The Cleveland Electric Illuminating Company Ohio Edison Company The Toledo Edison Company and American Transmission Systems, Incorporated

THE

2010 ELECTRIC

LONG-TERM FORECAST REPORT

TO THE

PUBLIC UTILITIES COMMISSION OF OHIO

CASE NO. 10-504-EL-FOR

RECEIVED-DOCKETING BIN

2010 APR 15 PM 3: 1

PUCO

CERTIFICATE OF SERVICE

I hereby certify that this 2010 Long-Term Forecast Report was filed by The Cleveland Electric Illuminating Company, Ohio Edison Company, The Toledo Edison Company and American Transmission Systems, Incorporated with the Public Utilities Commission of Ohio on April 15, 2010 and that:

- 1. Pursuant to Rule 4901:5-1-03(F), Ohio Administrative Code, a copy of the 2010 Long-Term Forecast Report has been delivered or mailed on the day of filing to the Office of the Ohio Consumers' Counsel;
- 2. Pursuant to Rule 4901:5-1-03(G), Ohio Administrative Code, within three days of filing with the Public Utilities Commission of Ohio, a letter stating that the Long-Term Forecast Report has been filed with the Public Utilities Commission of Ohio and that a copy of the Long-Term Forecast report is available for public inspection at the Public Utilities Commission offices located at 180 East Broad Street, Columbus, Ohio, will be sent by first class mail to the appropriate county libraries
- 3. Pursuant to Rule 4901:5-1-03(H), Ohio Administrative Code, the FirstEnergy Companies will keep at least one copy of its 2010 Long-Term Forecast Report at its principal business office for public inspection during business hours; and
- 4. Pursuant to Rule 4901:5-1-03(I), Ohio Administrative Code, the FirstEnergy Companies will provide a copy of its 2010 Long-Term Forecast Report to any person upon request at a cost to cover the expenses incurred.

Wellem M William R. Ridmann

William R. Ridmann Vice President, Rates & Regulatory Affairs FirstEnergy Service Company 76 South Main Street Akron, OH 44308-1890 (330) 761-4154

ATTESTATION

This Long-Term Forecast Report filed by Ohio Edison Company, The Cleveland Electric Illuminating Company, The Toledo Edison Company and American Transmission Systems, Incorporated is true and correct to the best of my knowledge and belief.

William • William R, Ridmann

ł

Vice President, Rates & Regulatory Affairs

TABLE OF CONTENTS

.

4901:5-5-01 DEFINITIONS	4
4901:5-5-02 PURPOSE & SCOPE	. 5
4901:5-5-03 FORECAST REPORT REQUIREMENTS FOR ELECTRIC UTILITIES & TRANSMISSION OWNERS	6
(A) SUMMARY OF THE LONG-TERM FORECAST REPORT	6
(B) GENERAL GUIDELINES	10
(C) SPECIAL SUBJECT AREAS	10
(D) FORECAST DOCUMENTATION	14
4901:5-5-04 FORECASTS FOR ELECTRIC TRANSMISSION OWNERS.	18
(A) GENERAL GUIDELINES	18
(B) TRANSMISSION ENERGY DATA AND PEAK DEMAND FORECAST FORMS	18
(C) THE EXISTING TRANSMISSION SYSTEM	18
(D) THE PLANNED TRANSMISSION SYSTEM	19
(E) SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM	21
(F) REGIONAL AND BULK POWER REQUIREMENTS	27
(G) CRITICAL ENERGY INFRASTRUCTURE	27
4901:5-5-05 ENERGY AND DEMAND FORECASTS FOR ELECTRIC UTILITIES	28
(A) GENERAL GUIDELINES	28
(B) DISTRIBUTION ENERGY DATA AND PEAK DEMAND FORECAST FORMS	28
(C) SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM	28
4901:5-5-06 RESOURCE PLANS	32
(A) RESOURCE PLAN	32
APPENDIX A: LIBRARIES	35
APPENDIX B: FORECAST DOCUMENTATION	39
APPENDIX C: TRANSMISSION FORECAST FORMS	56
APPENDIX D: DISTRIBUTION FORECAST FORMS	157
APPENDIX E: RESOURCE FORECAST FORMS	175

4901:5-5-01 Definitions

The terminology used in this chapter and throughout this report conforms to the definitions in section 4901:5-1-01 & 4901:5-5-01.

Other definitions used in this report include:

- "2005 Appliance Saturation Survey" A residential appliance saturation survey conducted in 2005 by the FirstEnergy Operating Companies, in each company's given service territory. Randomly selected residential customers were requested to respond to a survey that asked about their appliance usage.
- "EE&PDR Portfolio Plan" The FirstEnergy Operating Companies Program Portfolio and Initial Benchmark Report filing (PUCO Case 09-1947-EL-POR, et al.), which is currently pending with the Commission. This includes information from the Market Potential Study in Appendix D.
- "Large Industrial Survey" A survey taken by the FirstEnergy Operating Companies in early 2010, in which industrial customers who had an annual usage of 50 GWh or higher in 2009 were asked to give their expected annual kWh and KW usage for 2010 to 2012.

State and Federal Legislation and Policies referred to in this filing include:

- "SB 221" Amended Substitute Senate Bill Number 221
- "Federal Lighting Standards" Energy Independence and Security Act of 2007, (Pub.L. 110-140, H.R. 6)

In addition, acronyms commonly used throughout this report include:

ATSI	American Transmission System, Incorporated
CEI	The Cleveland Electric Illuminating Company
LTFR	Long- Term Forecast Report
MISO	Midwest Independent Transmission System Operator, Incorporated
NERC	North American Electric Reliability Corporation
OEC	Ohio Edison Company
PJM	Pennsylvania New Jersey Maryland Interconnection, Limited Liability Company
PP	Pennsylvania Power Company
TE	The Toledo Edison Company

4901:5-5-02 Purpose & Scope

This report conforms to the requirements of Chapter 4901:5 of the Administrative Code. All forms in this report were downloaded from the commission's website as of January 13, 2010.

This LTFR is submitted by ATSI, CEI, OEC and TE, all of which are Ohio corporations (hereinafter referred to as "Applicants", or "FirstEnergy Companies"). CEI, OEC, and TE are hereinafter referred to as "FirstEnergy Operating Companies". PP is a wholly-owned subsidiary of OEC and a Pennsylvania corporation. PP's energy and load forecasts are combined with the energy and load forecasts of the FirstEnergy Operating Companies to arrive at a system total ("FirstEnergy System"). The transmission and distribution systems of all of the FirstEnergy Operating Companies and Penn Power are interconnected and fully integrated, and for planning and operating purposes are treated as a single electric system within the footprint of the MISO through May, 2011 and within the footprint of PJM. ATSI, a wholly-owned subsidiary of FirstEnergy Corp., owns and operates the transmission assets, including the system control center. Separate data are presented for the Applicants where required or where deemed appropriate because of the nature of the requirement to which a response is made.

The information on "existing substation and transmission facilities" reflects information regarding facilities that were in service prior to or on December 31, 2009. The peak demand and energy forecasts were developed in March 2010 and are based on the most recently available data from February 1990 through February 2010.

A letter stating that a copy of this report is available for public inspection at the Commission offices located at 180 E. Broad St, Columbus Ohio, is being mailed to all public libraries in Appendix A. This Appendix lists the designated libraries for each Ohio County in the FirstEnergy Operating Companies' service area, pursuant to Rule 4901:5-1-03(G) of the Ohio Administrative Code.

4901:5-5-03 Forecast report requirements for electric utilities and transmission owners

(A) SUMMARY OF THE LONG-TERM FORECAST REPORT

(1) <u>Planning Objectives</u>

The planning objective of the Long-Term Forecast Report is to present an estimate of future peak demand and energy consumption by the FirstEnergy Operating Companies service area customers, taking into account local and national business conditions, as well as historical usage patterns and future energy efficiency and peak demand reduction savings.

(2) <u>A summary of its forecasts of energy and peak load demands and key assumptions or projections underlying these forecasts</u>

This LTFR has been submitted by the FirstEnergy Companies in accordance with the Ohio Revised Code, Chapter 4935.

The 2010 Forecast of Energy ("2010 Energy Forecast") and 2010 Forecast of Peak Demands ("2010 Peak Demand Forecast") (collectively, the "2010 Forecasts") projects that total energy for OEC will reach 24,945 GWh by 2010 and 25,340 GWh by 2020, resulting in an effective growth rate of 0.15%. This compares to an average annual rate of 1.66% in the 2009 Forecast of Energy ("2009 Energy Forecast"). The 2010 Energy Forecast projects that total energy for CEI will reach 19,741 GWh by 2010 and 19,968 GWh by 2020, resulting in an effective growth rate of 0.11%. This compares to an average annual rate of 1.21% in the 2009 Energy Forecast. The 2010 Energy Forecast projects that total energy for CEI will reach 10,741 GWh by 2010 and 19,968 GWh by 2020, resulting in an effective growth rate of 0.11%. This compares to an average annual rate of 1.21% in the 2009 Energy Forecast. The 2010 Energy Forecast projects that total energy for TE will reach 11,577 GWh by 2010 and 10,715 GWh by 2020, resulting in an effective growth rate of 1.61% in the 2009 Forecast. Forecasts for the FirstEnergy Operating Companies were developed independent of one another.

Annual internal peak demand for OEC is expected to grow at an average annual rate of 0.31% in the 2010 Peak Demand Forecast, compared to 0.91% in the 2009 Forecast of Peak Demands ("2009 Peak Demand Forecast"). Annual internal peak demand for CEI is expected to grow at an average annual rate of 0.12% in the 2010 Peak Demand Forecast, compared to 1.60% in the previous forecast. Annual internal peak demand for TE is expected to grow at an average annual rate of 0.61%, compared to 1.12% in the previous forecast.

The main driver of this change in growth rate in the 2010 Forecasts as compared to the 2009 Forecasts is the addition of the impacts of energy efficiency and peak demand reductions into the

forecast and peak demand reductions, as well as the addition of the impact of the changing efficiency of residential appliances. In addition to that, the first year (2009) in the 2009 Forecasts was still in recession, whereas the first year (2010) in the 2010 Forecasts is in recovery.

There are several key assumptions for the 2010 Forecasts. First, it is assumed that the recent recession ended in July 2009, as reported by the Federal Reserve Bank of St. Louis. Second, it is assumed that the Federal Lighting Standards will go forward, and that the additional Energy Information Administration ("EIA") assumptions regarding the Federal Lighting Standards, as well as other assumptions about changing efficiencies of residential appliances, are accurate. Third, it is assumed that SB 221 will remain in place, including the energy efficiency savings and peak demand reduction requirements. Finally, it is assumed that the Large Industrial Survey of the FirstEnergy Operating Companies customers represents their future 2010 to 2012 usage, and that the results can be extrapolated to the rest of the industrial class.

(3) A description of the process by which the energy and peak load forecasts were developed

۲

Historical data is collected as described in section 4901:5-5-03(C)(1)(c) and loaded into a software program called MetrixND, a statistical forecasting package. The forecasting analyst defines a group of independent variables that are then modeled through MetrixND and evaluated for best fit ("Theoretical Models"). Theoretical Models for both energy and peak demand are tested using ordinary least squares regression (OLS) and modified if appropriate based on the statistical results.

This process of testing continues until the forecasting analyst chooses the Theoretical Model with the best fit ("Final OLS Model"). This Final OLS Model is then used to forecast energy and peak demand. Tables in Appendix B contain statistical results for these models for each of the Companies and customer classes: Table B-1 defines variables and abbreviations; Tables B-2 through B-10 display results and descriptive statistics for Final OLS Models for energy; and Tables B-11 through B-13 display results and descriptive statistics for Final OLS Models for peak demand.

For the streetlighting customer class, an analytical process is used to create the forecast ("Lighting Forecast"), which will be discussed later in this section. The peak demand forecasting process will also be discussed later in this section.

Once the Final OLS Model is determined, the resulting forecasts are analyzed to determine if they are consistent with the local economic conditions, and for various forecast trends that are not well-reflected in the history. For example, it is difficult for the models to accurately forecast the impacts of the recession, as most of the historical period is unaffected or not affected to the same degree as the forecast period. It is also difficult for the models to accurately forecast the impacts from energy-efficiency savings and peak demand reductions, as there is very little information in the history for the model to use in the regression. Therefore, manual adjustments have been made outside of the OLS-modeling process for the impact of the recession on the industrial class, and for expected energy-efficiency savings and peak demand reductions.

To account for the impact of the recession on the industrial class, the Final OLS Model results for the first five years were manually adjusted based on the Large Customer Survey given to the FirstEnergy Operating Companies largest industrial customers. The surveyed customers' forecast usage for 2010, 2011 and 2012 was indexed to their respective 2008 levels. The Final OLS Model results for the entire industrial class were adjusted based on this index. The Final OLS Model results for the industrial class in 2010, 2011, and 2012 were only used to develop the monthly shape of the forecast, and then were gradually phased back in throughout 2013 and 2014. From 2015 forward, the Final OLS Model results were not adjusted. The set of forecasts, which includes the residential and commercial Final OLS Model results, the Lighting Forecast, and the aforementioned adjustments to the Final OLS Model for the industrial class (collectively referred to as the "Industrial-Adjusted Forecast").

Energy-efficiency impacts were determined using analytical techniques. There were two types of adjustments made to the long-term forecast for expected energy efficiency savings. The Industrial-Adjusted Forecast for the residential class was adjusted based on statistically-adjusted end-use ("SAE") modeling that compared existing appliance efficiencies to expected appliance efficiencies.

SAE models use OLS analysis to analyze the effect of residential appliance end-uses on historical electric sales, based on the regional data from the EIA for the East North Central region and the Companies' 2005 Appliance Saturation Survey. Heating and cooling energy variables were defined using expected efficiencies from either technological advances or Federal government-mandated efficiencies. The SAE model was first evaluated using original data from the EIA and the 2005 Appliance Saturation Survey, and then evaluated holding the efficiencies constant at 2009 levels. The Industrial-Adjusted Forecast was adjusted for this difference. The residential class with the aforementioned adjustments—together with the commercial, industrial and lighting components of the Industrial-Adjusted Forecast—shall hereinafter be collectively referred to as the "Standards-Adjusted Forecast".

The Standards-Adjusted Forecast was also adjusted for savings associated with achieving the benchmarks defined in SB 221. Cumulative savings associated with the plan years defined in the EE&PDR Portfolio Plan (2010 thru 2012) were assigned to customer classes and subtracted from the Industrial-Adjusted Model results. For subsequent years, expected savings by customer class as defined in the Market Potential Study were subtracted from the Standards-Adjusted Forecast, resulting in what shall hereinafter be collectively referred to as the "Fully Adjusted Forecast".

In Appendix B, Tables C1-C4, list actual GWh adjustments to the Final OLS Model results. Table C-1 shows the Large Industrial Survey adjustment for energy; Table C-2 shows the effect of Federal standards and technology-driven appliance efficiency standards, including the Federal Lighting Standards, on the residential class' energy consumption; and Tables C-3 and C-4 show the SB 221 impacts on the energy and peak demand forecasts, respectively.

The Lighting Forecast was estimated using an analytical process. The Lighting Forecast for the street lighting customer class was based on the nominal wattages and standard burning hours of the installed lighting fixtures at the time the forecast was developed, along with the recent history of traffic lighting use. The street lighting usage was trended downward assuming that, as mercury vapor lights failed, they would be replaced with sodium vapor lights. A 20-year life for mercury vapor lights and a 45 percent reduction in MWh when replaced by sodium vapor lighting was used to establish this downward trend. Other than for the month-to-month fluctuations, traffic lighting use was kept constant throughout the forecast period.

Forecast results in MetrixND were based on billing cycles. The Fully Adjusted Forecast was calendarized by assigning a percentage of each billing cycle month to each calendar month, resulting in the 2010 Energy Forecast. The 2010 Energy Forecast is the calendar view of the conversion of the Final OLS Model results described above. For a summary of all transformations leading from the Final OLS Model to the 2010 Energy Forecast, please see Table 1 above.

Peak demand is forecast using historical peaks as the dependent variable, with the Industrial-Adjusted Forecast and historic peak-day weather data as independent variables. Peak demand model results and descriptive statistics can be found in Appendix B, Tables B-11 through B-13.

Manual adjustments are made to the peak demands to account for the peak-demand reduction requirements of SB 221 as defined in the EE&PDR Portfolio Plan and the Market Potential Study, resulting in the final 2010 Peak Demand Forecast.

(B) GENERAL GUIDELINES

- (1) The forecast must be based upon independent analysis by the reporting electric transmission owner or electric utility.
- (2) <u>The forecast may be based on those forecasting methods that yield the most useful</u> results to the electric transmission owner or electric utility.
- (3) <u>Where the required data have not been calculated directly, relevant conversion factors</u> shall be displayed.

Forecasting methodologies have been fully described in this filing and are consistent with these general guidelines.

(C) SPECIAL SUBJECT AREAS

(1) The following matters shall specifically be addressed:

(a) A description of the extent to which the reporting electric transmission owner or electric utility coordinates its load and resource forecasts with those of other systems such as affiliated systems in a holding company group, associated systems in an integrated operating system or other coordinating organizations, or other neighboring systems.

The FirstEnergy Operating Company forecasts in this filing are prepared independently from one another and are primarily used for internal planning and forecasting. The Regional Transmission Organizations (RTOs) prepare peak and energy forecasts for the total RTO to use for transmission resource planning purposes. Through May 2011, transmission planning for the FirstEnergy System occurs through MISO's Transmission Expansion Plan ("MTEP") process. When ATSI integrates into PJM, transmission planning for the FirstEnergy System will occur through the PJM Regional Transmission Expansion Plan ("RTEP") process.

(b) A description of the manner in which such forecasts are coordinated, and any problems experienced in efforts to coordinate forecasts.

Coordination efforts include providing forecast information to Reliability First Corporation (RFC) and the RTOs (through the NERC Multiregional Modeling Working Group process) to develop PJM and MISO coordinating planning models. This allows the RTOs to make sure that there are adequate resources for the expected energy requirements as required by NERC reliability standards.

(c) A brief description of any polls, surveys, or data-gathering activities used in preparation of the forecast.

Below is a list of surveys and data-gathering activities used in preparation of the forecast.

- Historical data for the period February 1990 through February 2010, which includes: cycle sales, number of customers, actual weather, average electric prices and streetlighting poles and fixtures
- 10 years of historic peak, and peak day weather
- Economic and energy price data from Moody's Analytics, Inc.
- 2005 Appliance Saturation Survey
- Thirty years of weather data (heating and cooling degree days) for the calculation of normal weather
- February, 2010 Large Customer Survey
- Sept 1, 2009 Market Potential Study
- EE&PDR Portfolio Plan

- (2) <u>No later than six months prior to the required date of submission of the forecast, the</u> <u>commission may supply the reporting electric transmission owner or electric utility:</u>
 - (a) Copies of appropriate commission or other state documents or public statements that include the state energy policy for consideration in preparation of the forecast.

No documents were provided for this filing.

(b) Such current energy policy changes or deliberations, which, due to their immediate significance, the commission determines to be relevant for specific identification in the forecast (including but not limited to new legislation, regulations, or adjudicatory findings). The reporting person shall provide a discussion of the impacts of such factors and how it has taken these factors into account.

No documents were provided for this filing.

(3) Existing energy efficiency, demand reduction, and demand response programs and policies of the reporting person, which support energy conservation and load modification, shall be described along with an estimate of their impacts on energy and peak demand and supply resources.

The Companies plan to implement Energy Efficiency Programs and Peak Demand Reduction programs to meet the requirements of SB 221. For the years 2010 through 2012, the detailed plans are in the EE&PDR Portfolio Plan. A summary of the energy efficiency and peak demand reduction programs can be found on pages 17-21 of the EE&PDR Portfolio Plan. A summary of the impacts these programs will have on energy and peak demand can be found on page 10 of the EE&PDR Portfolio Plan.

Forecasts for years beyond year 2012 have been reduced by the amount of the statutory requirements of SB 221, as described above.

The reductions to the forecast as a result of energy efficiency savings will impact supply resources to the extent that the reduced energy consumption will reduce the purchased power requirements of the FirstEnergy Operating Companies.

- (4) Energy-price relationships:
 - (a) To the extent possible, identify the relationship between price and energy consumption and describe how such changes are accounted for in the forecast.

See part (c) of this part (4), below.

