	6	600800	0.479	
0-30 meters	7	> 800	0.5	
Deep				
> 30 meters	3	300-400	0.367	
> 30 meters	4	400500	0.394	
> 30 meters	5	500600	0.45	
> 30 meters	6	600800	0.479	
> 30 meters	7	> 800	0.5	
² (ReEDS)				

Table A-6. Capacity Factor for Offshore Wind Power^a

Wind Speed (meters / second)	Power Class
6.4–7.0	3
7.0-7.5	4
7.5–8.0	5
8.0-8.8	6
> 8.8	7

^a Marc Schwartz, NREL Wind Analyst, personal communication

< 50 nautical miles from shoreline		
National Marine Sanctuaries		
Marine Protected Areas Inventory – 'NAL', 'NIL', 'NTL'		
Office of Habitat Conservation Habitat Protection Div. EFH – Shipping Routes, Sanctuary Protected Areas		
NOAA Jurisdictional Boundaries and Limits – Coastal National Wildlife Refuges – Pacific		
Navigational & Marine Infrastructure – Shipping Lanes, Drilling Platforms (Gulf), Pipelines (Gulf), Fairways (Gulf)		
NWIOOS – Towlane Agreement WSG 2007		
World Database on Protected Areas Annual Release 2009 Global Data set – Offshore Oil & Gas Pipelines/Drilling Platforms		
Pipelines & Easements		
Audubon Sanctuaries		
Gulf Inter-coastal Waterway/Ship Channels		
National Wildlife Refuges		
Shipping Safety Fairways		
State Coastal Preserves		
Dredged Material Placement Sites		
State Tracts with Resource Management Codes		
Significant Natural Heritage Areas		
Sea Turtle Sanctuary		
Crane Spawning Sanctuary		
IM ACC EPA		
IM Ship Routes		
Near-shore Coastal Parks		
Threatened & Endangered Species Waters		
Crab Sanctuary		
Security Areas		
Striped Bass Sanctuary		
State Park & State Dedicated Natural Area Preserve (w/in 1 mile of		
shoreline)		

Table A-8. Exclusions and Constraints for Offshore Wind Power^a

	Hazardous Material Sites Designated by the U.S. EPA and RIDEM (w/in 0.5 miles of shoreline)	
	CRMCWT08 (Type = 1 or 2)	
South Carolina:	Refuges	
	OCRM Critical Area	
New Hampshire	Conservation Focus Area	
Florida	Ocean Dredged Material Disposal Sites	
	Aquatic Preserve Boundaries	
California	Cordell Banks Closed Areas	
Massachusetts	Ferry Routes	
Oregon	Oregon Islands National Wildlife Refuges USFWS 2004	
	Oregon Marine Managed Areas	
	Oregon Cables OFCC 2005	
	Dredged Material Disposal Sites ACDE 2008	
New Jersey	New Jersey Coastal Wind Turbine Siting Map – Exclusion Areas	
^a Exclusions were developed by Black & Veatch (2009).		

Table A-9. Exclusions and Constraints for Enhanced Geothermal Systems^a

Land Type(s) Exclusion	National Park Service Lands
	Fish and Wildlife Service Lands
	Federal Parks
	Federal Wilderness
	Federal National Monuments
	Federal National Battlefields
	Federal Restoration Areas
	Federal National Conservation Areas
	Federal Wildlife Refuge Areas
	Federal Wild and Scenic Areas
a	USGS (2005)

Temperature C	MW / km ²	
150-200	0.59	
200–250	0.76	
250-300	0.86	
300350	0.97	
> 350	1.19	
^a Augustine (2011)		

Table A-10. Power Densities for Enhanced Geothermal Systems^a

^a Augustine (2011)

Table A-11. Exclusions and Constraints for Enhanced Geothermal Systems^a

National Park Service Lands
Fish and Wildlife Service Lands
Federal Parks
Federal Wilderness
Federal National Monuments
Federal National Battlefields
Federal Restoration Areas
Federal Conservation Areas
Federal Wildlife Refuge Areas
Federal Wild and Scenic Areas

and the second second

Appendix B. Energy Consumption by State

Electric retail sales in the United States were roughly 3,754 TWh in 2010 (EIA).

Figure B-1. Electric retail sales in the United States in 2010 (EIA).

State	GWh -	State	GWh
Alabama	90,863	Montana	13,423
Alaska	6,247	Nebraska	29,849
Arizona	72,832	Nevada	33,773
Arkansas	48,194	New Hampshire	10,890
California	258,525	New Jersey	79,179
Colorado	52,918	New Mexico	22,428
Connecticut	30,392	New York	144,624
Delaware	11,606	North Carolina	136,415
District of Columbia	11,877	North Dakota	12,956
Florida	231,210	Ohio	154,145
Georgia	140,672	Oklahoma	57,846
Hawail	10,017	Oregon	45,026
Idaho	22,798	Pennsylvania	148,964
Illinois	144,761	Rhode Island	7,799
Indiana	105,994	South Carolina	82,479
lowa	45,445	South Dakota	11,356
Kansas	40,421	Tennessee	103,522
Kentucky	93,569	Texas	358,458
Louisiana	85,080	Utah	28,044
Maine	11,532	Vermont	5,595
Maryland	65,335	Virginia	113,806
Massachusetts	57,123	Washington	90,380
Michigan	103,649	West Virginia	32,032
Minnesota	67,800	Wisconsin	68,752
Mississippi	49,687	Wyoming	17,113
Missourí	86,085	U.S. Total	3,754,486

Table B-1. Electric Retail Sales by State, 2010^a

^a EIA