

BEFORE THE PUBLIC UTILITIES COMMISSION OF OHIO

)

)

)

In the Matter of the Application of Ohio American Water Company to Increase Its Rates for Water Service and Sewer Service.

Case No. 11-4161-WS-AIR

DIRECT TESTIMONY OF THOMAS SCHWING ON BEHALF OF OHIO AMERICAN WATER COMPANY

2011 AUG 15 PM 3:27 PUCO

- <u>Management policies, practice and organization</u>
- ____ Operating income
- ____ Rate base
- ____ Allocations
- ____ Rate of return
- ____ Rates and tariffs
- X Other

951-001/289946

This is to certify that the images appearing are an accurate and complete reproduction of a case file document delivered in the regular course of business. Technician Date Processed AUG 1 5 2011

1		Direct Testimony of
2		Thomas Schwing
3		I. WITNESS INTRODUCTION
4	Q 1.	Please introduce yourself.
5	A1.	My name is Thomas Schwing. I am the Operations Manager for the Ashtabula and
6		Franklin County Districts of Ohio American Water ("Ohio American" or the
7		"Company"). My business address is 5481 Buenos Aires Boulevard, Westerville, Ohio
8		43081.
9	Q2.	Please summarize your education and business experience.
10	A2.	I received an Associates of Arts degree in Pollution Abatement Technology from Charles
11		County Community College, a Bachelor of Science degree in chemistry from Xavier
12		University in Cincinnati, and a Masters in Public Administration also from Xavier
13		University. I am also a graduate of University of Southern California Environmental
14		Management Institute. I also have attended numerous water and wastewater professional
15		training programs. My professional work experience includes chemist for the United
16		States Environmental Protection Agency; Director of Public Utilities for the City of
17		Fairfield, Ohio; Utility Operations Specialist for SIECO Engineering; and an independent
18		environmental consultant for more than ten years. I am a licensed water and wastewater
19		operator in the state of Ohio. I have held this position since May 2010. Prior to that date,
20		I was the Operations Superintendent for the Franklin County District.
21		

Q3. Have you previously participated in regulatory matters?

A3. Yes. I have testified before county commissioners and zoning boards with respect to
utility matters related to annexation. I have also presented written and oral testimony
before the Public Utilities Commission of Ohio ("PUCO" or "Commission") in Ohio
American's two prior rate cases and in a complaint case.

6 Q4. Have you written articles on water and wastewater issues?

7 A4. Yes. I have co-authored research documents funded by the U.S. Environmental

8 Protection Agency on wastewater systems. I have developed training presentations on

9 water and wastewater treatment. I have presented numerous presentations at national

conferences on subjects such as utility operations, maintenance and management. I have
 also presented papers on wastewater issues at national conferences. I have also written
 articles for utility newsletters.

13 Q5. What are your job responsibilities at Ohio American?

A5. I became the Network Operations Superintendent for Ohio American in the Franklin County District in January 2005. In May 2010, I was appointed Operations Manager for

16 the Ashtabula (includes Portage County) and Franklin County Districts.

17 As the Operations Manager I am directly responsible for the operations of Ohio

18 American's Ashtabula District's water system and the Franklin County District's water

- 19 and wastewater systems. The Franklin County District includes the Huber Ridge and
- 20 Lake Darby water systems.
- 21 I report to David Little who is the President of Operations of Ohio American.

22

1		II. PURPOSE
2	Q6.	What is the purpose of your testimony?
3	A6.	My testimony will address Staff's recommendations that were presented in the Staff
4		Report in Rate Case No. 09-391-WS-AIR as they pertain to the Ashtabula and Franklin
5		County Districts and the Company's compliance with Staff's recommendations. I will
6		indicate the Staff's Report page number after each topic for reference.
7		III. COMPLIANCE ACTIVITIES
8	Q7.	What has the Company done to address Staff's recommendation with respect to the
9		unaccounted-for-water reduction and reporting commitment (Staff Report – p. 52)?
10	A7.	The Company continues to calculate and report to the PUCO the traditional unaccounted
11		for water ("UFW") metric on a quarterly basis. In addition, each District which has a
12		UFW above 15% has an active ongoing program to reduce water loss.
13		In regards to the adoption of the Infrastructure Leak Index ("ILI"), the Company
14		has begun collecting the long term data needed to develop a baseline ILI for each of its
15		water service areas. ILI data looks at long term (minimum 12 month) system delivery,
16		sales volumes and non-revenue water usage data, system operation and layout
17		assumptions, as well as implementation costs. The development of baseline ILI values
18		for each water system will take at least two yearly cycle periods to develop the necessary
19		data for baseline values.
20		The Company will continue to collect data for the development of baseline ILI
21		values for each water system, as well as continue to address water leaks in a prompt and
22		timely manner.