(b) To the extent possible, specify a demand function that will or can be used to identify the relationship between any dynamic retail prices and peak load, which captures the impact of price responsive demand.

FirstEnergy Operating Companies began offering experimental programs to customers in the commercial and industrial classes on February 1, 2010 which subject customers to dynamic realtime pricing as an incentive to reduce or shift consumption to non-peak periods. However, since no customers have elected to be in these programs to date, FirstEnergy Operating Companies have no data with which to develop a demand function that could be used to identify the relationship between dynamic retail prices and peak load, or which captures the impact of price-responsive demand.

If data were available to determine a demand function, then a model would be hypothesized of the form:

$$PeakDemand = \alpha + \beta_0 Price + \beta X + \varepsilon$$
(1)

Where PeakDemand is the peak demand

 α is a constant term

Price is the dynamic retail price

 β_0 is the coefficient of price

X is a vector of other independent variables

 β is the vector of coefficients of X

Various specifications of equation (1) would be tested, and the model that best fit the data would be determined. From this, β_0 could be used to determine the impact of a dynamic retail price on peak demand.

(c) A description of, and justification for, the methodologies employed for determining such energy-price relationships shall be included.

Customer retail electricity price ("electricity price") data was collected for the historical period and tested as a variable in the model. Real average retail electric prices for generation for each customer class were tested in the Theoretical Models for each customer class with each FirstEnergy Operating Company. The nominal average retail generation prices were developed by dividing the monthly revenue for each customer class by the monthly sales. These prices were then adjusted using the Consumer Price Index; creating a real average retail electric price for each class.

It should be noted that when there are significant levels of shopping, it is difficult to know what electricity price was actually paid by the customers. However, electricity price was tested as a variable in the forecast. In all cases, electricity price either was not a significant variable, or the coefficient of price had a theoretically incorrect positive sign, and therefore was removed from the forecast models. Table B-14 in Appendix B shows what the statistics of the electricity price would be were it included in the energy models. Another fuel price—that of crude oil—was tested in industrial models and accepted in the Final OLS Model for CEI's industrial energy forecast.

(D) FORECAST DOCUMENTATION

- (1) A description of the forecast methodology employed, including:
 - (a) Overall methodological framework chosen.

See response to 4901:5-5-03 above

(b) Specific analytical techniques used their purpose, and the forecast component to which they are applied.

See response to 4901:5-5-03 above

(c) The manner in which specific techniques are related in producing the forecast.

See response to 4901:5-5-03 above

- (d) Where statistical techniques have been used:
 - i. All relevant equations and data.
 - ii. The size of the standard error of the estimate and the size of the forecasting error, associated with each relevant forecasting model equation, this information shall be included for each forecast at the bottom of forms FE-D1 to FE-D6.
 - iii. A description of the technique.
 - iv. The reason for choosing the technique.
 - v. Identification of significant computer software used.

See response to 4901:5-5-03

(e) An explanation of how controllable and interruptible loads are forecast and how they are treated in the total forecast.

The FirstEnergy Operating Companies forecast their interruptible loads using the load modifying resource capacity that is registered with MISO through Module E from January 2010 through May 2011. From June 2011 through December 2012 the interruptible loads are forecast as planned in the EE&PDR Portfolio Plan. The 2012 interruptible load forecast will be held constant through the end of the Electricity Security Plan period which is May 2014. The forecasted interruptible loads are subtracted from Internal load to determine Native Load on all peak demand schedules.

(f) An identification of load factors or other relevant conversion factors and a description of how they are used within the forecast.

The FirstEnergy Operating Companies use an estimated conversion factor to accumulate the FirstEnergy Operating Companies individual peak demand forecasts into the FirstEnergy System peak demand forecast in order to capture the effects of diversity (or difference in time of occurrence) between the peak demands of the individual operating companies. The conversion of the individual company peak demand forecasts into an overall FirstEnergy System diversified peak demand forecast is calculated in this manner:

FirstEnergy System Peak= (OEC+PP + CEI + TE) * D

where OEC is the monthly internal OEC peak demand, PP is the monthly internal PP peak demand, CEI is the monthly internal CEI peak demand, TE is the monthly TE peak demand, and D is a diversity factor needed to obtain the peak for the FirstEnergy System. The diversity factor is determined by dividing the coincident four-company peak demand by the sum of the four operating companies' non-coincident peaks. For this forecast, the diversity factor D varies by month. The diversity factor is .984 for summer peaks, .992 for winter peaks, and .985 for an average of all months throughout the forecast period.

The annual load factors imbedded in the energy forecast can be found in Appendix B, Table D-1.

(g) Where the methodology for any sector has changed significantly from the previous year, a discussion of the rationale for the change.

The 2010 Peak Demand Forecast includes adjustments as described above in section 5-5-03 (C)(1)(c). The 2009 Long-Term Forecast was adjusted for the effects of the recession on industrial customers, but was not adjusted for the effects of energy efficiency and peak demand reductions. This change was made to conform to Commission rules that went into effect December 10, 2009, as well as changing residential appliance efficiencies.

The 2010 Forecast also includes some less significant changes from the 2009 Forecast. The 2010 Energy Forecast includes ten years more history than the 2009 Forecast, now with history beginning in 1990. Also, the 2010 Forecast includes no exponential smoothing models; rather, it includes OLS based models for all customer count forecasts. The FirstEnergy Operating Companies changed from using a 20 year average of heating degree days and cooling degree days to a 30 year average.

(2) Assumptions and special information. The reporting person shall:

- (a) For each significant assumption made in preparing the forecasts, include a discussion of the basis for the assumption and the impact it has on the forecast results. Give sources of the assumption if other than the reporting person.
- (b) Identify special information bearing on the forecast (e.g., the existence of a major planned industrial expansion program in the area of service or other need determined on a regional basis).

For the FirstEnergy Operating Companies, the Theoretical Models for the customer and energy forecasts used a combination of economic data supplied by Moody's Analytics, Inc., and weather data supplied by Earth Sat and WeatherBank.

For the impact on the forecast of each of the variables described above—as well as a complete list of such variables used—please see section Appendix B, which contains the Final OLS Model results.

The 2010 Energy Forecast reflects customer expansion plans that were recently announced. V&M Star plans a \$970 million expansion in Youngstown (*Youngstown Vindicator*, February 15, 2010, "V&M Star project moving forward"), in OEC's territory, which will add 400 workers to the mill's current staff of 450. General Motors ("GM") announced a third shift at its Lordstown facility (in OEC's territory) to support production of the Chevrolet Cruze automobile (General Motors' news release, February 23, 2010, "General Motors Bringing 1,200 Jobs To Lordstown Complex). This affects all FirstEnergy Operating Companies since it is expected that GM plants

across Ohio will be supplying parts and other materials that support the Cruze's production. As noted in the Companies' stipulated ESP filing (PUCO Case No. 10-388-EL-SSO, § F, 2.), The Cleveland Clinic Foundation ("the Clinic") is undergoing a \$1.4 billion expansion at its main campus that will add over 1,000 employees at the Clinic in addition to "hundreds of indirect and local construction jobs." The potential impact to the energy and peak demand forecasts is unknown at this time.

- (3) Database documentation. The responsibilities of the reporting person with regard to its forecast database are as follows:
 - (a) The reporting person shall provide or cause to be provided:
 - i. A brief description of all data sets used in making the forecast, both internal and external, input and output, and a citation to the sources.
 - ii. The reasons for the selection of the specific database used.
 - iii. A clear identification of any significant adjustments made to raw data in order to adapt them for use in the forecast, including, to the extent practicable:
 - a. The nature of the adjustment made.
 - b. The basis for the adjustment made.
 - c. The magnitude of the adjustment

For details concerning the data sets used in making the forecast, see section 4901:5-5-03 (C)(1)(c). No significant adjustments have been made to raw data in order to adapt it for use in the forecast.

- (b) If a hearing is to be held on the forecast in the current forecast year, the reporting person shall provide to the commission in electronic formats or other medium as the commission directs, all data series, input and output, raw and adjusted, and model equations used in the preparation of the forecast.
- (c) The reporting person shall provide to the commission, on request:
 - i. Copies of all data sets used in making the forecasts, including both raw and adjusted data, input and output data, and complete descriptions of any mathematical, technical, statistical, or other model used in preparing the data.
 - ii. A narrative explaining the data sets and any adjustments made with the data to adapt it for use in the forecast.

The FirstEnergy Companies have supplied the commission with copies of all data sets used in making the forecasts.

4901:5-5-04 Forecasts for electric transmission owners.

(A) GENERAL GUIDELINES

- (1) The forecast shall include data on all existing transmission lines and associated facilities of one hundred twenty-five kilovolts (kV) and above as defined by the commission, for year zero to year ten.
- (2) The forecast shall include data on all planned transmission lines and associated facilities of one hundred twenty-five kilovolts (kV) and above as well as substantial planned additions to, and replacement of existing facilities, as defined by the commission for year zero to year ten.
- (3) <u>The reporting electric transmission owner shall be prepared to supply to the commission</u> on demand, additional data and maps of transmission lines and facilities.

Rule 4901:5-5-04(A) specifies guidelines to be used in the preparation of the transmission owner's forecasts. These guidelines have been observed.

The forms provided for submission of project data do not facilitate entry of all projects which may be considered as substantial planned additions or replacement of existing facilities as defined by the commission. Where those forms are not practical, we have supplemented the submission with additional information.

(B) TRANSMISSION ENERGY DATA AND PEAK DEMAND FORECAST FORMS

Rule 4901:5-5-04(B) specifies transmission energy data and peak demand forecast forms that shall be completed and submitted by the electric transmission owner as prescribed by the commission. These forms can be found in Appendix C.

(C) THE EXISTING TRANSMISSION SYSTEM

(1) The reporting electric transmission owner shall provide or cause to be provided a brief narrative description of the existing electric transmission system and identify any transmission constraints and critical contingencies with and without the power transfers to the neighboring companies detailed in forms FE-T7 and FE-T8:

Form FE-T7 summarizes the characteristics of the existing transmission lines (125 kV and above) which were in service by December 31, 2009, within ATSI's network. Line numbers have been assigned in an arbitrary sequence. For purposes of completing Form FE-T7, lines originate from generating stations (origin) and terminate at substations (terminus), whereas lines between two substations generally have been assigned the designations "origin" and "terminus" alphabetically. Substations which are supplied by radial transmission lines have the supplying substation listed as the "origin."

Form FE-T8 provides a separate listing of substations in Ohio for each line included in the FE-T7 summary. This listing includes the substation name, type, voltages, and line association. A substation is considered to be an "origin" or "terminus" of a line on the basis of whether or not the substation has a circuit breaker associated with the line. A substation which does not have a circuit breaker associated with the line is listed under "Substation on the Line."

Rule 4901:5-5-04 Sections D, E & F include further discussion of critical contingencies identified within the assessment study process and any projects identified to mitigate such post-contingency conditions.

(2) Each reporting electric transmission owner shall provide or cause to be provided maps of its electric transmission system as follows:

Subsection (C)(2) specifies schematic and actual, physical routing maps which must be included with this filing. The schematic maps of ATSI include:

- ATSI HV Circuit Diagram Central, Eastern Conditions as of 12/09
- ATSI HV Circuit Diagram Central, Southern, Western Conditions as of 12/09
- ATSI HV Circuit Northern Region Conditions as of 12/09
- ATSI HV Circuit Western Region Conditions as of 12/09

The actual, physical routing map of ATSI is:

• FirstEnergy West Transmission Conditions as of 12/09

The above maps have been redacted from the filing and were provided to the Commission's Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

(D) THE PLANNED TRANSMISSION SYSTEM

The reporting electric transmission owner shall provide or cause to be provided a detailed narrative description of the planned electric transmission and identify any transmission constraints and critical contingencies with and without the power transfers to the neighboring companies and a description of the plans for development of facilities for years zero through ten as follows:

The ten-year transmission plan for new electric transmission facilities with a design capability of 125 kV or more is indicated on Form FE-T9. Specifications for each of the planned new transmission lines and a brief explanation for each facility is part of that Form, including the purpose of the planned line. Form FE-T9 also includes two fields: 11 -"Purposed of Planned

Transmission Line" and 12 – Consequence of Line Construction Deferment or Termination" which provides information on the contingency or issue which the project is designed to address.

The MTEP studies provide an independent assessment of the performance of the planned MISO system, starting with the expansion plans of the MISO Transmission Owners and adding projects as may be needed to meet reliability standards. Form FE – T9 includes ATSI's projects per the guidelines in section 4901:5-5-04(A), as reported in the MTEP of years 2007 through 2009.¹ More specifically, as reported in Appendix A of MTEP07 & MTEP08 and Appendix A-C of MTEP09 projects. Appendix A projects have been approved by the MISO Board of Director and are an obligation of the Transmission owner to execute. Appendix B projects are those projects where a need has been identified, but the final business case assessment is not yet complete. Appendix C projects are proposed for study but have not yet been reviewed by MISO staff or are in conceptual stages of development. ATSI are also including six projects that will be submitted to the MTEP process this year. ATSI's intended move to PJM in 2011 should not affect the status of any of the approved projects.

Form FE-T10 provides a separate listing of proposed new substations in Ohio which ATSI anticipates placing in service in the next 10 years and which will have one or more voltages at 125 kV or higher. The listing includes the substation name, the voltages, the anticipated timing of installation, and line associations.

There are additional substations and transmission line projects included in the MTEP report that are also part the FirstEnergy Operating Companies expansion plans which the forms provided for submission of project data do not facilitate entry. These include projects primarily involving expansion of existing substation facilities or upgrades to existing transmission lines. Theses projects are included in the MTEP Appendices.¹

Additional information regarding projects can be found in Subregional Planning Meeting ("SPM") presentations.²

¹ The approved Midwest ISO Expansion Plans can be found at: <http://www.midwestiso.org/publish/Folder/193f68_1118e81057f_-7f900a48324a>

² The Midwest ISO Subregional Planning Meeting (SPM) information can be found at: http://www.midwestiso.org/publish/Folder/2c41ee_1200f54a695_-fd90a48324a?rev=1

MISO SPM presentations are intended to provide an open forum for input to and review of the results of the needs assessments and adequacy of plans proposed by the Transmission Owners, or by stakeholders to the planning process, or by the Transmission Provider, to best meet the needs of the sub-region.

Rule 4901:5-5-04 Sections E and F include further discussion of critical contingencies identified within the assessment study process and any projects identified to mitigate such post-contingency conditions.

Subsection (D)(3) specifies planned transmission system maps which must be included with this filing. The map, FirstEnergy West Future Transmission Projects Conditions as of 12/09, which contains the planned transmission system of ATSI, has been redacted from the filing and was provided to Commission's Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

(E) SUBSTANTIATION OF THE PLANNED TRANSMISSION SYSTEM

The reporting electric transmission owner shall submit a substantiation of transmission development plans, including:

(1) Description and transcription diagrams of the base case load flow studies of the transmission owner's transmission system in Ohio, one for the current year and one as projected either three or five years into the future, and provide base case load flow studies on computer disks in PSSE or PSLF format along with transcription diagrams for the base cases.

Load flow cases and transcription diagrams for the current year and similar cases and diagrams for five years into the future have been provided. The base load flow cases studies for 2010 and 2015 have been redacted from the filing and were provided to the Commission Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

The following transcription diagrams, which supplement the load flow studies, have been redacted from the filing and were provided to the Commission's Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

- CEI East (2010)
- CEI West (2010)
- OE Central & Eastern (2010)
- OE Central & Southern (2010)
- TE (2010)

- CEI East (2015)
- CEI West (2015)
- OE Central & Eastern (2015)
- OE Central & Southern (2015)
- TE (2015)

The base case is the current summer model for load flow studies within the ATSI's system (125 kV and above). This case includes all lines planned to be in operation at the time of the current summer peak, and represents normal conditions and an assumed dispatch of area generation.

The second load flow model and transcription diagrams have been prepared for five years out for summer peak conditions. This case represents the load flow that would result if the projected peak occurs as predicted and the installation of facilities is completed as presently scheduled. The load flow represents normal conditions and an assumed dispatch of area generation.

The assessment practice used by ATSI in its transmission planning process includes a number of steps. The first step is the development of a load (power) flow "base case" that describes the area to be studied under projected peak load conditions. Also this base case represents the normal conditions of the study area, i.e., all transmission facilities (lines, transformers) are assumed in service, the output of all generating units is based on an assumed dispatch, and interchange schedules are based on conditions anticipated in the base case development.

This pattern of load and capacity is a forecasted snapshot of one possible set of events. Consideration of the scheduled outage of generating units and transmission facilities necessary to facilitate maintenance and construction activities is of greater concern in the evaluation of lighter load (Spring and Fall) periods as the majority of these outages are scheduled during these loading seasons.

The planning studies conducted by ATSI include seasonal, near-term, and long-term assessments. The seasonal studies - referred to as operational assessments - generally involve evaluating system performance for the approaching summer period. These studies identify contingency related transmission constraints that may be encountered, and formulate corrective measures to implement should constraints occur. Sensitivity studies are performed for these operational assessments to consider the impact of a particular generating unit outage or potential transfer through the ATSI transmission network. The near-term and long-term planning studies generally involve evaluation of the transmission system performance in a forecasted within five-year and beyond five-year horizon models. Transmission constraints are identified, for which operating measures cannot mitigate, and solutions such as facility additions are formulated and analyzed.

The computed power flows on each transmission facility and voltage levels at each substation bus are reviewed by comparison to the transmission planning criteria for normal system conditions. Any power flow or voltage that violates any part of the planning criteria is identified. The second step of the planning process is to modify the load flow base case in order to simulate contingency conditions. These contingency conditions represent a deterministic transmission planning philosophy that represents NERC Category B, C and D contingencies. Additionally, more severe contingency conditions are also simulated consistent with NERC, RFC, and the MISO requirements. An initial screening analysis is conducted, consisting of simulating an extensive list of contingencies. The results of this screening analysis are compared against the transmission planning criteria to determine any violations of the criteria. Those contingencies that result in planning criteria violations are then used in more detailed studies to determine system reinforcement requirements.

Following the simulation of normal and contingency conditions using a particular base case study year from which violations of the planning criteria are determined, solutions to these violations are sought. The solution method is two fold. First, alternative solutions are formulated for evaluation. Solutions may include facility additions and/or upgrades (reinforcement alternatives) such as transmission line and transformer installations, or possibly variations of generation dispatch (generation redispatch alternatives considering the curtailment of non-firm transactions – any redispatch options would be discussed and coordinated with MISO). The reinforcement alternatives or generation redispatch alternatives are then modeled, and the contingency conditions that initially produced criteria violations are simulated again to test the effectiveness of each potential solution. For those alternatives deemed to be functionally equivalent solutions, estimates of costs to provide the system reinforcement are developed. A final recommendation is made considering the cost for each alternative and the identified system improvements and flexibility provided by the alternative.

There is no list of specific contingency conditions or description of critical facilities that can be uniformly considered critical to the bulk transmission system (138 kV and above) from one study year to the next. This is due in part to the extent of the ATSI transmission network as well as the number of the system's 138 kV and 345 kV interconnections with neighboring transmission owners. Currently, ATSI has 38 interconnections with adjacent transmission owners for its transmission system in the ATSI service territory.

(2) <u>A tabulation of and transcription diagrams for a representative number of contingency</u> cases studied along with a brief statement concerning the results.

The proposed lines and substations included in Form FE- T9 and FE T-10 include descriptions for the purpose of the planned facility and the consequence of its deferral or termination.

The reliability of a transmission system is dependent upon the network arrangement, the ability of equipment to function properly, and the system operating characteristics. Reliability is one of the criteria used in determining the adequacy of the existing system and is a measure of the quality of planned additions to the system. The operating limits of the transmission network include thermal loading limits, voltage limits, stability limits and control of cascading outages. Failure to meet any one of these criteria is justification for studying and potentially recommending modification of the network.

ATSI doesn't retain transcription diagrams from the planning process. The software tools provide the ability to generate system reports which provide summary data of system loadings and voltages. Transcription diagrams are typically used for targeted, specific area studies in which interactive area load flows are of interest. Form FE-T9 also includes two fields: 11 – "Purpose of Planned Transmission Line" and 12 – Consequence of Line Construction Deferment or Termination" which provides information on the contingency or issue which the project is designed to address. Form FE-T10 does not contain an entry field for purpose of planned facility or consequence of deferment or termination. This information is inherent in the entries in Form FE-T9 for the lines from the new substation.

Additional review that results from subsequent peak load forecasts or other system changes may result in deferral of proposed facilities, cancellation of proposed facilities, or different system reinforcements than those initially proposed for the 5 to 10 year time period. In addition, new or different transmission system projects may be identified as part of the MISO transmission planning process.²

(3) <u>Analysis of proposed solutions to problems identified in paragraph (E)(2) of this rule.</u>

The solutions are proposed by Transmission Owner ("TO") and MISO engineers who are knowledgeable in transmission system performance. Proposed solutions are evaluated by stakeholders through the MTEP process.

The general process flow steps associated with MTEP projects from inception to approval is described below.

• Projects are developed by TOs as a potential solution to a local planning need and submitted to the MTEP planning process or by MISO staff in collaboration with TOs

 $^{^2\,}$ The Midwest ISO Subregional Planning Meeting (SPM) information can be found at:

< http://www.midwestiso.org/publish/Folder/2c41ee_1200f54a695_-fd90a48324a?rev=1>

and other stakeholders during the planning process as a potential solution for a need or as a value based economic project.

- MISO staff performs reliability and/or economic analyses to identify needs and verify effectiveness by testing against reliability and/or economic planning criteria.
- Stakeholders review results and provide input and solutions are modified as needed.
- MISO staff review cost estimates of identified alternatives with TOs and other stakeholders through the SPM process.
- MISO staff in collaboration with stakeholders evaluates projects against alternatives to determine the preferred solutions. The project justification process includes consideration of a variety of factors including urgency of need and comparison from amongst alternatives of operating performance, initial investment costs, robustness of the solution, longevity of the solution provided, and performance against other economic and non-economic metrics as developed with stakeholders.
- Stakeholder review of selected alternatives (SPM, PS, PAC)
- Use Issues Resolution process to address any issues with planning assumptions and criteria used
- Use Issues Resolution process to address any cost allocation issues
- MISO staff recommends projects for approval by MISO Board of Directors and for implementation by TOs.

The MTEP has three primary objectives. One objective is to perform a reliability assessment of the MISO integrated transmission system. A second objective is to review Transmission Owning members' transmission plans and make sure that appropriate projects are reviewed and recommended to MISO Board of Directors for Approval. The third objective is to develop transmission upgrades to improve market performance. MTEP 2009 and MTEP 2010 meetings and data exchange were in progress in 2009.

(4) <u>Adequacy of the electric transmission owner's transmission system to withstand natural</u> <u>disasters and overload conditions.</u>

The adequacy of a transmission system under multiple contingency conditions such as might occur during a major disaster is a function of many independent factors whose quantification is only known at the time of the incident. Should such an event occur (and depending upon the state of the variables), transmission line loadings in excess of the ratings, normally used for planning purposes, may occur and yet still be deemed adequate and acceptable under those conditions. For example, a tornado passing through portions of the ATSI service areas could result in the loss of some local load. While there may be a time during which all supply to a local area is lost, critical lines will be returned to service and power will be restored to that area as soon as possible.

(5) <u>Analysis of the electric transmission owner's transmission system to permit power</u> interchange with neighboring systems.

See Response to (E)(3)

(6) A diagram showing the electric transmission owner's import and export transfer capabilities and identifying the limiting element(s) during each season of the reporting period. In addition, the reporting electric transmission owner will provide a listing of transmission loading relief (TLR) procedures called during the last two seasons for which actual data are available. That listing may include only those TLRs called as a result of a transmission limit on the reporting electric transmission owner's transmission system. For each TLR event, the listing shall include the maximum level, and the duration at the maximum level, and the magnitude (in MW) of the power curtailments.

See Response to (E)(3). ATSI has not called TLR procedures in the past two seasons.

(7) <u>A description of any studies regarding transmission system improvement, including,</u> but not limited to, any studies of the potential for reducing line losses, thermal loading, and low voltage, and for improving access to alternative energy resources.

Studies of the transmission system are conducted on a continuing basis. Subsection E(1) provides a high level overview of the study process and evaluation of alternatives. These studies consider the various aspects of the transmission system to determine requirements for distinct areas within the system through the planning horizon. These studies focus on system reinforcements to resolve electrical needs, reliability improvements, and opportunities to enhance the performance of the system. Typical planning studies involve these and other aspects such as losses, voltage improvement, thermal loading and transfer capability improvement, in order that all relevant factors are considered when evaluating possible capital additions to the system.

(8) A switching diagram of the transmission network.

The following switching diagrams (see below) have been redacted from this filing and provided to the Commission's Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

- ATSI HV Circuit Diagram Central, Eastern Conditions as of 12/09
- ATSI HV Circuit Diagram Central, Southern, Western Conditions as of 12/09
- ATSI HV Circuit Northern Region Conditions as of 12/09
- ATSI HV Circuit Western Region Conditions as of 12/09

(F) REGIONAL AND BULK POWER REQUIREMENTS

To avoid the inefficiencies associated with having each electric transmission owner report this data, the electric transmission owners may have the regional transmission system operator submit a single report on their behalf. This information shall be provided as soon as it becomes available. Data provided to the commission concerning the electric transmission owner's existing and planned bulk power transmission system (two hundred thirty kV and above) shall include the following:

The information requested in Subsection (F) is prepared by RFC, a regional reliability council. Rather than having each utility under the jurisdiction of the Public Utilities Commission of Ohio (PUCO) include this regional information in its individual filing, the data and other relevant material are compiled and submitted by RFC on behalf of each FirstEnergy Operating Company. This common filing for 2009 entitled, "Electric Utility Regional Report to the Public Utilities Commission of Ohio, Utilities Department – Division of Forecasting and Siting," has been provided to the PUCO.

(G) CRITICAL ENERGY INFRASTRUCTURE

All critical energy infrastructure maps and diagram shave been redacted from the filing and were provided to the Commission's Staff per 4901:1-5-04(G) of the Ohio Administrative Code.

4901:5-5-05 Energy and demand forecasts for electric utilities

(A) GENERAL GUIDELINES

General guidelines provided for in the rules for Section 4901:5-3 and Section 4901:5-5 have been observed in the preparation of this filing. For this report, all Rural Electric Cooperative (REC) sales and loads in the FirstEnergy System have been excluded from the FirstEnergy System's distribution data. Additionally, the FirstEnergy System provides wholesale service to municipal customers located within its service territories. For the historical period and projected period, energy and the associated peak demand delivered to municipal customers have been excluded from the distribution data contained in this report. However, energy and peak demands associated with the REC municipal resale are included within the transmission data reported within this document.

(B) DISTRIBUTION ENERGY DATA AND PEAK DEMAND FORECAST FORMS

All required forms are included in Appendix D.

(C) SUBSTANTIATION OF THE PLANNED DISTRIBUTION SYSTEM

The reporting electric utility shall submit a substantiation of distribution development plans, including:

- (1) Load flow or other system analysis by voltage class of the electric utility's distribution system performance in Ohio, that identifies and considers each of the following:
 - (a) Any thermal overloading of distribution circuits and equipment.

Each of the FirstEnergy Operating Companies performs distribution planning for their own service area. Distribution circuits range from 2,400 volts to 34,500 volts depending upon the area. These distribution class circuits are all analyzed using similar techniques. Historically several methods were used to collect and analyze information concerning loading on circuits including reading substation meters and aggregating customer load data. The FirstEnergy Operating Companies' distribution systems are operated as radial systems. Planning for the sub-transmission systems (11.5kV, 23kV, 34.5kV and 46kV) is provided by local regional engineering groups in collaboration with transmission system planners. The FirstEnergy Operating Companies also have 22.86 kV and 34.5kV radial four-wire systems that are operated and planned as distribution facilities.

The FirstEnergy Operating Companies provide the individual operating company personnel with the ability to forecast loads, by feeder and substation transformer, and in this process the program compares the forecast load against the thermal ratings of the equipment. Any overloads are indicated on the output reports from standard load forecasting and circuit analyses tools. This provides the fundamental way in which thermal overloads on distribution circuits and equipment are identified.

A load flow program, CYMDST, has been made available to the individual operating companies and regional planners that will extract data from its automated mapping system. The regional planner uses this load flow program for detailed studies of individual circuits that are approaching loading limits. Detailed studies are also performed with this program to analyze the system in response to customer voltage complaints and placing capacitors for reactive and voltage support. CYMTCC is used for distribution circuit protection studies.

(b) Any voltage variations on distribution circuits that do not comply with the current version of the American National Standard Institute (ANSI) standard C84.1, electric power systems and equipment voltage ratings or standard as later amended.

Rule 4901:1-10-04 requires each electric utility to file with the PUCO nominal service voltage information as part of the tariff. Distribution circuits are operated within acceptable ranges to provide proper service voltage to the customer as stated in the companies' tariffs. For secondary service voltage less than 600 volts, the FirstEnergy Operating Companies comply with American National Standards Institute (ANSI) C84.1. For primary voltage service greater than 600 volts, the specified operating range is other than that stated in ANSI C84.1

(2) Analysis and consideration of proposed solutions to problems identified in paragraph (C)(1) of this rule.

When a planner reviews the load forecast and determines that an overload condition may occur in the future, the specific device or conductor that may experience overload is identified. The solution to prevent the overload depends upon the item. For instance, if it were an overhead conductor, replacing the existing conductor with a larger one may provide the required relief. At other times the solution may be to transfer load through a tie to another circuit. In still other instances it may be necessary to add a new circuit and/or substation in the area. Certain issues may also be addressed by working with the customer to develop a solution on the customer side of the meter. The planner will typically develop several alternative solutions and estimate the costs for each of those solutions. The costs will be compared using normal economic analytical techniques and the solution providing the most economical benefit will be chosen, absent technical constraints and operating concerns.

The analysis for a potential overload of a substation transformer will generally follow the same concepts employed for circuits. Replacement of existing units with larger capacity units or the addition of transformers or substations will be considered. The costs will again be estimated and analyzed using the same economic analysis techniques

(3) Adequacy of the electric utility distribution system to withstand natural disasters and overload conditions.

Rule 4901:1-10-06 requires utilities to comply with the National Electrical Safety Code. These rules require utilities to design, install, and maintain lines and equipment to meet basic requirements. For example, distribution structures are designed to withstand both wind and ice loading. In the event that distribution outages occur, the FirstEnergy Operating Companies have regional dispatching offices that operate around the clock that will respond to system or customer problems.

The distribution system components are, as designed, able to withstand marginal overload conditions. The design of equipment and lines has a temperature component that is incorporated into the rating of the equipment. When an overload occurs, the temperature may exceed its base value. However, there is some margin in the design that can accommodate such events. Distribution systems have also been historically designed to allow for future growth and to allow the flexibility of transferring loads. While the FirstEnergy Operating Companies' distribution systems are projected to experience moderate to average load growth, in the future some areas may experience higher growth rates and/or large bulk load additions. Areas that are identified as having potential overloads are managed as described in Sections 1 and 3 above. In addition, load growth and overload conditions may also be addressed through alternative approaches. As an example, OEC CEI, and TE are in the contracting process of being awarded federal funds available under the Economic Recovery Act to be used for smart grid investment, as proposed in Case No. 09-1820-EL-ATA,

(4) Analysis and consideration of any studies regarding distribution system improvement, including, but not limited to, any studies of the potential for reducing line losses, thermal loading and low voltage or any other problems, and for improving access to alternative resources.

There are guidelines used to select the size of the conductor to use for constructing new distribution circuits. These guidelines were developed by analyzing the losses for a given conductor type and the cost for using that conductor. The recommended size is based on assuring that the savings in losses will cover the increase in cost for the conductor.

The addition of capacitor banks on the distribution system is one of the alternatives that may be considered for reducing thermal loading. Personnel will periodically review distribution circuits to determine the power factor and recommend additional capacitors as necessary. By maintaining a high average power factor on the distribution system, losses are reduced and the system can be loaded close to its thermal capability most efficiently. Capacitor banks also help to improve the overall voltage profile of a system.

Distribution line regulators are another tool used to extend the reach of existing substation capacity. The regulators boost and re-regulate the distribution line voltage where the distance to the customers is such that service voltage violations could occur.

(5) A switching diagram of circuits less than one hundred twenty-five kV that are not radial.

The following switching diagrams of less than one hundred twenty-five kV that are not radial (see below) have been redacted from this filing and provided to the commission's staff per 4901:5-5-04(G) of the Ohio Administrative Code.

- Akron & Kent 23 kV Transmission Schematic
- Marion 34.5 kV Circuits

- Massillon 23 kV Transmission Schematic
- Ohio Bay Area Transmission Schematic
- Port Clinton West 35 kV Distribution
- Toledo Edison 23 and 34.5 kV System
- Warren 23 kV Transmission Schematic
- Youngstown 23 kV Transmission Schematic

4901:5-5-06 Resource plans

(A) RESOURCE PLAN

As part of the long-term forecast report filed pursuant to rule 4901:5-3-01 of the Administrative Code, an electric utility shall include a resource plan as defined in rule 4901:5-5-01 of the Administrative Code, which shall contain a narrative discussion and analysis of the following:

(1) <u>Anticipated technological changes which may be expected to influence the reporting person's generation mix, use of energy efficiency and peak-demand reduction programs, availability of fuels, type of generation, use of alternative energy resources pursuant to section 4928.64 of the Revised Code or techniques used to store energy for peak use.</u>

As described in the EE&PDR Portfolio Plans, a number of energy efficiency and peak demand reduction programs are proposed to be implemented for the 2010 - 2012 time period. In 2013 and every third year thereafter, updated program plans will be submitted in accordance with the rule 4901:1-39-04.

The FirstEnergy Operating Companies are developing a project through United States Department of Energy (DOE) funding to install smart meters at select meter sites (Ohio Site Deployment) in the CEI service area. The Ohio Site Deployment is part of the Smart Grid Modernization Initiative (SGMI), which has been awarded funding by the Department of Energy. The intent of the Smart Grid Modernization Initiative ("SGMI") is to produce an integrated system of protection, performance, efficiency and economy that extends across the energy delivery system for multiple stakeholder benefits. The initial deployment will allow CEI to conduct a controlled random test of approaches to Critical Peak Pricing and customer demand reduction. Customers will be given the choice of enabling technologies to manage their participation.

The DOE's approach to Smart Grid Investments is to identify the metrics and benefits to be measured prior to the implementation of the technologies, and evaluate and quantify (with actual operational data) potential benefits which cannot be quantified with certainty in advance of project execution. The overall Cost-Benefit Analysis ("CBA") framework is established by the DOE for all Smart Grid Investment Grant awardees. The Companies have engaged the Electric Power Research Institute ("EPRI") to develop a data collection plan based on what will be the CBA framework. The DOE has indicated that it plans to be very prescriptive in determining what the CBA framework will include so that an oranges-to-oranges comparison may be drawn from

project to project in order to ensure consistent reporting, quantification and monetization of benefits.

The FirstEnergy Operating Companies do not own or operate generation facilities, nor intend to, for the duration of this forecast. The FirstEnergy Operating Companies currently, and in the future, plan to procure supply to provide standard service offer electric generation service through competitive solicitations.

(2) The availability and potential development of alternative energy resources pursuant to section 4928.64 of the Revised Code for generating electricity.

The FirstEnergy Operating Companies have no plans to build any alternative energy resources or develop any energy storage capabilities.

The FirstEnergy Operating Companies support the development of alternative energy resources through the implementation of competitive solicitation programs for RECs. These programs solicit RECs from PUCO approved sources and provide the alternative energy resource owner with an income stream that is based upon the competitive determined price of the REC (or PUCO approved contingency price). Currently, the FirstEnergy Operating Companies have two REC programs to support the development of alternative energy resources - a wholesale REC-only RFP that targets large-scale alternative energy resource owners and a residential REC-only that solicits RECs from smaller scale residential customers of the Companies. The Companies plan to continue purchasing REC's through 2010 to fulfill SB 221 requirements.

(3) Research, development, and demonstration efforts relating to alternative energy resources, including expenditure information and description of specific investigations, and the nature and timing of anticipated results of these investigations.

See response to (A)(1) and (2) above.

(4) The impact of environmental regulations on generating capacity, cost, and reliability, including precise quantitative estimates and/or historical data pursuant to division (B)(2)(b) and/or (B)(2)(c) of section 4928.143 of the Revised Code.

See response to (A)(1) and 2) above.

(5) Textual material not specifically required but of importance to the resource forecast of the reporting utility may be included in the appropriate section.

None.

(6) Electricity resource forecast forms. In addition to the foregoing discussion and analysis, an electric utility shall include the following forms as published by the commission:

See Appendix E.

4901:5-5-06(B) and beyond is not applicable. None of the companies are filing for an allowance under section 4928.143(B)(2)(b) & (c) of the Ohio Revised Code.

APPENDIX A LIBRARIES

•
<u>Ashland County</u> Ashland County District Library 224 Claremont Avenue Ashland, OH 44805

Ashtabula County Ashtabula Public Library 335 West 44th Street Ashtabula, OH 44004

<u>Carroll County</u> Carroll County District Library 70 Second St NE Carrollton, OH 44615

<u>Champaign County</u> Champaign County Library 1060 Scioto Street Urbana, OH 43078

<u>Clark County</u> Clark County Public Library 201 S. Fountain Avenue – PO Box 1080 Springfield, OH 45506

<u>Columbiana County</u> Carnegie Public Library 219 E. Fourth Street East Liverpool, OH 43920

Lepper Library 303 E. Lincoln Way Lisbon, OH 44432-1400

Crawford County

Bucyrus Public Library 200 E. Mansfield Bucyrus, OH 44820

Cuvahoga County

Cleveland Public Library Reference Division 325 Superior Avenue, N.E. Cleveland, OH 44114 Defiance County

Defiance Public Library 320 Fort Street Defiance, OH 43512

Delaware County

Delaware County District Library 84 E. Winter Street Delaware, OH 43015

<u>Erie Countv</u>

Sandusky Library 114 W. Adams Street Sandusky, OH 44870

Huron Public Library 333 Williams Street Huron, OH 44839

Favette County

Carnegie Public Library 127 S. North Street Washington C.H., OH 43160

Franklin County

Columbus Metropolitan Library Attn: N. Friday, Biography, History & Travel Division 96 S. Grant Avenue Columbus, OH 43215-478

Fulton County

Delta Public Library 402 Main Street Delta, OH 43515

Geauga County

Geauga County Public Library 12701 Ravenwood Drive Chardon, OH 44024

Greene County

Hallie Q. Brown Memorial Library Central State University 1400 Brush Row Road, Box # 1006 Wilberforce, OH 45384 Greene County District Library 76 East Market Street, POB 520 Xenia, OH 45385

Henry County Napoleon Public Library 310 W. Clinton Street Napoleon, OH 43545

Holmes County Holmes County District Public Library 3102 Glen Drive Millersburg, OH 44654

Huron County Willard Memorial Library 6 W. Emerald Street Willard, OH 44890

Knox County Mt. Vernon Public Library 201 N. Mulberry Street Mt. Vernon, OH 43050

Lake County Morley Library 184 Phelps Street Painesville, OH 44077

Lorain County Lorain Public Library 351 Sixth Street Lorain, OH 44052

Oberlin College Library Reference Division 148 W. College Street Oberlin, OH 44074-1545

Elyria Public Library 320 Washington Avenue Elyria, OH 44035

Lucas County Toledo-Lucas County Public Library Reference Division 325 Michigan Street Toledo, OH 43604 William S. Carlson Library University of Toledo Reference Division 2801 West Bancroft Street Toledo, OH 43606-3390

Madison County

London Public Library 20 E. First Street London, OH 43140

Hurt/Battelle Memorial Library 270 Lilly Chapel Road West Jefferson, OH 43162

Mahoning County

Public Library of Youngstown Reference Division 305 Wick Avenue Youngstown, OH 44503

Marion County Marion Public Library 445 E. Church Street Marion, OH 43302-4290

Medina County Medina County District Library 210 S. Broadway Medina, OH 44256

<u>Miami County</u> Troy- Miami Public Library 416 W Main St Troy, OH 45373

Morrow County Mount Gilead Public Library 41 E. High Street Mt. Gilead, OH 43338

Ottawa County Ida Rupp Public Library 310 Madison Street Port Clinton, OH 43452

Portage County Portage County District Library 10482 South Street Garrettsville, OH 44231

38 FirstEnergy Companies

Kent State University Library Serials Department 1 Eastway Drive, P.O. Box 5190 Kent, OH 44242-0001