2

What has the Company done to address Staff's recommendation with respect to Q8. leak repair commitment (Staff Report - p. 55)?

3 A8. The Company's Districts continue to maintain and report leak logs to the PUCO on a 4 quarterly basis. As a matter of ongoing standard operating procedure, the Company repairs leaks affecting service within 24 hours of confirmation that a leak exists. Repairs 5 6 of leaks that do not affect service are performed within seven days of confirmation that a 7 leak exists. Repairs for minor leaks that do not create a water stream on the surface of the 8 ground and do not affect service are repaired within thirty days.

9 Q9. What has the Company done to address Staff's recommendations with respect to the

- Lake Darby commitment (Staff Report p. 57)? 10
- 11 A9. The Company continues to operate and maintain the Lake Darby Water Treatment Plant
- ion exchange softening process to achieve a finished water hardness of between 90 mg/L 12
- 13 and 150 mg/L for at least 95% of the reported measurements. The Company has
- 14 continued to monitor the finished water hardness and submit monthly report to the
- 15 Commission. Ohio American spends approximately \$8,500 annually to support the
- 16 ongoing annual operation and maintenance costs (instrumentation maintenance, outside
- lab costs, instrumentation supplies, etc.) to perform the increased operating, monitoring 17 18 and reporting costs necessary to implement Staff's recommendation.
- 19

Has the Company addressed Staff's recommendation with respect to the Ashtabula **O10.** commitment (Staff Report - p. 62)? 20

- Yes. The Company has updated and conducts annual reviews of the Bunker Hill Storage 21 A10. Tank Emergency Contingency Plan with Ashtabula operating personnel. More 22 23 importantly, the Company has constructed improvements to the Ashtabula Water
 - 4

1		Treatr	nent Plant which eliminate the critical conditions that required the development of	
2		the plan.		
3	Q11.	What	infrastructure improvements has the Company performed at the Ashtabula	
4		Wate	r Treatment Plant?	
5	A11.	The	major Ashtabula Water Treatment Plant improvements include:	
6		1)	Electrical System Improvements – The Ashtabula Water Treatment Plant (AWTP)	
7			electrical service has been changed from a 2,400 VAC to a 480 VAC system.	
8			New power transformer, power distribution panels, service transformers and	
9			lighting panels have been installed. All electrical service system improvements	
10			are complete, in use and useful.	
11		2)	Standby Power Generators – A 500 kW and a 750 kW diesel generators and	
12			associated automatic transfer switches have been installed, in use, and useful.	
13		3)	HSP Pumps Replacement – Three (3) new high service pumping pumps have been	
14			installed replacing the 1952 vintage HSP pumps. The HSP pumps and associated	
15			VFD electrical switch gear are in use and useful.	
16		4)	WTP #1 Sedimentation Tank Renovations – The concrete walls of the 1906 WTP	
17			#1 sedimentation tanks have been rebuilt. Associated supports, handrail, grating	
18			have been installed. The work is complete and the facilities are in use and useful.	
19		5)	WTP #1 Filter Renovations – The 1906 WTP #1 filters have been renovated. The	
20			production capacity was increased from 2 gallons per minute per square foot	
21			(gpm/sf) to 4 gpm/sf. New filter underdrains, backwash troughs, dual media,	
22			instrumentation, valves and associated support systems have been installed. The	
23			WTP #1 filter renovations are complete, in use, and useful.	

•

.

1	6)	Instrumentation Upgrade – Defective instrumentation such as on-line
2		turbidimeters, chlorine analyzers and pH sensors have been replaced. On-line
3		instrumentation sensors have been installed to monitor the performance of critical
4		steps in the treatment processes. The on-line instrumentation sensors and
5		electronic components are in use and useful.
6	7)	SCADA System – The old AWTP SCADA system has been replaced with a new
7		integrated coordinated SCADA instrumentation system. All critical instruments
8		and operating systems are continuously monitored and recorded with the
9		appropriate alarm systems. The new AWTP SCADA system is on-line, in use,
10		and useful.
11	8)	Clearwell Modification for CT Baffle Credit - Ohio EPA issued a letter approving
12		a new Baffle Effectiveness value from 0.1 to 0.15 based on the documentation
13		submitted. Clearwell modification is being re-evaluated to determine the best
14		method to achieve a 0.25 baffle effectiveness factor.
15	9)	Chemical Feed System Improvements – The chemical feed system has been
16		upgraded to control the accurate feeding of treatment chemicals for turbidity
17		removal. The new chemical day tanks, chemical feed pumps and scales are in use
18		and useful.
19	10)	HSP Discharge Pipe & Valve Header – A new high service pump (HSP) discharge
20		pipe and valve header (north side only) were installed replacing the old piping and
21		five (5) defective valves and three (3) venture flow meters. New piping, control
22		valves and magnetic flow meters were installed. The replacement HSP discharge
23		header is in use and useful.