Putnam County Putnam County District Library 124 Putnam Parkway Educational Service Center Ottawa, OH 45875-0308

Richland County Mansfield/Richland Public Library 43 W. Third Street Mansfield, OH 44902

Sandusky County Birchard Public Library 423 Croghan Street Fremont, OH 43420

Seneca County Tiffin-Seneca Public Library 77 Jefferson Street Tiffin, OH 44883-2399

Stark County Stark County District Library 715 Market Ave., N. Canton, OH 44702

Summit County Akron-Summit County Public Library 60 South High Street Akron, OH 44326 <u> Trumball County</u>

Warren-Trumbull County Public Library 444 Mahoning Avenue, N.W. Warren, OH 44483

Tuscarawas County Tuscarawas County Public Library 121 Fair Avenue, N.W. New Philadelphia, OH 44663

Union County Marysville Public Library 231 S. Plum Street Marysville, OH 43040

Wayne County Wayne County Public Library 304 N. Market Street Wooster, OH 44691

Williams County Williams County Public Library 107 E. High Street Bryan, OH 43506

Wood County Wood County District Public Library 251 N. Main Street Bowling Green, OH 43402

William T. Jerome Library Bowling Green State University Documents Librarian Bowling Green, OH 43403-0001

<u>Wyandot County</u> Upper Sandusky Community Library 301 N. Sandusky Avenue Upper Sandusky, OH 43351

APPENDIX B FORECAST DOCUMENTATION

39 FirstEnergy Companies

	Ξ
	•
	-
	-
	Ö
	Ξ
	Ξ
	-
	-
	_
	-
	•
	Ξ
	Ξ
	Ξ
	Ξ
	-
	-
	•
	-
	-
	-
1	<u> </u>
	-
	-
	-
	Ξ
	-
	Ā

	Definitions of variables use	ed in at least one final Ol	LS model
Variable	Description	Variab <u>le</u>	Description
-	Binary variable for years following		
	& including 2001, when a		
After01Reclass	reclassification took place	Jul	Monthly binary variable for July
	Binary variable for years following		
4.6402D	& including 2003, when a	T	Nouthly himsey much la far Ivez
Alteroskeciass	Pinage unrichte for all months	Jun	Montruy binary variable for June
	following January 2005, when a		
After 200501	reclassification took place	I sharFarce	Lahor force
	rectussification took place		Larged dependent, where t refers to
Apr	Monthly binary variable for April	LagDep(t)	the number of lags
- <u>4</u>	Autoregressive error term, where p		
AR(p)	refers to the number of lags	ManEmp	Manufacturing employment
Δ μg	Monthly bingry variable for August	Mar	Monthly binary variable for March
<u></u>	Cooling Degree Dave, where IE) is	TAT 30	Working Officity Variable for March
	the base temperature in degrees		
CDDIFI	Fahrenheit	Mav	Monthly binary variable for May
	Cooling Degree Days for the neak		
CDD65_PeakDay	day based on 65° F	Nov	Monthly binary variable for Nov
ComPrice	Commercial price of electricity	Det	Monthly binary variable for Oct
	Number of customers as determined		within y briary variable for eet
	from the appropriate customer		
Customers	forecast	OilPrice	Oil price
DisposableInc	Disposable income	Pop	Population
	Monthly binary variable for		Interaction term between Pop &
Feb	February	Pop_x_After03Reclass	After03Reclass variables
			Binary variable for the late-2000s
			recession, per the National Bureau c
	Local contribution to Gross		Economic Research & the Federal
GDP	Domestic Product	RecessionL2000s	Reserve Bank of St. Louis
	Heating Degree Days, where [F] is		
	the base temperature in degrees		
מעמא[א]	Fahrenheit	ResPrice	Residential price of electricity
HDD65 PeakDay	day based on 65° F	DatajISalas	Retail sales
HousingStock	Housing stock	Ron	Monthly binary variable for Sen
IndPrice	Industrial price of electricity	Sep StoolDrieo	Stael price
T	The second price of electronity		
Jan	Monthly binary variable for January	1 rend	Linear trend
	Definitions of abbreviati	ons used for regression s	tatistics
Regression Statistic	Term	Regression Statistic	Term
<u>n</u>	Number of observations	D-W	Durbin-Watson Statistic
v	Degrees of freedom for error	Σε ²	Sum of squared errors
R ¹	R-squared	SE _{regression}	Standard error of the regression
A J; D7	A directed B amount		

TABLE B-1: Variable & Statistical Definitions

Γ

TABLE B-2: Ohio Edison Company

Residential	Energy	Model

Model Results				
Variable	Coefficient	Standard Error	<i>t</i> -stat	<i>p</i> -value
Constant	238,401,889.030	20,208,084.205	11.797	0.00%
HDD65	162,219.191	16,638.398	9.750	0.00%
CDD65	703,507.520	55,327.915	12.715	0.00%
RetailSales	11,687.426	453.005	25.800	0.00%
Jan	89,956,055.317	8,274,749.869	10.871	0.00%
Feb	1,608,088.904	10,702,251.828	0.150	88.07%
Mar	-8,193,508.198	9,123,801.371	-0.898	37.01%
Арг	-49,512,208.622	9,598,624,899	-5.158	0.00%
May	-87,426,550.181	12,799,974.639	-6.830	0.00%
Jun	-62,201,076.520	15,425,316.745	-4.032	0.01%
Jul	4,593,734.843	19,091,375.412	0.241	81.01%
Aug	7,479,627.710	19,932,751.283	0.375	70.78%
Sep	5,568,612.288	17,504,048.868	0.318	75.07%
Oct	-69,085,318.379	13,196,596.064	-5.235	0.00%
Nov	-88,932,756.326	8,583,957.202	-10.360	0.00%
AR(1)	0.382	0.062	6.154	0.00%

Regression Statistics		
n 239		
v 223		
R ² 0.953		
Adj. R ² 0.95		
D-W 1.851		
Σε ² 1.64E+17		
SEreconcertain 27,142,233		

TABLE B-3: Ohio Edison Company

Commercial Energy Model

Model Results					
Variable	Coefficient	Standard Error	t-stat	<i>p-</i> value	
Constant	82,080,249.987	18,105,031.428	4.534	0.00%	
Customers	807.399	348.439	2.317	2.14%	
GDP	4,914.992	418.923	11.732	0.00%	
HDD50	50,289.286	10,059.540	4.999	0.00%	
CDD55	183,547.890	21,211.331	8.653	0.00%	
Jan	25,622,252.887	4,537,899.543	5.646	0.00%	
Feb	8,343,125.451	5,837,029.680	1.429	15.43%	
Mar	1,779,821.562	4,932,137.774	0.361	71.86%	
Apr	-8,985,418.927	5,118,298.865	-1.756	8.06%	
May	-21,839,769.429	6,483,969.185	-3.368	0.09%	
Jun	-5,723,930.827	8,560,877.979	-0.669	50.44%	
Jul	11,815,753.437	11,783,106.308	1.003	31.71%	
Aug	5,585,919.834	12,591,097.586	0.444	65.77%	
Sep	21,539,619.706	10,721,617.038	2.009	4.57%	
Oct	-736,374.423	6,647,989.760	-0.111	91.19%	
Nov	-20,957,493.181	4,624,400.736	-4.532	0.00%	
AR(1)	0.351	0.063	5.598	0.00%	

Regression Statistics		
n 239		
v 222		
R ² 0.942		
Adj. R ² 0.937		
D-W 2.086		
$\Sigma \varepsilon^2$ 4.75E+16		
SE _{regression} 14,623,971		

7

Γ

TABLE B-4: Ohio Edison Company

Industrial Energy Model

Model Results						
Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value		
Constant	-1,090,454,195.006	526,041,105.091	2.073	3.93%		
RecessionL2000s	-27,489,983.434	15,039,176.207	1.828	6.89%		
SteelPrice	107,360.321	41,478.593	2.588	1.03%		
GDP	7,202.587	2,287.613	3.149	0.19%		
ManEmp	611,421.151	76,273.619	8.016	0.00%		
Jan	-29,762,010.350	8,113,683.591	- 3.668	0.03%		
Feb	19,919,530.435	8,334,277.918	2.390	1.77%		
Mar	20,620,240.767	9,320,030.026	2.212	2.80%		
Apr	17,636,445.099	9,454,554.002	1.865	6.35%		
May	441,173.095	9,697,371.399	0.045	96.37%		
Jun	28,376,392.309	9,739,676.637	2.913	0.39%		
Jul	7,319,803.498	9,725,121.569	0.753	45.24%		
Aug	30,013,574.522	9,518,216.747	3.153	0.19%		
Sep	52,016,766.027	9,237,427.471	5.631	0.00%		
Oct	9,077,742.116	8,215,212.282	1.105	27.04%		
Nov	-3,186,935.039	8,137,633.640	0.392	69.57%		
LaborForce	555,776.911	461,260.351	1.205	22.95%		
AR (1)	0.287	0.065	4.407	0.00%		
AR(2)	0.264	0.065	4.044	0.01%		

Regression Statistics			
n 238			
v	219		
R ² 0.837			
Adj. R ² 0.824			
D-W 2.108			
<u>Σ</u> ε²	1.89E+17		
SEregression	29,365,271		

TABLE B-5: The Cleveland Electric Illuminating Company

Residential Energy Model

Model Results					
Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value	
Constant	253,945,810.066	13,632,800.993	18.628	0.00%	
DisposableInc	2,529.028	199.129	12.700	0.00%	
HDD65	83,773.668	10,622.376	7.887	0.00%	
CDD65	570,704.972	39,063.753	14.610	0.00%	
Jan	78,625,201.080	5,968,501.277	13.173	0.00%	
Feb	9,732,734.752	7,379,430.797	1.319	18.86%	
Mar	-5,079,203.486	6,518,758.223	-0.779	43.67%	
Apr	-38,493,186.669	6,569,109.455	-5.860	0.00%	
May	-65,036,907.135	8,241,226.761	-7.892	0.00%	
Jun	-61,407,396.892	10,075,812.330	-6.095	0.00%	
Jul	-29,445,807.889	13,014,484.176	-2.263	2.46%	
Aug	-30,741,739.255	13,825,524.270	-2.224	2.72%	
Sep	-38,270,713.609	11,890,303.257	-3.219	0.15%	
Oct	-51,766,391.398	8,872,644.073	-5.834	0.00%	
Nov	-51,908,924.075	6,367,497.289	-8.152	0.00%	
AR(1)	0.247	0.062	3.985	0.01%	

Regression Statistics		
n 240		
ν	224	
R ² 0.921		
Adj. R ² 0.915		
D-W 1.909		
$\Sigma \epsilon^2$ 8.83E+16		
SE _{regression} 19,851,318		

TABLE B-6: The Cleveland	l Electric Illuminating	Company
--------------------------	-------------------------	---------

Commercial Energy Model

Model Results					
Variable	Coefficient	Standard Error	<i>t</i> -stat	<i>p</i> -value	
Constant	162,740,580.088	23,961,639.021	6.792	0.00%	
LagDep(1)	0.495	0.068	7.235	0.00%	
RetailSales	4,529.137	847.408	5.345	0.00%	
After01Reclass	-84,498,402.135	12,392,386.933	-6.819	0.00%	
Jan	52,129,306.766	11,705,616.913	4.453	0.00%	
Feb	-132,077.971	10,622,172.231	-0.012	99.01%	
Mar	5,727,336.263	10,718,721.297	0.534	59.37%	
Apr	-11,047,296.377	10,369,194.419	-1.065	28.78%	
Мау	-8,821,564.499	10,178,931.690	-0.867	38.71%	
Jun	15,819,547.325	10,081,701.036	1.569	11.80%	
Jul	60,553,750.085	10,344,846.970	5.854	0.00%	
Aug	31,577,038.215	11,698,542.547	2.699	0.75%	
Sep	30,294,959.769	11,863,771.268	2.554	1.13%	
Oct	-27,563,275.421	11,110,235.143	-2.481	1.38%	
Nov	-24,195,081.141	11,773,495.272	-2.055	4.10%	
AR(1)	-0.339	0.083	-4.062	0.01%	

Regression Statistics		
n 240		
ν	224	
R ²	0.813	
Adj. R ² 0.801		
D-W 2.055		
∑ε²	2.03E+17	
SE _{regression} 30,070,834		

!

I

Ó
•
-

TABLE B-7: The Cleveland Electric Illuminating Company

Industrial Energy Model

Model Results					
Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value	
OilPrice	432,704.034	116,966.582	3.699	0.03%	
LaborForce	208,748.364	40,694.551	5.130	0.00%	
RecessionL2000s	-33,052,254.060	9,821,586.802	-3.365	0.09%	
LagDep(1)	0.675	0.051	13.117	0.00%	
Jan	48,786,971.486	21,287,293.065	2.292	2.28%	
Feb	43,053,429.208	14,871,715.010	2.895	0.42%	
Mar	34,444,862.010	18,462,256.928	1.866	6.34%	
Apr	32,656,707.081	16,733,855.781	1.952	5.22%	
May	13,358,253.082	17,764,411.060	0.752	45.29%	
Jun	55,116,459.677	17,032,272.719	3.236	0.14%	
Jul	25,237,060.533	17,808,721.686	1.417	15.78%	
Aug	56,704,316.965	16,694,260.339	3.397	0.08%	
Sep	41,213,122.436	18,649,008.472	2.210	2.81%	
Oct	8,027,413.133	14,992,684.258	0.535	59.29%	
Nov	14,565,855.573	21,342,370.812	0.682	49.56%	
AR(1)	0.520	0.063	-8.217	0.00%	

Regression Statistics		
n 240		
ν	224	
R ²	0.427	
Adj. R ²	. R ² 0.389	
D-W	-W 2.089	
$\sum \epsilon^2$ 5.02E+17		
SE _{regression} 47,334,551		

TABLE B-8: The Toledo Edison Company

Γ

Residential Energy Model

Model Results				
Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value
Constant	74,876,873.258	7,374,387.102	10.154	0.00%
RetailSales	8,130.278	491.781	16.532	0.00%
CDD65	218,944.007	17,914.957	12.221	0.00%
HDD65	55,404.031	6,081.132	9.111	0.00%
Jan	15,947,191.882	3,025,901.364	5.270	0.00%
Feb	-5,692,002.359	3,770,681.530	-1.510	13.26%
Mar	-5,876,038.257	3,139,484.677	-1.872	6.26%
Apr	-16,706,720.347	3,322,500.049	-5.028	0.00%
May	-22,636,018.132	4,609,672.697	-4.911	0.00%
Jun	-15,117,601.341	5,683,106.203	-2.660	0.84%
Jul	3,998,008.096	7,062,410.596	0.566	57.19%
Aug	5,409,531.890	7,280,220.364	0.743	45.82%
Sep	-3,176,031.058	6,456,088.759	-0.492	62.33%
Oct	-18,167,533.502	4,839,348.278	-3.754	0.02%
Nov	-20,617,340.975	3,205,717.320	-6.431	0.00%
AR(1)	0.311	0.064	4.850	0.00%

Regression Statistics		
n	239	
ν	223	
R ² 0.921		
Adj. R ² 0.916		
D-W 1.995		
Σε²	2.01E+16	
SE	9.484.925	

TABLE B-9: The Toledo Edison Company

Commercial Energy Model

> D

•

۳

	Model Results						
Variable	Variable Coefficient Standard Error <i>t</i> -stat <i>p</i> -va						
Constant	-41,818,077.412	10,968,427.182	-3.813	0.02%			
Customers	4,803.333	371.067	12.945	0.00%			
GDP	2,822.035	581.257	4.855	0.00%			
HDD50	28,843.206	10,037.931	2.873	0.45%			
CDD55	83,792.129	18,739.245	4.471	0.00%			
Jan	-889,778.593	5,040,216.746	-0.177	86.00%			
Feb	-3,187,300.339	5,509,137.960	-0.579	56.35%			
Mar	7,951.480	4,552,219.951	0.002	99.86%			
Apr	-4,061,107.210	4,777,206.179	-0.850	39.62%			
May	-8,296,947.687	6,201,542.747	-1.338	18.23%			
Jun	-9,174,146.635	8,287,614.061	-1.107	26.95%			
Jul	-7,688,547.399	11,344,498.861	-0.678	49.86%			
Aug	-4,923,771.721	11,897,342.491	-0.414	67.94%			
Sep	-5,862,311.467	10,301,395.860	-0.569	56.99%			
Oct	112,039.448	6,583,368.292	0.017	98.64%			
Nov	-8,895,937.642	5,178,590.723	-1.718	8.72%			

Regression Statistics		
n	240	
ν	224	
R ² 0.812		
Adj. R ²	0.8	
D-W 1.805		
$\sum \epsilon^2$ 4.46E+16		
SE _{regression} 14,110,465		

TABLE B-10: The Toledo Edison Company

Industrial Energy Model

Model Results				
Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value
Constant	-286,210,987.755	26,127,179.963	-10.955	0.00%
Customers	20,541.547	2,768.601	7.419	0.00%
GDP	24,513.511	892.998	27.451	0.00%
Jan	-3,017,477.285	9,184,153.746	-0.329	74.28%
Feb	14,049,188.680	9,183,016.893	1.530	12.74%
Mar	1,895,786.834	9,182,939.915	0.206	83.66%
Apr	12,918,551.316	9,182,766.836	1.407	16.09%
May	11,720,162.716	9,182,652.558	1.276	20.32%
Jun	25,116,205.144	9,182,560.908	2.735	0.67%
Jul	9,552,327.164	9,182,472.928	1.040	29.93%
Aug	20,691,405.726	9,182,400.653	2.253	2.52%
Sep	46,463,447.139	9,182,348.306	5.060	0.00%
Oct	3,017,366.486	9,182,314.765	0.329	74.28%
Nov	23,436,411.519	9,182,275.450	2.552	1.14%

Regression Statistics		
n	240	
ν	226	
<i>R</i> ² 0.794		
Adj. <i>R</i> ²	0.783	
D-W 2.028		
$\sum \epsilon^2$ 1.91E+17		
SE _{regression} 29,036,861		

Peak Model Model Results						
						VariableCoefficientStandardp-VariableCoefficientErrort-statvalue
Constant	260.011	323,310	0.804	42.34%		
Customers	1.585	0.177	8.953	0.00%		
HDD65_PeakDay	7.568	1.897	3.989	0.01%		
HDD65_PeakDay	94.480	7.240	13.050	0.00%		

Regression Statistics		
n	94	
ν	90	
R ²	0.914	
Adj. R ²	0.911	
D-W	1.784	
$\sum \epsilon^2$	3.12E+06	
SEregression	186	

TABLE B-12: The Cleveland Electric Illuminating Company

Peak Model						
Model Results						
Variable	Coefficient	Standard Error	<i>t</i> -stat	<i>p</i> - value		
Constant	524.832	212.611	2.469	1.55%		
Customers 1.462 0.149 9.841 0.00						
HDD65_PeakDay	3.815	1.124	3.395	0.10%		
CDD65_PeakDay	58.198	3.725	15.624	0.00%		

•

Regression Statistics		
n	94	
ν	90	
R ²	0.93	
Adj. R ²	0.928	
D-W	2.094	
$\sum \epsilon^2$	1.37E+06	
SEregression	123	

TABLE B-13: The Toledo Edison Company

	Peak	Model				
Model Results						
VariableCoefficientStandard Errorp- t-statvalue						
Constant	-1,118.676	528.258	-2.118	3.70%		
Customers	0.951	0.226	4.214	0.01%		
HDD65_PeakDay	3.970	0.745	5.330	0.00%		
CDD65 PeakDay	28.061	2.669	10.514	0.00%		
Trend	0.044	0.012	3.847	0.02%		

Regression Statistics		
n	94	
ν	89	
<i>R</i> ²	0.793	
Adj. R ²	0.784	
D-W	1.957	
$\sum \epsilon^2$	6.87E+05	
SEregression	88	

Ohio Edison Company					
Class	Variable	Coefficient	Standard Error	1-stat	<i>p</i> -value
Residential	ResPrice	86,766.663	116,535.342	0.745	45.73%
Commercial	ComPrice	68,266.346	60,733.889	1.124	26.22%
Industrial	IndPrice	186,390.883	314,685.358	0.592	55.43%
·	The Cl	eveland Electric Illumi	inating Company		
Class	Variable	Coefficient	Standard Error	<i>t</i> -stat	<i>p</i> -value
Residential	ResPrice	73,164.641	71,567.950	1.022	30.77%
Commercial	ComPrice	39,086.010	82,120.553	0.476	63.46%
Industrial	IndPrice	116,212.488	96,641.300	1.203	23.04%
		The Toledo Edison C	Company		
Class	Variable	Coefficient	Standard Error	t-stat	<i>p</i> -value
Residential	ResPrice	27,590.382	35,735.324	0.772	44.09%
Commercial	ComPrice	152,962.334	32,128.088	4.761	0.00%
Industrial	IndPrice	360,303.614	143,373.904	2.513	1.27%

TABLE B-14: Impact of Electricity Price on Model Results

	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
2010	(557)	(1,245)	323
2011	(17)	(1,456)	192
2012	(174)	(1,457)	(156)
2013	(132)	(1,061)	(120)
2014	(34)	(274)	(32)

TABLE C-1: Impact of Industrial Survey Adjustment on Energy Model Results (GWh)

TABLE C-2: Impact of Federal Energy-Efficiency Standards (including Pub.L. 110-140) on Residential Energy Model Results (GWh)

	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
2010	(24)	(17)	(6)
2011	(81)	(53)	(18)
2012	(133)	(87)	(28)
2013	(316)	(203)	(58)
2014	(392)	(251)	(71)
2015	(440)	(281)	(80)
2016	(468)	(298)	(86)
2017	(501)	(318)	(92)
2018	(519)	(328)	(95)
2019	(531)	(334)	(98)
2020	(566)	(355)	(104)

Residential	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
2010	(57)	(41)	(16)
2011	(207)	(148)	(54)
2012	(305)	(214)	(86)
2013	(245)	(151)	(63)
2014	(315)	(201)	(86)
2015	(394)	(257)	(112)
2016	(487)	(324)	(144)
2017	(587)	(396)	(178)
2018	(695)	(474)	(216)
2019	(891)	(616)	(285)
2020	(1,054)	(763)	(356)
Commercial	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
Commercial 2010	Ohio Edison Company (12)	The Cleveland Electric Illuminating Company (12)	The Toledo Edison Company (2)
Commercial 2010 2011	Ohio Edison Company (12) (57)	The Cleveland Electric Illuminating Company (12) (53)	The Toledo Edison Company (2) (12)
Commercial 2010 2011 2012	Ohio Edison Company (12) (57) (98)	The Cleveland Electric Illuminating Company (12) (53) (84)	The Toledo Edison Company (2) (12) (29)
Commercial 2010 2011 2012 2013	Ohio Edison Company (12) (57) (98) (625)	The Cleveland Electric Illuminating Company (12) (53) (84) (414)	Company (2) (12) (29) (206) (206)
Commercial 2010 2011 2012 2013 2014	Ohio Edison Company (12) (57) (98) (625) (786)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541)	The Toledo Edison Company (2) (12) (29) (206) (274)
Commercial 2010 2011 2012 2013 2014 2015	Ohio Edison Company (12) (57) (98) (625) (786) (940)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541) (660)	The Toledo Edison Company (2) (12) (29) (206) (274) (341)
Commercial 2010 2011 2012 2013 2014 2015 2016	Ohio Edison Company (12) (57) (98) (625) (786) (940) (1,079)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541) (660) (769)	The Toledo Edison Company (2) (12) (29) (206) (274) (341) (404)
Commercial 2010 2011 2012 2013 2014 2015 2016 2017	Ohio Edison Company (12) (57) (98) (625) (786) (940) (1,079) (1,211)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541) (660) (769) (872)	The Toledo Edison Company (2) (12) (29) (206) (274) (341) (404) (465)
Commercial 2010 2011 2012 2013 2014 2015 2016 2017 2018	Ohio Edison Company (12) (57) (98) (625) (786) (940) (1,079) (1,211) (1,336)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541) (660) (769) (872) (969)	The Toledo Edison Company (2) (12) (29) (206) (274) (341) (404) (465) (523)
Commercial 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019	Ohio Edison Company (12) (57) (98) (625) (786) (940) (1,079) (1,211) (1,336) (1,602)	The Cleveland Electric Illuminating Company (12) (53) (84) (414) (541) (660) (769) (872) (969) (1,174)	The Toledo Edison Company (2) (12) (29) (206) (274) (341) (404) (465) (523) (644)

TABLE C-3: Impact of Am. Sub. SB221 on Energy Model Results (GWh)

۲

Industrial	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
2010	(128)	(90)	(60)
2011	(207)	(124)	(78)
2012	(305)	(145)	(97)
2013	(65)	(67)	(39)
2014	(82)	(87)	(52)
2015	(98)	(107)	(65)
2016	(112)	(125)	(76)
2017	(125)	(142)	(87)
2018	(138)	(158)	(98)
2019	(164)	(192)	(120)
2020	(194)	(225)	(141)

•

• •

۳

 TABLE C-4: 12-Month Average Impact of Am. Sub. SB221 on Peak Demand

 Models (MW)

	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company
2010	(25)	(19)	(8)
2011	. (88)	(71)	(31)
2012	(129)	(101)	(48)
2013	(200)	(164)	(78)
2014	(238)	(192)	(93)
2015	(277)	(221)	(108)
2016	(316)	(252)	(124)
2017	(356)	(282)	(139)
2018	(397)	(313)	(156)
2019	(415)	(328)	(163)
2020	(415)	(328)	(163)

	IABLE D-1; Annual Distribution Load Factors				
Year	Ohio Edison Company	The Cleveland Electric Illuminating Company	The Toledo Edison Company	FirstEnergy System*	
2005	61.59%	58.30%	65.36%	61.24%	
2006	57.03%	55.26%	60.43%	57.86%	
2007	59.10%	59.02%	63.91%	60.33%	
2008	61.51%	59.94%	66.48%	61.22%	
2009	59.78%	57.35%	60.42%	59.60%	
2010	58.89%	58.70%	62.17%	60.52%	
2011	59.28%	58.95%	62.51%	60.84%	
2012	59.62%	59.13%	62.63%	60.94%	
2013	59.88%	59.57%	63.36%	61.64%	
2014	60.07%	60.36%	63.71%	61.92%	
2015	60.05%	60.58%	63.56%	62.03%	
2016	60.02%	60.52%	63.23%	61. <u>79</u> %	
2017	59.83%	60.32%	62.70%	61.88%	
2018	59.96%	60.45%	62.43%	61.79%	
2019	59.12%	59.62%	61.11%	60.93%	
2020	58.09%	58.58%	59.63%	59.73%	

TABLE D-1: Annual Distribution Load Factors

*includes Pennsylvania Power

APPENDIX C TRANSMISSION FORECAST FORMS

FirstEnergy Companies

4901:5-5-04(B)(1) PUCO FORM FE-T1:

TRANSMISSION ENERGY DELIVERY FORECAST (Megawatt Hours/Year)" *

FirstEnergy System

(13) Energy Deliveries For Loads Connected To The System Outside Ohlo		5,227,777	5,154,630	5,664,906	6,490,709	5,043,000	4,860,000	4,837,000	4,921,000	5,106,000	5,408,000	5,537,000	5,804,000	5,673,000	5,743,000	5,810,000	5,872,000
(12) Energy Delivenes For Loads Connected To The System Inside Ohlo		66,883,313	86,067,202	66,187,876	64,353,926	61,380,000	61,151,000	61,937,000	62,660,000	63,506,000	64,484,000	64,636,000	64,453,000	64,300,000	64,064,000	63,238,000	62,361,000
(11) Total Energy Deliveries For Load Connected To The Svatem ^c 7 - 10		72,111,090	70,221,832	71,852,782	69,844,635	66,423,000	66,011,000	66,774,000	67,581,000	68,612,000	69,890,000	70,173,000	70,057,000	69,973,000	69,807,000	69,048,000	68,233,000
(01) fotst Energy Deliveries At Interconnections 8 + 9		26,045,250	27,904,723	26,051,778	28,773,992	27,364,376	27,194,644	27,508,978	27,841,439	28,266,182	28,792,681	28,909,269	28,881,480	28,826,875	28,758,487	28,445,801	28,110,044
(9) Energy Deliverias At Interconnections With Other Interconnections Companies Outside Transmission Companies		20,791,933	21,738,981	18,972,838	21,450,812	20,399,953	20,273,419	20,507,753	20,755,600	21,072,243	21,464,745	21,551,660	21,518,034	21,490,236	21,439,253	21,206,148	20,955,844
(6) Errergy Deliveries At Interconnections With Other Transmission Companies Inside Ohio		5,253,317	6,165,742	7,078,940	7,323,180	6,964,423	6,921,225	7,001,225	7,085,839	7,183,939	7,327,937	7,357,609	7,345,446	7,336,639	7,319,234	7,239,653	7,154,201
(7) Total Energy Receipts 3 + 6		97,587,756	98,083,631	97,853,982	98,576,810	93,747,608	93,166,122	94,243,000	95,381,978	96,837,103	98,640,837	99,040,256	98,876,536	98,757,981	98,523,693	97,452,461	96,302,192
(6) Total Erongy Receipts At Interconnections 4 + 5		26,151,378	23,558,723	28,640,610	26,758,563	25,447,682	25,289,838	25,582,155	25,891,329	26,286,321	26,775,943	26,884,365	26,839,923	26,807,742	26,744,144	26,453,360	26,141,121
(5) Energy Receipts At Interconnections Wilh Other Transmission Companies Outside Ohio		11,099,104	10,267,471	13,425,474	14,994,644	14,260,068	14,171,617	14,335,423	14,508,674	14,730,015	15,004,383	15,065,139	15,040,236	15,022,202	14,986,564	14,823,618	14,648,649
(4) Energy Receipts At Interconnections With Other Transmission Companies Inside Ohio		15,052,274	13,291,252	13,215,136	11,763,919	11,187,614	11,118,221	11,246,733	11,382,655	11,558,307	11,771,560	11,819,225	11,799,688	11,785,539	11,757,580	11,629,742	11,492,472
(3) Tolal Energy Receipts From Generation Sources f + 2		71,416,378	74,525,108	71,213,372	71,818,247	68,299,926	67,876,284	68,660,845	69,490,648	70,550,781	71,864,894	72,155,891	72,036,613	71,950,239	71,779,549	70,999,101	70,161,072
(2) Energy Receipts from Generation Sources Connected To The Syster Outside Ohio	•	'	•	•	•			ł	•	-		•	•	-	•	•	
(1) Energy Receipts from Generation Sources Connected To The Owner's System Inside Ohio		71,416,378	74,525,108	71,213,372	71,818,247	69,299,926	67,876,284	68,660,845	69,490,648	187,035,07	71,864,694	72,155,891	72,036,613	71,950,239	71,779,549	70,999,101	70,161,072
Year		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
		ų	4	ကိ	Ņ	-1	0	-	4	8	4	S.	6	7	80	6	5

"To be filled out by electric transmission owners operating in Chio. ^b Data excludes firm off-system power sales. ^c These data include energy for Permsylvania Power as well as the 3 Otrio companies.

FirstEnergy Companies

4901:5-5:04(B)(3)(a)

PUCO Form FE-T3:

Electric Transmission Owner's Total Monthly Energy Forecast (Megawatt-Hours/Month) d

FirstEnergy System

		Total Service	
	Ohio Portion ^a	Area ^b	Total System ce
Year 0-2010			
January*	5,559,000	6,031,000	6,031,000
February*	5,068,000	5,512,000	5,512,000
March	5,130,000	5,550,000	5,550,000
April	4,701,000	5,076,000	5,076,000
Мау	4,772,000	5,143,000	5,143,000
June	5,159,000	5,570,000	5,570,000
July	5,592,000	6,013,000	6,013,000
August	5,495,000	5,908,000	5,908,000
September	4,861,000	5,226,000	5,226,000
October	4,771,000	5,134,000	5,134,000
November	4,733,000	5,117,000	5,117,000
December	5,311,000	5,733,000	5,733,000
Year 1-2011			
January	5,464,000	5,924,000	5,924,000
February	5,087,000	5,508,000	5,508,000
March	5,216,000	5,636,000	5,636,000
April	4,768,000	5,143,000	5,143,000
May	4,833,000	5,204,000	5,204,000
June	5,215,000	5,626,000	5,626,000
July	5,643,000	6,064,000	6,064,000
August	5,552,000	5,966,000	5,966,000
September	4,941,000	5,307,000	5,307,000
October	4,896,000	5,262,000	5,262,000
November	4,952,000	5,338,000	5,338,000
December	5,371 <u>,00</u> 0	5,795,000	5,795,000

^a Electric transmission owner shall provide or cause to be provided data for the Ohio portion of its service area in this column.

^b Electric transmission owner operating across Ohio boundries shall provide or cause to be provided data for the total service area in this column.

^c Electric transmission owner operating as a part of an integrated operating system shall provide for the total system in this column.

^d Actual data shall be indicated with an asterisk (*).

^e These data include load for Pennsylvania Power as well as the 3 Ohio companies

4901:5-5:04(B)(2) PUCO Form FE-T2:

Electric Transmission Owner's System Seasonal Peak Load Demand Forecast (Megawatts)^{4 *** 9}

FirstEnergy System

	n	Nativ	/e Load ^b	Interna	l Load ^c
	Year	Summer	Winter ^d	Summer	Winter ^d
-5	2005	13,100	10,473	13,578	10,951
-4	2006	13,326	10,717	13,804	11,195
-3	2007	13,058	10,184	13, 536	10,662
-2	2008	12,494	9,985	12,972	10,463
-1	2009	12,052	10,429	12,310	10,687
0	2010	12,192	10,095	12,450	10,353
1	2011	12,449	10,339	12,528	10,418
2	2012	12,545	10,390	12,624	10,469
3	2013	12,628	10,574	12,707	10,653
4	2014	12,884	10,776	12,884	10,776
5	2015	12,913	10,771	12,913	10,771
6	2016	12,908	10,769	12,908	10,769
7	2017	12,908	10,763	12,908	10,763
8	2018	12,896	× 10,754	12,896	10,754
9	2019	12,936	10,821	12,936	10,821
10	2020	13,004	10,890	13,004	10,890

^a To be filled out by electric transmission owners in Ohio.

^b Excludes interruptible load.

0

° Native Load is Internal Load less Interruptible Capability.

^d Winter load reference is to peak loads which follow the summer peak load.

^e All loads exclude firm off-system power sales.

^f These data include load for Pennsylvania Power as well as the 3 Ohio companies.

4901:5-5:04(B)(3)(b)

Electric Transmission Owner's Monthly Internal Peak Load Forecast (Megawatts)^a

PUCO Form FE-T4:

FirstEnergy System			
	Ohio Portion ^a	Total Service Area ^b	Total System ^{ce}
Year 0-2010			
January*	9,279	10,031	10,031
February*	8,947	9,796	9,796
March	8,803	9,580	9,580
April	8,381	9,114	9,114
Мау	9,197	9,975	9,975
June	10,877	11,752	11,752
July	11,363	12,280	12,280
August	11,531	12,450	12,450
September	9,771	10,583	10,583
October	8,451	9,177	9,177
November	8,474	9,222	9,222
December	9,311	10,130	10,130
Year 1-2011			
January	9,513	10,353	10,353
February	9,292	10,105	10,105
March	8,901	9,671	9,671
April	8,451	9,178	9,178
Мау	9,263	10,034	10,034
June	10,944	11,813	11,813
July	11,437	12,346	12,346
August	11,615	12,528	12,528
September	9,867	10,675	10,675
October	8,558	9,281	9,281
November	8,600	9,347	9,347
December	9,413	10,231	10,231

^a Electric transmission owner shall provide or cause to be provided data for the Ohio portion of its service area in this column.

^b Electric transmission owner operating across Ohio boundries shall provide or cause to be provided data for the total service area in this column.

^c Electric transmission owner operating as a part of an integrated operating system shall provide for the total system in this column.

^d Actual data shall be indicated with an **asterisk (*)**.

^e These data include load for Pennsylvania Power as well as the 3 Ohio companies

PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: January 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	6,123,875		6,123,875
Energy Receipts from other sources	2,681,825		2,681,825
Total Energy Receipts	8,805,700		8,805,700

PUCO FORM FE-T5:

Monthiy Hourty Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: February 2009

	Firm Transmission Service	Non-Firm Transmission Service	Totai
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,633,060	-	4,633,060
Energy Receipts from other sources	2,416,555	-	2,416,555
Total Energy Receipts	7,049,615	=	7,049,615

4901:5-5-04(B)(3)(c)(i) PUCO FORM FE-T5:

FE-T5: Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: March

2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,169,062	-	4,169,082
Energy Receipts from other sources	2,810,459		2,810,459
Total Energy Receipts	6,979,521		6,979,521

4901:5-5-04(B)(3)(c)(i) PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: April

1. Energy Receipts from all sources by type: (MWh)

	Firm	Non-Firm	
	Transmission Service	Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	3,666,019	-	3,666,019
Energy Receipts from other sources	2,486,602	•	2,486,602
Total Energy Receipts	6,152,621		6,152,621

PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: May

1. Energy Receipts from all sources by type: (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,381,673	-	4,381,673
Energy Receipts from other sources	2,009,957		2,009,957
Total Energy Receipts	6,391,630		6,391,630

4901:5-5-04(B)(3)(c)(i)			
PUCO FORM FE-T5:	Monthly Hourly Transactions For the Most Recent Year	(Megawatt- Hour/Month)	
FirstEnergy System			
PART A: SOURCES OF ENERGY			:

Reporting Month: June

2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,333,996	-	4,333,996
Energy Receipts from other sources	2,569,041		2,569,041
Total Energy Receipts	6,903,037	=	6,903,037

PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: July

2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,835,665	•	4,835,665
Energy Receipts from other sources	2,675,882		2,675,882
Total Energy Receipts	7,511,547	•	7,511,547

PUCO FORM FE-T5:

Ó

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: August

1. Energy Receipts from all sources by type: (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	5,206,283	-	5,206,283
Energy Receipts from other sources	2,518,655		2,518,655
Total Energy Receipts	7,724,938	-	7,724,938

PUCO FORM FE-T5:

Monthly Hourty Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: September 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,201,870	-	4,201,870
Energy Receipts from other sources	2,441,148		2,441,148
Total Energy Receipts	6,643,018		6,643,018

PUCO FORM FE-T5:

•

Monthly Hourty Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: October 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,399,506	-	4,399,506
Energy Receipts from other sources	2,161,668		2,161,668
Total Energy Receipts	6,561,174	•	6,561,174

PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: November 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	4,298,261	•	4,298,261
Energy Receipts from other sources	2,249,987	•	2,249,987
Total Energy Receipts	6,548,248	-	6,548,248
4901:5-5-04(B)(3)(c)(i)

PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART A: SOURCES OF ENERGY

Reporting Month: December 2009

1. Energy Receipts from all sources by type: (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
Energy Receipts from Power Plants directly connected to the Electric Transmission Owner's transmission system	5,051,738	-	5,051,738
Energy Receipts from other sources	2,920,509		2,920,509
Total Energy Receipts	7,972,247		7,972,247

 4901:5-5-04(B)(3)(c)(ii)

 PUCO FORM FE-T5:

 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: January 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	5,367,145	•	5,367,145
Other Investor-Owned Electric Utilities	2,575,170	-	2,575,170
Coorperative-Owned Electric System	117,680	-	117,680
Municipal-Owned Electric Systems	454,625	· - ·	454,625
Federal and State Electric Agencies	292,758	-	292,758
Other end user service	-	-	•
For Non Distribution service (transmission to transmission service	-	-	•
Total Energy Delivery	8,807,378	•	8,807,378

Reporting Month: January 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,880,012	•	4,880,012
Other Investor-Owned Electric Utilities		-	-
Coorperative-Owned Electric System	117,680	-	117,680
Municipal-Owned Electric Systems	436,885	-	436,885
Federal and State Electric Agencies	292,758	-	292,758
Other end user service	-	•	
For Non Distribution service (transmission to transmission service	-		
Total Energy Delivery	5,727,335	-	5,727,335

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

0

PART B: DELIVERY OF ENERGY

Reporting Month: February 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,567,111		4,567,111
Other Investor-Owned Electric Utilities	1,747,081	•	1,747,081
Coorperative-Owned Electric System	92,402	-	92,402
Municipal-Owned Electric Systems	394,854	-	394,854
Federal and State Electric Agencies	249,858	-	249,858
Other end user service	-	•	-
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	7,051,306		7,051,306