1		11)	LSP Suction Pipe & Valve Header – A new low service pump (LSP) suction
2			header piping and valves were installed replacing the old piping and seven (7)
3			defective valves. The replacement LSP suction header is in use and useful.
4		12)	LSP Discharge Pipe & Valve Header – A new low service pump (LSP) discharge
5			header piping and valves were installed replacing the old piping and four (4)
6			defective valves. New rate-of-flow (ROF) control valve was installed allowing
7			for the effective operation of AWTP. The replacement LSP discharge header is in
8			use and useful.
9		13)	WTP #2 Process Improvements – The two (2) Aldrich treatment units had seven
10			(7) defective drain valves replaced; broken fiberglass weir troughs and weirs
11			repaired; and the filtration systems has been inspected. This work is complete and
12			the improvements are in use and useful.
13	Q12.	Were	the improvements you just described part of the Phase II plan for the
14		Ashta	bula treatment plant that the Company presented in Case No. 09-391-WS-
15		AIR?	
16	A12.	The ir	nprovements I described were part of a scaled-back plan to improve the Ashtabula
17		plant.	As discussed by Company witness Mr. David Little, Ohio American originally
18		planne	ed to extend the life of the plant to provide an additional 60 years of service. The
19		Comp	any has since decided to reduce capital expenditures to a level that is expected to
20		extend	I the useful life of the plant by an additional 20 years. Ohio American took over
21		this pr	roject in April 2010 from the design build team of AEComEngineers/Kokising
22		Const	ruction to further reduce costs. While significant improvements have been

1		completed at the Ashtabula plant, additional investment will be required to complete the		
2		upgrades, including:		
3		1)	Construction of a Chemical Feed Building to remove chlorine gas from the site	
4			and consolidate chemicals in one area.	
5		2)	Replacement of the HSP discharge header on the south side to replace broken	
6			valves and provide for flow control.	
7		3)	Completion of finished water clearwell study to provide increase CT valves.	
8		4)	Process performance demonstration study to establish the treatment capacity of	
9			WTP #2 at 4gpm/sf rather than the current 2 gpm/sf treatment capacity.	
10	Q13.	What	t major infrastructure improvements has the Company performed in the	
11		Asht	abula District's Water Distribution System?	
12	A13.	There	e have been significant improvements related to water main replacement and	
13		reloca	ation associated with roadway projects. Major projects include:	
14		1)	Wade Avenue Water Main Extension	
15		2)	SR 531 Water Main Replacement	
16		3)	West Avenue Water Main Relocation	
17		4)	US 20 Water Main Relocation	
18		5)	Lake Avenue Bridge Water Main Relocation	
19		6)	Academy/School Streets Water Main Replacement	

.

.

1 **O14.** What major infrastructure improvements has the Company performed in the 2 **Portage County Service Area?** 3 The most significant improvement is the installation of radio read water meters. This A14. allows for increased productivity of the Field Service Representative as well as more 4 5 accurate and timely reporting of customer water usage. 6 015. What major wastewater infrastructure improvements has the Company constructed 7 in the Franklin County District? 8 The largest single wastewater capital infrastructure improvement in Franklin County is A15. 9 the construction of a secondary clarifier at the Huber Ridge Wastewater Treatment Plant. 10 This project was required by the facility's National Pollutant Discharge Elimination 11 System (NPDES) permit issued by the Ohio EPA. The approximate \$1.5 million project 12 upgraded the secondary clarification system and reduced solids pollutant loading to the 13 state's receiving stream. 14 Other major wastewater capital infrastructure improvements include electrical 15 switch gear replacement at Blacklick Wastewater Treatment Plant, pump replacement at 16 the Huber Ridge Wastewater Treatment Plant, and aeration blower replacement at the 17 Blacklick Wastewater Treatment Plant. 18 Q16. What major water infrastructure improvements has the Company constructed in 19 the Franklin County District? 20The largest single infrastructure improvement in the Franklin County has been the A16. 21 Blacklick Water Treatment Plant iron filter replacement project. This \$2.47 million 22 project replaced the two 45+ year old iron and manganese aeralators with three new

- pressure filters. This project addressed aging infrastructure needs as well as treatment
 reliability and performance requirements.
- 3Other major wastewater capital infrastructure improvements include replacement4of reverse osmosis feed pipe at the Huber Ridge Water Treatment Plant, high service5pump replacement at the Worthington Hills Water Treatment Plant, and water main6replacement on Noe Bixby in the Blacklick water service area.
- 7 Q17. Does this conclude your testimony?
- 8 A17. Yes.