Reporting Month: February 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,175,543	•	4,175,543
Other Investor-Owned Electric Utilities	-	-	-
Coorperative-Owned Electric System	92,402	-	92,402
Municipal-Owned Electric Systems	379,648	-	379,648
Federal and State Electric Agencies	249,858	•	249,858
Other end user service	-	•	•
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	4,897,451	-	4,897,451

 4901:5-5-04(B)(3)(c)(II)

 PUCO FORM FE-T5:
 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: March 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,559,446		4,559,446
Other Investor-Owned Electric Utilities	1,676,332	-	1,676,332
Coorperative-Owned Electric System	87,803		87,803
Municipal-Owned Electric Systems	402,265		402,265
Federal and State Electric Agencies	256,854	-	256,854
Other end user service	-	-	-
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	6,982,700	<u> </u>	6,982,700

Reporting Month: March 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,185,797	-	4,185,797
Other Investor-Owned Electric Utilities	-	-	
Coorperative-Owned Electric System	87,803	•	87,803
Municipal-Owned Electric Systems	387,030	•	387,030
Federal and State Electric Agencies	256,854		256,854
Other end user service	-	-	B
For Non Distribution service (transmission to transmission service	-		
Total Energy Delivery	4,917,484		4,917,484

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5: Monthly Hourly Transactions

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: April 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,119,321	-	4,119,321
Other Investor-Owned Electric Utilities	1,322,734	-	1,322,734
Coorperative-Owned Electric System	77,949	-	77,949
Municipal-Owned Electric Systems	376,438	-	376,438
Federal and State Electric Agencies	253,136	-	253,136
Other end user service	-	-	•
For Non Distribution service (transmission to			
transmission service	-		•
Total Energy Delivery	6,149,578		6,149,578

Reporting Month: April 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			· · · · · · · · · · · · · · · · · · ·
Affiliated Electric Utility Companies	3,791,496		3,791,496
Other Investor-Owned Electric Utilities		-	
Coorperative-Owned Electric System	77,949	•	77,949
Municipal-Owned Electric Systems	362,656	•	362,656
Federal and State Electric Agencies	253,136	-	253,136
Other end user service	-		
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	4,485,237	-	4,485,237

 4901:5-5-04(B)(3)(c)(ii)

 PUCO FORM FE-T5:
 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

•

PART B: DELIVERY OF ENERGY

Reporting Month: May 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,181,815	-	4,181,815
Other Investor-Owned Electric Utilities	1,623,945		1,623,945
Coorperative-Owned Electric System	73,275	•	73,275
Municipal-Owned Electric Systems	377,832		377,832
Federal and State Electric Agencles	131,300	-	
Other end user service		-	•
For Non Distribution service (transmission to transmission service			•
Total Energy Delivery	6,388,167	-	6,388,167

Reporting Month: May 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	3,855,233		3,855,233
Other Investor-Owned Electric Utilities		•	-
Coorperative-Owned Electric System	73,275	-	73,275
Municipal-Owned Electric Systems	364,253	-	364,253
Federal and State Electric Agencies	131,300	-	131,300
Other end user service	-		
For Non Distribution service (transmission to transmission service			······································
Total Energy Delivery	4,424,061		4,424,061

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

•

۲

D

PART B: DELIVERY OF ENERGY

Reporting Month: June 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,520,566	-	4,520,566
Other Investor-Owned Electric Utilities	1,780,202	-	1,780,202
Coorperative-Owned Electric System	78,190	-	78,190
Municipal-Owned Electric Systems	401,523	-	401,523
Federal and State Electric Agencies	120,770		120,770
Other end user service	-	-	•
For Non Distribution service (transmission to transmission service	-		•
Total Energy Delivery	6,901,251		6,901,251

Reporting Month: June 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:		· .	
Affiliated Electric Utility Companies	4,171,900	-	4,171,900
Other Investor-Owned Electric Utilities	-	-	-
Coorperative-Owned Electric System	78,190	-	78,190
Municipal-Owned Electric Systems	387,205		387,205
Federal and State Electric Agencles	120,770	-	120,770
Other end user service	-		
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	4,758,065	•	4,758,065

 4901:5-5-04(B)(3)(c)(ii)

 PUCO FORM FE-T5:
 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

•

PART B: DELIVERY OF ENERGY

Reporting Month: July 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,671,333	=,	4,671,333
Other Investor-Owned Electric Utilities	2,203,013	-	2,203,013
Coorperative-Owned Electric System	80,600	+	80,600
Municipal-Owned Electric Systems	425,878	-	425,878
Federal and State Electric Agencies	128,523	-	128,523
Other end user service	-	-	-
For Non Distribution service (transmission to			. <u> </u>
	-	-	•
Total Energy Delivery	7,509,347	•	7,509,347

Reporting Month: July 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,304,003	-	4,304,003
Other Investor-Owned Electric Utilities	-	-	-
Coorperative-Owned Electric System	80,600	-	80,600
Municipal-Owned Electric Systems	410,891	-	410,891
Federal and State Electric Agencies	128,523	-	128,523
Other end user service	-	•	
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	4,924,017	-	4,924,017

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5: Monthly Houriy Transactions (Meg

Monthly Houriy Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: August 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Totai
For Distribution Service:			
Affiliated Electric Utility Companies	5,122,032	-	5,122,032
Other Investor-Owned Electric Utilities	1,911,328		1,911,328
Coorperative-Owned Electric System	86,993		86,993
Municipal-Owned Electric Systems	460,936	-	460,936
Federal and State Electric Agencies	140,606		140,606
Other end user service	-		
For Non Distribution service (transmission to			
transmission service	•	<u> </u>	•
Total Energy Delivery	7,721,895		7,721,895

Reporting Month: August 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,739,549		4,739,549
Other Investor-Owned Electric Utilities	-	•	-
Coorperative-Owned Electric System	86,993	-	86,993
Municipal-Owned Electric Systems	444,049	-	444,049
Federal and State Electric Agencies	140,606	-	140,606
Other end user service	•	-	•
For Non Distribution service (transmission to transmission service	-		
Total Energy Delivery	5,411,197		5,411,197

 4901:5-5-04(B)(3)(c)(ii)

 PUCO FORM FE-T5:
 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: September 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Servic e	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,459,957		4,459,957
Other Investor-Owned Electric Utilities	1,616,985	•	1,616,985
Coorperative-Owned Electric System	71,725		71,725
Municipal-Owned Electric Systems	393,955	-	393,955
Federal and State Electric Agencies	98,438	-	98,438
Other end user service		-	•
For Non Distribution service (transmission to			
			-
Total Energy Delivery	6,641,060		6,6 41,060

Reporting Month: September 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,111,593		4,111,593
Other Investor-Owned Electric Utilities	-		•
Coorperative-Owned Electric System	71,725	-	71,725
Municipal-Owned Electric Systems	379,711	•	379,711
Federal and State Electric Agencies	98,438		98,438
Other end user service	-	•	-
For Non Distribution service (transmission to transmission service			
Total Energy Delivery	4,661,467		4,661,467

 4901:5-5-04(B)(3)(c)(ii)

 PUCO FORM FE-T5:
 Monthly Hourly Transactions (Megawatt- Hour/Month)

 For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: October 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,480,727	-	4,480,727
Other Investor-Owned Electric Utilities	1,486,296	-	1,486,296
Coorperative-Owned Electric System	79,099	-	79,099
Municipal-Owned Electric Systems	384,426	-	384,426
Federal and State Electric Agencies	127,986	-	127,986
Other end user service	•	-	•
For Non Distribution service (transmission to transmission service		-	
Total Energy Delivery	6,558,534		6,558,534

Reporting Month: October 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,111,192	-	4,111,192
Other Investor-Owned Electric Utilities	-	-	
Coorperative-Owned Electric System	79,099	-	79,099
Municipal-Owned Electric Systems	370,032	-	370,032
Federal and State Electric Agencies	127,986	-	127,986
Other end user service	-		•
For Non Distribution service (transmission to transmission service	-		•
Total Energy Delivery	4,688,309		4,688,309

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5:

Monthly Houriy Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART B: DELIVERY OF ENERGY

Reporting Month: November 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,414,430	-	4,414,430
Other Investor-Owned Electric Utilities	1,523,281	-	1,523,281
Coorperative-Owned Electric System	83,841	-	83,841
Municipal-Owned Electric Systems	376,753	-	376,753
Federal and State Electric Agencies	142,311	-	142,311
Other end user service	-	-	-
For Non Distribution service (transmission to			
transmission service	-	-	-
Total Energy Delivery	6,540,616		6,540,616

Reporting Month: November 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,028,029	•	4,028,029
Other Investor-Owned Electric Utilities		•	
Coorperative-Owned Electric System	83,841	•	83,841
Municipal-Owned Electric Systems	362,633	-	362,633
Federal and State Electric Agencies	142,311	•	142,311
Other end user service	•	•	+
For Non Distribution service (transmission to transmission service	-		•
Total Energy Delivery	4,616,814		4,616,814

4901:5-5-04(B)(3)(c)(ii) PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

•

PART B: DELIVERY OF ENERGY

Reporting Month: December 2009

1. Energy Deliveries to all points connected to the Electric Transmission Owner's System (MWh)

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	5,199,299	-	5,199,299
Other Investor-Owned Electric Utilities	2,058,607	-	2,058,607
Coorperative-Owned Electric System	106,849	-	106,849
Municipal-Owned Electric Systems	437,177		437,177
Federal and State Electric Agencies	168,177	•	168,177
Other end user service	-	-	•
For Non Distribution service (transmission to transmission service		-	······································
Total Energy Delivery	7,970,109	·	7,970,109

Reporting Month: December 2009

	Firm Transmission Service	Non-Firm Transmission Service	Total
For Distribution Service:			
Affiliated Electric Utility Companies	4,737,118		4,737,118
Other Investor-Owned Electric Utilities	-	-	-
Coorperative-Owned Electric System	106,849	-	106,849
Municipal-Owned Electric Systems	420,132	-	420,132
Federal and State Electric Agencies	168,177	•	168,177
Other end user service	-	-	
For Non Distribution service (transmission to transmission service		-	
Total Energy Delivery	5,432,276	-	5,432,276

4901:5-5-04(B)(3)(c)(iii) PUCO FORM FE-T5:

Monthly Hourly Transactions (Megawatt- Hour/Month) For the Most Recent Year

FirstEnergy System

PART C: LOSSES AND UNACCOUNTED FOR (MWh)

		Firm Transmission Service	Non-Firm Transmission Service	Total
Sources minus De	elivery (a)			
January	2009	(1,678)	-	(1,678
February	2009	(1,691)	-	(1,691
March	2009	(3,179)	-	(3,179
April	2009	3,043	-	3,043
May	2009	3,463	-	3,463
June	2009	1,786	-	1,786
July	2009	2,200	-	2,200
August	2009	3,043	•	3,043
September	2009	1,958	-	1,958
October	2009	2,640	•	2,640
November	2009	7,632		7,632
December	2009	2,138	•	2,138

(a) FE2-T5: Part A minus Part B (1)

4901:5-5-04(B)(4) PUCO Form FE-:T6	Conditions at Time (Megawatts)	of Monthly Peal	¢		
Date Mo/Day/Yr	Time Hr/Min	Peak MWs	Scheduled Transmission Outages (Y/N)	Unscheduled Transmission Outages (Y/N)	Emergency Operating Procedures
01/15/09	7:00:00 PM	10,463	N	Y	None
02/05/09	8:00:00 AM	10,215	Ň	N	None
03/02/09	8:00:00 PM	9,882	Ŷ	Ň	None
04/07/09	10:00:00 AM	8,627	N	Ν	None
05/28/09	1:00:00 PM	8,858	N	Ý	None
06/25/09	2:00:00 PM	11,887	N	Y	None
07/28/09	4:00:00 PM	10,327	N	N	None
08/10/09	2:00:00 PM	12,310	N	Y	None
09/23/09	2:00:00 PM	9,179	Y	N	None
10/15/09	7:00:00 PM	8,285	N	N	None
11/30/09	7:00:00 PM	8,979	N	N	None
12/10/09	7:00:00 PM	10,687	N	Y	None

ē

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7:

Characteristics Of Transmission OWney'S Existing Transmission Lines

Are ATSI-Ohio Edison Cor

	ATSI-Ohio Edison Comp.	any Arae												
	Transmission Lifre Name and Number (a)	Point of Origin and Terminus	Bummer Cap	ebility (MVA)	Winter Capel	villty (MVA)	Operating Volnage (kV)	Design Voltage (IKV)	P HIM I	-Wey	Type of Supporting Structure	Number of Cir	rculta	Substitiens On the Line
	Liet each Transmittekon Line of 1.26 NY or more.	7 Indexete location of line's beginning and termus.	Wormal Reting	Emergency Reding	Normal Rating	Envergency			Langth (Millee)	Width (Feed)	Steel Towara, Wood Poles, or Underground, Ett., and namber of mile of the time of each structure	Design		Substation Neme
, i	Avon- Beaver#1	Pointor Interconnection with CEI (C) Beaver (T)	178	030	1118	152	345	945	8.74	150	Steel Tower	-	-	
2	Baav ar - Ceriisie	Beaver (0) Carlisie (T)	977	1030	1116	1153	345	345	17.80	150	Steel Tower & 1 Steel Fole	-	-	
e	Beaver Valley- Sammis	Beaver Valley (DL) (O) Sammis (T)	1505	78/1	1700	1782	345	345	0.21 0.17	130 150	Wood 'H' Frame Steel Tower	-	-	
4	Canton Central- Hanna	Canton Central (OP) ((Hanna (T)	1266	1553	1563	1553	346	345	70.0	150	Sheel Tower	-	1	
ۍ ا	Hanna- Highland	Hannta (O) Highland (T)	1605	1563	1563	1553	345	345	23.76 0.70	130 150	Wood "H" frame Steel Tower	-	T	·
¢	Hanna- Juniper	Hanna (0) Point of Interconnection with CE((7)	1663	1553	1653	1653	345	345	0.87	150	Steel Towar	-	-	
•	Juniper- Star	Point of Interconnection with CER(C) Star (T)	1877	1377	1377	1877	345	345	18.16	150	Steel Tower	-	-	
భ	South Canton- Star	South Centon (OP) (O Star (T)	1000	13 8 2	1272	1381 2381	Sec.	345	33.42	150	Steel Tower	-	-	
e	Samris- Highland	Semmis (0) Highland (1)	828	676	878	6 79	346	945	49.52	150	Steel Tower		-	
ġ	Saramis- South Canton	Sammis (O) South Canton (OP) (T)	1406	1433	1433	1433	345	345	46.69	150	Steel Tower		-	

FirstEnergy Companies

4901;65-04(CK1)(a) PUCC FORM FE3-17: Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Ohio Edison Company Area

Transmission Line Muma an Number (e)	rd Roint of Orighmend Terminus	Summer Cap	ability (MVA)	Winter Capeb	Bry (MVA)	Operating Vottage (kV)	Denign Voltage (kV)	Alghe-of	Velu-	Type of Supporting Structure	Number of Cl		Substations Chittle Lino	
Liet each Transmission Line 126 kV or more.	i of Indicate location of the's beginning and termus.	Normal Retting	Emergency Rating	Normal Rating	Enlagency Rating			Langth (Milan) -	Width (Food)	Stead Towars, Hood Poles, or Underground: Ell: and wimber of alle of the time of each situatine	Design) भिन्न भिन्न भिन्न भिन्न	Substation Name	. –
11, Semmis- Ster	i Semmis (O) Ster (T)	1434	1553	1553	1553	345	345	1 38'99 1.87	150 130	Steel Tower Wood 'H' Frame	-	-		_
12. Sammis- Wylle Ridge	Sammie (O) Wylie Ridge (MP) (T)	1211	1483	1673	1718	345	345	4,39	150	Steel Tower	+	-		
30. Chamberlin- Handing	Chamberlin Point of interconnection with CEI (1)	1408	14 08	1408	1406	345	345	7.40	150 120	Steel Towar Steel Pola	-	-		
31. Beaver Valley- Hanna	Beaver Valley (DL) (O) Hanna (T)	1184	1184	1184	1184	345	345	2.10 60,60	130	Wood 'H' Frame Steel Tower & 1-Steel Pole	-	-		
32. Mansilald- Highland	Mansfield (O) Highland (T)	1380	1553	1553	1558	345	345	40.77	9 <u>5</u>	Stael Tower & 1-Steel Pole	-	-		
33. Hi ghte nd- Shenango	Highland (C) Shenango (T)	1603	1650	1653	5 25 1	345	545	19.32	22 120 150	t¥icod Pole Eteel Pole & Steel Tower	-	-	·	
36. Hyatt- Tengy	Hyatt (OP) (O) Tangy (T)	1000	1437	1272	1600	346	348	3.10	150	Steel Towar	**	-		
37. Merysville- Tangy	Marysvilla (OP) (C) Tangy (T)	88	1324	1174	1484	346	346	3.10	160	Gtael Towar	۲.	-		
38. Chamberlin- Maneliałd	Chemberlin (O) Manstheid (T)	1380	1646	1687	1792	345	345	83	150 120	Steel Tower Steel Pole & Wood 14" Frame	1	-		-
40. Beaver- Dav is-Basse	Beaver (O) OE Boundary to TE (T)	1434	1741	1746	1986	345	345	44,23	150 120	Stool Towar & Steel Pole	-	-		

,

4901:5-5-04(CX1)(a) PUCO FORM FE3-T7: Characteriatics Of Transmission Owner'S Existing Transmission Lines

ATS-Ohio Edison Company Area

ATSHONIC Edison Compu	any Area													
Transmission Live Name and Number (a)	Point of Origin and Terminue	Sterriner Cap	Ambility (MVA)	Winter Capet	(INVA)	Operating Voltage (hV)	Doston Votrage (kV)	Right-of	L Way	Type of Supporting Structure	Number of Circ	culta	Substations On the Line	_
List each Transmission Line of 125 kV or more.	Indicate location of line a boginthing and terlimue.	Normal Rating	Emargency	Mormel Rating	Energency Reting			(anelliki) ritgrau	Width (Feet)	Steel Towers, Wood Palma, ar Underground. Ek. and number of mile of the line of each structure	Design	Installed	Substation Name	
43. Avon- Beever #2	Point of Interconnection with CEI (0) Beaver (1) #2	977	1030	116	1153	36	345	10:11	150	Steel Tower Steel Tower Steel Pole	-	-		-
47 Carlis te- North Medina	Carliele (O) North Medina(T)	1245	1462	1462	1462	345	345	16.64	150	Steel Tower				
48 North Medina- Star	North Medina (D) Star (T)	1505	1841	1700	2161	945	345	20.56	150	Steel Tower	-	-		
200. West Alaon- Aethe	West Akron (O) Aetna (T)	86	9 2	86	98	138	138	8.45	110	Sibel Tower	-	-		
201. Evergreen- Highland #3	Evergreen (C) Highland (T) #3	167	182	38 1	82	8	38	4,43 0.76 1.88	<u>8</u> 5 8	Wood *+* Frame Steel tower Sange Wood	-	-	cective Metalls, uskon	
202. Bluebeil- American Steel	Bitebell (O) American Steel	4	8	8	ŧ	138	138	0.88	80	Siingle Wood Pole	-	-		
203. Barberton- Babcox & Wilcox	Barberton (O) Beboox end Wilcox (T)	57	57	67	25	1 38	138	0.28	100 1	Wood "H" Frame Steel Tower	-	-		
204. Barbenton- Cloverdale	Barbertori (0) Clovendale (1)	166	306	R	230	138	138	23.56 0.19	110 60	Steel Tower Stoel Pole	-	-		
205. Barberbon- Star North	Berberton (O) Star (T) North	175	208	210	210	8	136	3.64	100	Steel Tower Wood *H' Frame	-	-		
205. Barberton- Star South	Barberton (0) Star (1) South	207	210	210	210	138	138	2.55 1.46 1.74	00 18 11	Wood 'H' Frame Steel Pole Steel Tower	-	-		

89

1

:

,

4801:5-6-04(CK1)(a) PUCO FORM FE3-T7: Characteristics Of Transmission Owner'S Extering Transmission Lines

ATSi-Ohlo Edison Company Area

Transmission Une Mame and Number (a)	Point of Crighs and Terminue	Gummer Cape	(AVA) VIII V	Winter Copeti	(WAY) AND	Operating Voltage (kV)	Design Voltage (kV)	Right-of	-Winy	Type of Bupporting Structure	Number of C	ireuita	Swostatione On the Line
List dach Transmission Liteo o 125 KV or more.	 Indicate location of line's beginning and belimus. 	Normal Rating	Energency Rating	Normal Rething	Estar gency Rating			Langth (Miles)	Width (Feal)	Staat Torreats, Wood Polse, or Underground, Etc. and nember of mile of the line of soch structure		Design of the second se	Subgrafion Narre
207. Barberton- West Akron	Barberton (O) West Aleron (T)	52	281	382	286	18	138	9.72	110	Steel Tower	-]-	
208. E. Springlield- London	East Springfield (O) London (T)	200	216	216	215	861	138	18.37	110	Stael Tower	-	-	ત્વતે Park
209. Beaver- Brookside	Besvar (O) Brooksida (T)	105	135	147	<u>8</u>	<u>8</u>	138	38.73 0.12	60 60	Starel Towar Single Wood Pole	-	-	nober
210. Beaver- Ford	Beaver (O) Ford (T)	300	241	226	286	138	136	680	110	Steel Tower	-	-	
211. Beaver- Johanson	Beaver (U) Johnson (T)	282	581	580	305	8 <u>0</u>	138	13.10	ğ ğ	Stared Tower Wood "H" Frame	-	-	
212. Beaver- MASA	Beaver (D) NASA (T)	160	8	180		<u>85</u>	138	28.27 0.18	6E 88	Strad Tower Single Wood Pole	-	-	
213. Bhuebeilt- Canton Central	Bluebell (O) Canton Central (OP) (T)	۶. ۲	582	88	9 62	138	138	17,88	011	Steel Tower	-	F	
214. Bluebeil- Highland	Bluebell (0) Highland (1)	102	<u>8</u>	148	1 63	8 5	138	23.68	011	Steel Tower		-	Joggenerow, Keputhike Michalls
215. Boardman- Riverb a nd	Boerdman (O) Riverbend (T)	S N	552	83	5	138	138	10.52 0.13	<u>8</u>	Steel Tower & Wood Pole		*	VAALITIC.
216. Boardmart- Stenango	Boardman (O) Shanango (PP) (T)	8	187	182	8	1316	138	11.68 4,43 1.78	5 10 10 10 10 10 10 10 10 10 10 10 10 10	Stael Tower Wood "FF Frethe Geol Pole	**	-	JTY Steel

<u> 6</u>

4901:5-5-04(C)(1)(s) PUCO FORM FE3-17:

Characteristics Of Transmission Owner'S Existing Transmission Lines

Area ATSI-Ohio Edison Co

AI SI-UNIO ECIRON COMPR	no pres												
Transmission Line Nene and Number (a)	Point of Origin and Terminus	Service Cap	ability (MVA)	Winter Coped	(erva) Aue	Operating Voltage (KV)	Design Voltege (kV)	Right-of	.Way	Type of Supporting Structure	Number of Cl	r cults	Substations On the Line
Link ach Transvéasion Line of 125 kV or more.	Indicate location of line's bugbering sed terlimus.	Nermal Parting	Errior gamay Rating	Normal Rating	Emergency Reting			Langth (Alles)	Width (Foet)	Steel Towers, Wood Poles, or Underground: Elex. and number of mile of the line of each structure	ngiaed		substation Name
2)7. Brocksic o- Cloventala	Brookside (O) Ctovendale (T)	12	621	181	186	138	138	42.09	110	Steel Tower	-]-	ŝ
218. Cloverdele- East Wooder	Cloverdale {0} East Wooster (0P) [7]	161	183	181	523	138	138	81.02	001	Steel Tower	-	-	
219. Brookside- Leaside	Brookside (O) Leaside (T)	151	179	181	205	138	138	24 E4	110	Sleal Tower	-	-	K iron
220. Brookside- Howard	Brookside (C) Howard (CP) (T)	혌	621	177	206	136	13.0	13.74	110	Sheel Tower	-	-	
221. Brookside- Longview East	Brodkaide (0) Longview (T) (East Une)	135	167	167	157	138	138	13,83	110	Steel Tower	-	-	
22. Brookside- Longview West	Brookside (O) Longview (T) (West Line)	135	157	157	157	138	138	13.84	110	Sheel Tower	_	-	allson
223. Burgen- Kriox	Burger (O) Knox (T)	121	157	157	167	138	138	68.67	8	Wood 'H' Frame & Steel Tower	-	-	adington 2.BC
224, Burger- Brockside	Burger (C) Brookskie (1)	81	103	111	115	138	138	107.64	011	Steel Tower	-	<u>-</u> `	
228. Burger- Ckryandata #1	Burger (O) Choverdela (T) (#1 Line)	121	148	145	8 1	138	821	2.17 2.45	5 5 0	Bleel Towar Wood "H" Frame			
226. Burger- Clovendate #2	Burger (O) Cloverdele (T) (#2 Line)	3 5	156	155	155	138	138	74. 35 0.23	01 10	Steal Tower Wood "H" Frame	-	-	
227, Burgen Clovendale #3	Burger (C) Cloverdals (T) (#3 Line)	165	155	155	155	138	138	74.34 0.24	110 100	Steel Tower Wood Tr Frame	-	-	

FirstEnergy Companies

6

;

4901:5-5-04(CM1)(a) PUCD FORM FE3-17: Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Ohio Ediaon Company Area

Transmissolon Ulae Name and Number (a)	Point of Crigin and Terminue	Summer Cept	de united	Witter Cepets	(WAN) AND	Operating Voltage (kV)	Denige Voltage (AV)	Right-of.	fear.	Type of Supporting Structure	NUMBER OF C	Incuits	Substrations Can the Line
List sach Transmission Line o 125 kV or more.	/ Indiada bostion of line's beginning and tertmus.	Normal Rething	Emergency Rating	Normal Rating	Emergency Rething			(Isalifi) (Mignes)	Width (Faat)	Steel Towers, Wood Poles, or Undergrownd, Efe. and number of nile of the line of each structure	Gestign	hateled	Substructure
228. Burger- Longview	Lengview (T)	133	133	8	133		1 E	16.41 102.03	ê <u>₹</u>	Wood "H" Frama Steel Tower	-	-	cactsburg (106)
228. Canton Central- Cioverdale	Centon Central (OP) ((Cloverdale (T)	181	261	181	012	138	8	12,19	011	Statel Tower	~	-	
230. Johnson- Lossin	Johnson (O) Lonsin BW <i>ST</i> (CEI) (T)	181	183	181	228	BE I	138	3.48	110	Steel Tower	-	-	
231. Clovardale- Star	Claverdate (O) Star (T)	166	206	52	230	138	138	23.57	110	Steel Tower	-	-	
232. Cloverdal o. Torrey	Cloverdate (O) Torrey (OP) (T)	185	241	522	286	138	138	6.85	110	Sleel Tower	-	-	
233. Deiaware- Tangy	Delaware (CSOE) (O) Tangy (T)	520	262	36	262	138	138	0.97	<u>8</u>	Wood "H" Frame	-	-	
234. E. Akron- Ollichnist	East Akron (O) Gilci∎ist (T)	186	191	210	210	138	138	3,88	110	Steal Tower	-	-	
235. E. Akron- W. Ravenna	East Akron (O) West Ravenna (T)	178	226	322	228	138	138	7.85 3.75	80 <u>7</u>	Wood "H" Frame Steel Tower	-	-	
236. Clark E. Springfield	Clark (O) East Springfield (T)	200	241	528	288	138	138	2.22 6.93	<u>5</u> <u>7</u> 8	Wood "H" Frame Steel Tower Wood Pola	-	-	1. Josef
237. E. Springfield- Tangy	East Springfield (O) Tangy (T)	161	170	186	205	138	138	3.98 41.24	51 19	Steal Tower Wood "H" Frame	I	-	Hill Crook chepoint
238. Edgewater- Beaver	Edgewater (O) Beaver (T)	164	206	21B	230	138	138	0.19 12.15	8 <u>5</u>	Wood "H" Frame Steel Tower			
239. Edgewater- USS/Kobe	Edgewater (O) USS/Kobe Steel (T)	167	157	157	167	138	138	3.00	ŧ	Steel Tower	-	-	
240. Longylew- Empire Steel	Longview (O) Emprie Steel (T)	160	192	180	228	138	138	0.12 2.15	58	Steel Tower Wood "H" Frame	-	-	

FirstEnergy Companies

4901:5-5-04(C)(1)(a) PUCO FORM FE3-17: Churacteristics Of Transmission Owner'S Extering Transmission Lines

Area ATSI-Ohio Edise

At divident Europh Annipe													
Transmission Line Name and Number (a)	Point of Origin and Teaminus	Summer Cape	biliy (MYA)	Winter Capato	lity (MVA)	Operating Voitage (kV)	Dealgn Voltage (itV)	Right-ot-	Wey	Type of Bupporting Birmeture	Number of Cir	alla -	Bubstations (In the Line
List saich Trensenlission Lino of 128 kV or more,	Indicate location of line's - 1 beginning and testimus.	Normal Reding	Energency Ruting	Normel Parting	Emergency Rating			Langth (Millon)	Width (Famil)	Blead Toware, Wood Poles, or Undergramut, Ett. and mandar of mile of Bie line of each structure	Oeskin	laste for	Substation Name
241. Evergreen- ivantsoe	Evergreen (O) Ivanhoe (T)	500	241	526	246	138	136	2.79 6.53	110	Steel Tower Wood 'H' Frrame	_		topperactel Specually see, Britige
242. Evergieen- Highland #2	Evergreen (O) Highland (T) (#2 Line)	500	241	228	206	138	138	0.17 2.50	91 10	Wood "H" Frame Steel Tower	_	-	
243. Evergreen- Highland #1	Evergreen (0) Highland (T) (#1 Line)	200	241	92Z	286	9 51	138	2.68	110	Steel Tower	1	-	
244. Greentiold- Fond	Greenfield (O) Ford (T)	57	57	57	57	138	138	0.76 1.18	110	Steel Tower Wood 'H' Frame	1	-	
24.5. Getion- Roberts North	Galion (0) Roberts (1) (North Lina)	181	183	181	215	138	138	22.20	110	Steel Towe	-	T	
246. Gation- Roberts South	Gallon (D) Roberts (T) (South Line)	162	208	205	19	861	138	22.14 0.07	5 8	Stingle Wood Single Wood Pole	-	-	und Raid) Arrillicon
247, Carijsle- Shinnack	Carlisie (O) Shinnock (T)	218	248	248	548	136	138	13.04 0.13 7.90	00 110 09	Wood 'H' Frame Steel Tower Single Wood Pole	-	-	
248. General Motors- Highland	General Motors (C) Highland (T)	204	313	314	368	138	138	1.95 266	110 100	Steel Tower Wood "H" Frame	-	-	в
249. Gates- Johnson	Gates (0) Johnson (1)	<u>8</u>	206	210	210	138	138	0.10 5.05	100	Wood *H" Frame Steel Tower	-	-	Ĩ
250. General Motors- Newton falls	Genergi Motors (C) Newton Fails (T)	566	306	314	315	198	138	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110	Steel Tower Wood "H" Frame	-	-	
251. Gilehrigt- S. Akron	Gitchrist (0) South Akron (1)	145	161	182	182		138	18.27 0.61	5 19 19	Stael Tower Wood Pele	-	-	alemore layoca
292. Babb- E. Akron	Babb (O) East Akton (I)	130	223	223	ĸ	- 36	138	9.17	110	Single Wood Single Wood	•	-	confyriae verse a.ya Lonenneers

03

.

4801:5-5-04CX1(ka) PUCO FORM FE3-17: Cheracterietics Of Transmission Owner'S Existing Transmission Lines

ATSHOhio Edison Company Area

Bd Hoo Hospie Driving av	any Area												
Tratemiscion Line Name and Number (a)	Point of Origin and Terminus	Summer Cap	(AVA) VANda	Winter Capab	(AVA) YAN	Cparating Voltage (kV)	Design Vollage (kV)	Aught-of	YEW.	Type of Supporting Structure	Number of Ch		Substations On the Liee
Lini acch Tranamiasion Lina of 125 kV or more.	Indicate iccettor of line's beginning and terlinua.	Normal Rating	Emergenoy Roting	Normal Rating	Ernerguaroy Rading			Langth (Misse)	Width (Feet)	Stead Towers, Wood Poles, or Underground, Eke, and rumber of mute of the line of each atructure	Design	tratelled	Buthstation Name
253. Greenkeid- Lakeview	Greenfleid (C) Lakeview (T)	183	242	281	380	138	138	13.17 1.16	10	Steel Tower Wood "H" Frame	-	-	
254. Greenkiekt- NASA	Greenfield (O) NASA (T)	151	176	180	205	138	138	4.66	110	Stesi Tower	-	-	
255. Hanna- Newton Falls	Hanna (C) Newton Falls (T)	168	208	205	230	138	1 38	1.60 18.82	01 100	Steel Tower Wood "H" Frame	-	-	
256. Hanna- W. Ravenna #1	Harma (O) West Ravenna (T) (#1	232 Line)	281	262	383	138	138	4,83	011	Steel Tawer & Steel Podes	-	-	
257. Highland- Sait Springs	Highland (O) Sait Springs (I)	264	313	314	368	138	138	6.77	110	Sledi Tower	-	ī	
258. Ivanhoe- Packard	lvanhoe (O) Packard (T)	195	208	210	210	138	136	0.69 2.60	6 100	Steel Tower Wood 'H' Frame	-	-	
259. Johnson- USSKobe	Johnson (O) USS/Kobe Steel (T)	232	ŝ	362	315	136	138	3.30 1.60	100 110	Wood 'H' Frame Stael Towar	1	-	
260. Lakaview- Ottawa	Lakeview (0) Ottawa (1)	278	838	315	401	138	138	7.75	110	Sinel Towar	- -	-	
261. Linooln Park- Lowelivi lle	Lincoln Park (O) Lowettville (1)	166	155	155	155	138	138	8,62	110	Steel Tower	-	-	
262. Lincoln Park- Masury	Lincola Park (O) Masury (T)	127	165 .	3	166	13	138	10.34 0.28 1.45	110 60	Steel Tower Wood 1-1" Frame 1 Wood Pole	-	-	Burnol Ingr. Cast
253. Gallon- General Motors	Gallon (C) General Motors (T)	081	525	% 3	258	138	138	13.78 2.72	5 <u>6</u>	Steel Tower Wood "I" Frame & 2 Steel Poles	-	-	
264. Masury- Sait Springs	Masury (C) Saft Springs (T)	175	188	207	207	138	138	12.47	110	Steel Tower	-	-	
265. Masury- Crossland	Masury (O) Crossland (T)	176	572	226	258	138	136	0.60	110	Side Tower	-	-	

FirstEnergy Companies

94

ľ

4801:5-5-04(CM1)(a) PUCO FORM: FE3-T7: Characteriatios Of Trenamisation Owner'S Extening Transmission Lines

ATCLOBIA Edison Company Area

ATSI-Ohio Edison Camp	any Araa													
Trananieolon Line Name and Number (a)	Point of Crigin and Terminum	Summer Cer	(AVA)	Winter Cepet	(IFA (INVAR)	Operating Voltage (kV)	Deelgn Vortage [KV]	Right-of-	-Way	Type of Supporting Structure	Number of Circ	outte	Substations On the Line	<u> </u>
List each Transmission Line of 126 aV or ment.	T Indicate location of line's beginning and terimus.	Dugas Industry	Emergency Reting	Normal Rating	Emergency Rating			Langth (MBool)	width (Feed)	Steel Towar, Wood Poles, or Underground. Etc. and number of mile of the time of much utrusture	Dentigin		Substation Name	1
266. Masury- Shonango	Masury (D) Shenango (T)	127	165	182	204	138	138	6.83	110	Steel Towar				_
267, Crosskind- Capero	Crossiand (O) Caparo (T)	200	200	500	200	138	138	1.33	8	Wood 'H' Frame	-	-		
268. Nillea- Bluebeil	NRas (O) Bhuebell (T)	8	132	146	163	138	138	25.90 0.25	110	Steel Tower Wood "H" Frame	- ,	÷		
269. Niles- Evergreen	Niles (0) Evergreen (1)	151	179	181	206	8	138	7.03	110	Steel Towar	-	-		
270. Niles Central- Packard	Central (O) Packard (1)	157	192	180	210	136	138	8.8 99.93 94.03	5 <u>6</u> 8	Steel Tower Wood 'H' Frame Wood Pole	-	- -	arden, Eun 16 Cortanad 1 Tap	
271. Niles- Salt Springs	Nites (O) Sell Springs (T)	240	308	315	945	136	138	3,16	110	Sheel Tower	-	-		
272. Pleasant Valley- W. Akron East	Pleasant Valley (C) West Aknon (T) (East L	163 Jree)	198	215	215	138	136	65.6	110	Stael Tower	-	-		
273. Pleasant Valley- W. Akron West	Pleasant Valley (0) West Akron (T) (West	143 Line)	1 53	143	143	138	138	66.9	011	Steel Towar	-	-		
275. Crissinger- Pobaria	Crissinger (O) Roberts (T)	196	186	981	106	138	136	4.38	8	Single Wood Pole	1	- -	.P. Properties Inden Steel	
276. Semmle- Pidgeon	Sammia (O) Pidgeon (T)	216	248	248	248	136	136	20.12	110	Steel Tower	74	-	1 Manua	
277. Sammia- Boardman	Sammis (O) Boerdman (T)	181	206	216	247	136	138	85.73 1.44	110 100	Steel Tower Wood 'H' Frame Wood Pole	-	-		
278. Sammis- Loveiville	Sammis (O) Lowellivilia (T)	141	162	201	207	138	136	1.40 49,33	100 110	Wood 'H' Frame Steel Tower Wood Pole	-	- -	edus Eizona Try Utbrige	
279. Boardman- Navada	Bourdman (0) Nevada (1)	127	185	182	183	138	138	1.47 0.06	5 B	Stael Tower Wood Pota	-	-		

FirstEnergy Companies

95

i

4901:5-5-04(C)(1)(a) PUCD FORM FE3-T7:

Characteristics Of Transmission Owner's Existing Transmission Lines

nv Aree ATSI-Ohlo Edison Coi

Atsi-unio Edison Comp.	ant Area													
Trensmisation Litra Nama and Number (s)	Point of Origin and Terminue	Summer Ca	pebliky (NVA)	Winter Cape	bikty (MVA)	Operating Vottege (kV)	Design Vottage (kV)	Right-or	(-Way	Type of Bupporting Strecture	Number of Circuit	4	Substations On the Line	
List auth Transmussion Line of 126 kV or more.	Indicate location of line's beginning and partnus.	Normal Reling	Emergency Pating	Normal Reting	Emegency Rating			Langth (Milos)	Width (Fam)	Steel Towers, Wood Poles, or Undergrowns, Eis, and sumber of mile of the line of each shuckure	-1 Dawidu D		Substation Haines	
280. Kirby- Roberts	Kirby (O) Roberts (T)	160	192	180	83	138	138	14,48	8	Wood Pole	-	 -		
281. Firestone- S. Akron	Firestone (0) South Akron (1)	167	157	167	157	138	136	2.90	110	Stael Tower Single Wood Pole Single Mode	-	-		
282. Dal e- S. Akron	Dale (0) South Akron (1)	163	208	206	246	138	8	8.17	110	Steel Tower	-	й -	8	
263. Wedsworth- W. Akron #1	Star (C) Weet Akron (T) (#1 Lin	a) (76	206	228	231	138	138	2.09	09 11 0	Steel Pola Statel Tomar	-	2	e, Rosenoni	
284. Sammis- E. Akron	Sammis (O) East Akron (T)	184	168	207	207	138	138	68,82	110	Steel Towar	-	-		
285. Dal o- W. Canton	Date (0) W. Canton (OP) (1)	208	201	246	286	138	<u>8</u>	4.96	2	Wood Pole	-	-		
288. Kint y. Tangy	Klitby (O) Tangy (T)	584	586	286	286	138	138 138	21.84	Q	Wood Poile	-	-		
287. Brooksta ca. We llin gton	Brookside (O) Wellington (T)	98	8	8	88	138	138	4.22 20.06	8	Wood TH Frame Steel Tower	-	-		
288, Babh- W. Akron	Babbi (O) West Akron (T)	180	206	8	822	138	138	6.61	2	Steel Tower	-	-		
289. E. Akron- Hanna	Eest Akron (C) Hanna (T)	185	206	822	220	138	138	15.42	01	Steel Towers	-	-		
291. Clark- Greene	Clerk (O) Greene (DPL) (T)	8	6 42	281	2	8 5	138	1.14 18.32 6.93	01 00 00 00 00 00 00 00 00 00 00 00 00 0	Steel Tower Wood "H" Frame Wood Pole	-	-		
292. Critesinger- Tangy	Crissinger (O) Tangy (T)	160	192	180	ñ	138	138	3.30 21.41	5 6	Sheef Tawer Wood "H" Frame	-	. 8	the Science RBC (06)	

96

4901-5-5-04(C)(1)(a) PUCO FORM FE3-17: Characteristica Of Transmission Owner'S Existing Transmission Lines

	any Area												
Transmission Line Name and Number (a)	Point of Origin and Termines	Summer Cap	ability (MVA)	Winter Capet	(MVA) (M	Operating Voltage (KY)	Design Voltage (kV)	Right-of	War	Type of Supporting Structure	Number of G	freuts	Substations On the Line
List each Transmission Live of 125 kV er more.	f Indicate location of Basis beginning and tertimus.	Normal Rating	Ernergency Rading	Normal Rating	Emergancy Ruting			Langth (Mileal)	Weth (Fact)	Ethes Tawine, Wood Pales, ar Underground. Eth. and number of mile of the time of each structure	Devign		Substation Name
3. Chambarlin- Theiss	Chemberkin (O) Theiss (T)	500	241	228	286	138	 138	15,25	8	Wood 11' Frame	-	_	
0 Th re iss Valley	Theiss (O) Valley (C.F.) (T)	200	241	226	296	138	138	1 8	100	Wood "H' Frame			-
	Darrow (O) Hanna (T)	19 0	225	226	248	138	138	18.46	110 100	Steel Tower Wood 'H' Frame	-	-	
, Avery- Greenfield	Avery (O) Greenfield (T)	148	194	212	578	138	138	10.45	100	Wood 'H' Frame	-	-	áp:
, Bluebell- Pidgeon	Bluebelt (O) Pidgeon (T)	177	206	223	062	138	138	15.11	110	Steel Tower	-	-	
. Riverband- Sett Springs	Hiverbend (0) Selt Springs (T)	223	522	223	ŝ	138	138	4.80	61 60	Steel Tower Stael Polis	-	-	
. Chamberlin- Hudson East	Chamberlin (C) Hudson East (1)	190	225	226	248	188	138	8.25	Ē	Wood 'H' Frame	-	-	and and a second se
Babb- Valley	Babb (O) Valley (C.F.) (I)	800	ä	553	ŝ	138	136	1.96	100 110	Wood 'H' Frame Steel Tower	-	-	
. Masury- Mayaviile	Mesury (O) Meysville (T)	011	011	110	011	981	138	98.6	011 08	Steel Tower Wood Pole	-	-	
Sait Springs- Morth Star Sieel	Salt Springs (0) North Star Steel (1)	175	822	ឌ	5	138	138	8	110 80	Steal Tower Wood Pole	-	-	,
. tvanho s. Mahoningsid o	lvanhoe (0) Mahoningskie (1)	ŝ	208	223	330	138	138	60 ' F	8	Wood Pole	-	-	
. Highland- Mahoningside	Highland (O) Mahoningside (T)	500	241	28	288	887	138	4.87	5 8	Steel Tower & Woxd Pole	-	-	
. Beatry- London	Beatty Hd (CSOE) (0) London (1)	500	241	82	5 98	138	138	17.45 2.85	100	Wood "H" Frame Steel Tower		-	
, Niles Central- Niles	Central (0) Nites (7)	36	206	55	9	138	138	3.09 0.35	28 28	Steel Tower Wood Pole	4	1	JoDonald Steel

FirstEnergy Companies

97

÷

4901:6-5-04(C)(1)(s) PUCO FORM FE2-17: Characteristics Of Transmission Owner'S Extering Transmission Lines

ATSI-Ohio Edison Company Area

Transmission Line Name and Number (a)	Point of Origin and Terminue	Summer Cape	(MVA)	Winter Capab	Hithy (IMVA)	Operating Voltage (kV)	Dealgri Voltage (KV)	10-HIGH	l-Way	Type of Supporting Structure	Number of Circ	e george	Substations On the Line
List aach Trainemission Line of 128 kV or more.	I Indicate location of line's heginning and termus.	Normel Reling	Emergency Reting	Normal Ratifico	Emergency Rating			Largth (Miles)	Width (Food)	Sheel Torens, Wood Poles, or Underground: Bit., and number of mile of the fire of each effortime	Perigr	pegeteul	Substation Namo
306. General Motors- Longview	General Motors (O) Longviaw (F)	163	208		215	138	138	9.38 9	100	Wood "H" Frame Steel Tower	-	-	ains Ortario
308. Darrew- Hudson East	Darrow (O) Hudson East (T)	18	206	205	215	138	136	181	100	Wood "H" Frame	-	-	
316. Bluebal l Клох	Bluebell (O) Knox (T)	163	198	216	530	138	821	8,95	100	Wood "H" Frame	-	-	
319. Greenlieht- New Departure	Greentleid (0) New Departure (1)	500	241	226	9 9 2	136	138	0.02 0.26	110 80	Sleet Tower Single Wood Pole	-	-	
320. Avery- Shinrock	Avery (0) Shinnock (T)	99	194	R	248	136	138	747	100	Wood 'H' Frame	-	-	
322. Chamberlin- W. Akon	Chamberlin (O) West Akron (T)	200	241	922	586	138	138	17.87	60 110	Staad Pole Steel Tower	-	-	a Antonia
328. Hanna- W. Pevenne #2	Hanna (O) West Ravenns (T) (#2 L	232 Jine)	281	262	818 8	1 38	136	0.72 4.12	60 110	Stant Pole S ta el Tower	- `	-	
329. Firestone- Urban	Firestone (O) Urban (1)	222	523	553	223	136	138	2.85	51 B	Steel Tower & Steel Pole	-	-	
330, Star- Urban	Star (O) Urben (1)	183	229	88	262	138	138	19.38 2.27	5 8	Steel Tower Steel Pole	-	-	pec
341. Caritele- Lorain	Carliste (U) Lorain (CEI) (T)	236	182	2 8 2	286	138	138	12,81	88	Stati Poles Wood Poles	-	-	
343. Caritela- Gates	Carlisłe (C) Gatas (T)	186	208	240	210	138	136	0.08 7.92	5 8	Steel Tower Single Wood Pole	-	-	
344. Seville W. Medina	Saville (C) West Medine (T)	236	281	285	286	138	138	11.58	99	Wood Pole	-	-	yan, seattle
345 Seville. Stor	Sevilla (0) Blar (1)	232	381	262	586	138	138	15,34	8	Wood Pole			
347 North Medine West Akron	North Medina (0) West Akren (T)	505	5 83	5 9 5	88	138	139	25.92 16	8	wood Pole	-	-	kangos. Vuarrist

FirstEnergy Companies

86

:

•

. .

,

4001:5-6-04(C)(1)(a) PUCO FORM FE3-17: Characteristics Of Transmission Owner's Extering Transmission Lines

ATSHOhio Edison Company Area

Transmission Line Mame and Number (a)	Paint of Origin and Terminus	Summer Cap	(YAM) Alinge	Winter Capat	(urva) triib	Ciperating Voltage (HV)	Dealign Voltage (kV)	o-Highi	-Wey	Type of Supporting Structure	Number of C	reutra	Substallona On the Lina
Lipteech Transcission Line of 125 kV or more.	I traitation of line a beginning and tertimus.	Normal Rating	Emergency Rating	Micronal Reting	Emergener			् (श्रह्म) मुद्रिया	Wdh (Faot)	Steal Towers, Wood Praims, ar Underground, Ekt., and Intributed finite of the line of each structure	Design	histalliad	Substation Nama
348 North Medina W. Medina	North Madina (O) West Madina (T)	232	<u>8</u>	567	333 8	138	1 38	2.50	09	Wood Pole	-	-	
350, Galion-	Galion (O)	161	193	181	229	138	138	8.50	110	Steel Tower	-	-	
Lessicie 361. Galion- Carchigton	Leeside (1) Gallon (0) Cardington (1)	148	160	160	160	82	8	17.12	8	Wood Pole	-	-	
356. Carrisle- Johnson	Carliste (O) Johnson (T)	225	281	292 292	315	138	138	14.17	68	Steel Poles Wood Poles	-	-	
360. Clark- Urbane	Clark (O) Urbana (DPL) (T)	276	806	312	345	138	138	8.60	8	Wood Pole	-	-	
365. Blue Jacket Kirby	Blue Jacket (DPL) (C) Kirby (T)	276	808	812	345	138	138	6.00	8	Wood Pole	-	-	
366. Ford- New Departure	Ford (O) New Departure (T)	180	330	218	275	138	136	17.12	8	Wood Pole	-	-	
369 Hanna Shakersville	Hanna (O) Shalensville (T)	592	300	308	353	138	138	14.0	1 8 5	Wood Pote	-	-	
370 Beaver Greentield	Beaver (O) Greenfield (T)	278	338	315	10+	136	136	8	8	Steel Towar	-	-	

FirstEnergy Companies

4901:6-5-04(C)(1)(a) PUCO FORM FE3-T7:

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Tolado Edison Company Area

fetions Dn the Line	erre Narre								
Prouts		-	-	Ŧ	-		Ň	ณ	24
Number of C		~	CN	~	~	2	EN .	CJ	21
Type of Supporting Structure	Real Towars, Wood Roles, or Ibidergrouted. Etc. sed reamber of mile of the fine of each sourcture	Steel Tower	Steel Tower	Steel Tower	Steel Towar	Steel Towar	Steel Tower	Steel Towsr	Staal Tower
1.44	Whith (Peet)	ŝ	ŝ	ŝ	<u>8</u>	5	3	160	150
Right o	ti fen Miller Miller	24:1	0.1	21.0	21.0	0.71	4.6	19.3	8.4
Deetyn Voltage (stv)		8	8 2 2	345	345	345	345	345	345
Operatieng Moltage (kV)		345	8 5	345	345	345	345	346	345
bility (MVA)	Ervergærzy Reting	1792	1233	1925	2161	1988	1793	99 98	1793
Winter Cape	Normal Rading	1691 1	1233	1735	1748	1748	1691	9 5	1427
bitty (IAVA)	Errangency	1645	1233	1683	1878	1741	1597	958 95	1544
Burnmer Cap	Mormal Rating	1380	1233	1410	1542	1434	1438	53	1202
Point of Origin and Termines	Melicala location of line's baginning and totimua.	Lennoyne Transmission Gubetation - Michway Transmission Bubstation	Allen Junction Transmission Substation - Lulu (te T.E. Bourdary - MECS)	Davis-Besse Generating Station - Lemoyne Transmission Substation	Davis-Besse Generzing Station - Bay Shore Generaling Station	Davis-Bease Generating Station - Beaver (to T.E. Boundary - O.E.)	Lemoyne Transmission Substation - Fostoria (to T.E. Boundary - O.P.)	Lemoyne Transmission Substation - Monroe (to T.E. Boundary - MECS)	Bay Shore Generating Station - Morroe (to T.E. Boundary - MECS)
Transmission Line Asme and Number (s)	Liek auch Transminution Lino of 125 KV of mole.	1. Lemoyne- Michrey	2, Allen Junction- Luku	3. Davis-Bessa- Lemoyne	4. Bay Shore- Davis-Desse	G. Blauer- Davis-Besse	6. Fostoria Centrel- Lemoyre	7. Lemoyne- Majaelic	8. Bay Shore- Monroe

FirstEnergy Companies

100

,

: .

4901:5-5-04(C)(1)(a) PUCO FORM FE3-17:

Characteristics Of Trensmission Owner'S Existing Transmission Lines

ATSHToledo Edison Company Ar	88.												
Transmission Line Nema and Number (a	Point of Crigin and Tarminus	Bummer Capa	(MYAR) ville	Winter Capet	(MVA)	Operating Voltage (av)	Design Vollage (kv)	Right-of	Num.	Type of Supporting Structure	Number of	1 Circuits	Bubstrations On the Line
List auch Transmitzion Una of 126 kV o nooio,	 Indicate bookion of live's bightering and technics. 	Normal Rating	Erningerzy	Normal Fating	Energency Rating			Ê Î	Midth (Freet)	Steel Towers, Wood Poles, or Inderground. Etc. and wanther of mile of the Ere of sech structure	Design		Bubstation Name
9. Bay Shore- Fostoria Central	Bay Shore Generating Station - Fostoria (b T.E. Boundary - 0.P.)	1438	1597	1681	1793	345	345	20.5	ŝ	Steel Tower	N	N	
10. North Star Steel Supply	Point on Midway-Allen Junction Line-North Star Stael	52/	845	88	696	345	345	6.7	120	Steel Pole	-	-	
11. Allen Jurction- Mitdway	Midwey Transmission Substation - Allan Junction Transmission Substation	1370	1646	1697	1792	345	345	23.5	150	Sheel Tower	N	-	North Star Steel
201. Bay Shore- Jackanan	Bay Shore Generating Station - Jackman Transmission Substation	622	272	212	311	138	138	11.8	110	Steel Towar	N	N	Fort Industry, Sterling Pipe General Mills
202 Bay Shore- Ironville	Bey Shore Generating Station - konville Transmission Substation	215	10	262	304	138	8 2	3.4	110	Sheel Tourer	N	N	
200. Bay Shore- Maclean-Lamoyna No 2	Bey Shore Generating Statbon - Maskeun and Lamoyne Transmission Substation Stammal line	541	500	268	582	138	80	12.1	110	Steel Tower	2	2	Oregon
247 Bey Shore- Maclour-Lamoyna No 1	Bay Shore Generating Stabon - Maclean and Lemoyne Transmission Substation 3-terminal lina	241	286	5 86 5	286	Ŗ	88	121	91	Sloel Fower	N	2	Frey
204. Bey Shore- Ottawe-Toussaint	Bay Shore Generating Stadon - Ottawa Transmission Substation	ž	782	276		8	ŝ	ส์	01 01	Seal Toxa	N	C1	Decard, Toussaint
205. Jackman- Alen Jurreton	Jackman Transmission Substation - Alon Junetion Transmission Sylcatation	157	8	821	522	138 138 138	82 BC 55	85 2.8 0.5	<u>5</u> 88	Steel Tower Steel Pole Wood Pole	8 N N N	- 9 -	•

FirstEnergy Companies

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7:

Characteriatics Of Transmission Owner'S Existing Transmission Lines

ATSI-Toledo Edison Company Area

]_					aliq	J.		
Substations On the Lin	Bubatation Name	Westgate, Talmadar Syivania	Jeep II, Dixle			-	Angola, Hawthorne, Dana ASG, St Luka Hos	L i me City, Five Point Detatoil, First Solar		
f Circuits	Lanta fied	- N	Q	N	N	₹	- 0 N	-	-	N
Number o	Design	~ ~	N	N	0	-	- 01 01	-	-	CP
Type of Supporting Structure	Esent Tomera, Wood Poles, or Underground, Ett. End number of mile of the line of each structure	Wood Pole Steel Pole	Steel Towar	Steel Tower	Steel Tower	Wood Pole	Wood Pale Stael Pole Stael Pole	Wood Pale	Wood Pole	Steel Towar
-way	Width (Feet)	88	011	D01	1 00	8	8 2 8	8	8	110
Right-o	Lergth (Millos)	8.8 5.1 2	7.2	8	6.5	a. 1	118 15 15	<u>77.</u> 8	5.5	24.4
Design Voltage (k V)		138	138	138	136	8	138 138 138	8	138	138
Operating Voltage (kV)		138 138	B 61	<u>8</u>	ş	装	<u>8</u> 8 8	8	8	8
dity (MVA)	Energanoy Reting	385	305	202	886	188	8	332	172	621
Winter Capab	Normal Ruting	367	275	276	926 726	<u>8</u>	317	22	8	ŝ
tality (MVA)	Emergency Reding	346	287	287	358	188	307	332	141	176
Burthmer Capa	Mormal Rating	278	234	19	300	8	268	278	133	149
Paint of Origin and Terminues	hdiezh joezhoa e' irw's bajinring and tefanas.	Jackman Tranamission Subsistion - Alfen Junction Transmission Substation	Bay Shore Generating Station - Jackman	Transmission Substation		Five Point Distribution Substation - Five Point Tap	Vulcen Tranentission Substition - Hawthome Tap	Citryslar Transmission Substation - Ci Lavis Transmission Substation	Brim Tap - Brim Transmission Substation	Lemoyne Transmission Subetation - Michrey Transmission Subsition, Substation 1 Ckt
Trensmission Line Name and Number (s)	List each Transmission Law of 125 kV or 1 more.	206. Allen Junction	207. Bay Shore- Jackman	Chide- Lackman	Bayshore Jeep No. 2	208. Five Point: Five Point Tap	209. Vulcan-Hawthorna Tap	211. Chrysler-O.I.Levie 2	212. Brim Tap-Brim 1	213. Lamoyne-Midway 5

FirstEnergy Companies

é

4901:5-5-04(C)(1)(a) PUCO FORM FE3-17:

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Tolado Eciaon Company Area

Г		r	1			'চ ই					-
	Subditations on the Line	Substation Name				West Unity, Exit 2, Village Monpoller, Bryan, Edon, Edgarton, Village of Edgar	Lyons, Fayette	Reynolds, Sillce. University of Taleda	Bellevue, University of Taldeo, Toledo Hospital	S.W. Defiance. Ayersville, Bohuller Defiance	Detta, Swanton, Ecer, Wantworth, York, Johnson Condrol, Worthington Industries, Liquid Air
	Creation	hehalad	N	ŝ	n	-	-	- 0 0	N	-	r
	Number of	Design	~	n N	(N	· -	-	- 0 0	~	-	-
	Type of Bupporting Structure	Steel Towers, Woord Poles, in Undergrown, Els., and number of mile of the lifes of sech structure	Steel Tower	Steel Tower	Steel Tower	Wood Pole	Wood Pole	Wood Pole Steel Towar Steel Pole	Steel Tower	Wood Pole	M.mod Pole
	Value y	Width (Feet)	110	110	01	8	8	828	110	8	듙
	Right-o	Langth (Miles)	7.4	4.6	15.9	28.0	48.0	9.1 5.8 1.1	3.8	8.8	801
	Doutgn Voltage (KY)		138	138	138	138	138	138 138	138	138	BOF
	Operating Voltage (kV)		138	8	8	2	₽ .	138 138-66 138-69	8: 8:	50 150	80 F
	Ity (MVA)	Emergancy	230	992	822	99 80	213	348	286	982	ŝ
	Witter Capabi	Mormal Rating	223	286	181	ž	8	327	525	28	ş
	HT (HVA)	Emergency Rating	5 67	982 73	133	83	174	342		564	ço t
	Summer Capabil	Normal Rating	195	278	ē	2	<u>5</u>	842	215	215	ş
	Point of Origin and Torminua	Indicate lecartion of law's boginning and termus.	Lemoyre Transmission Substation - Walbridge Junction	Lemoyne Transmission Substation - Fostoria West End (to T.E. Boundary - O.P.)	Decent Distribution Substation - Ottawa Transmission Substation	Stryker Transmission Substation - Stryker Transmission Substation	Allen Junotion Transmission Substation - Stryker Transmission Substation	Allen Jurction Transmission Substation - Vuiban Transmission Substation	Jackman Transmission Substation - Vulcan Transmission Substation	Hichtland Transmission Substation - Richtland Transmission Substation	la denos Tano _ Marinemento
	Transmission Line Name and Number (a)	List each Transmission Line of 126 EV or 11 more	214. Lamoyne-	215. Lemoyne-Fostoria West End E	216. Decart- Ottawa	117. Stryker-Stryker (Loop)	218. Allen Juncton- Stryker 39	219. Allen Junction- Vulcan 3	220. Jackman-Vulcan S	221. Richland-Richkand (Loop) S	t) 1

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7:

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Toledo Edison Company Area

Ľ							Duganodo	Design Vottege			Type of Supporting			
	i (dichination) una multi politi a din (turnesi (d)						Valtage (kV)	(KA)			Structure			
L	List acch Tensmission Line of 125 kV or more:	Indicate location of line's beginning and feature.	Normal Rating	Emergancy Pating	Normal Rating	Emergency Patho			(Miles)	With (Feed)	Steel Towers, Wood Poles, pr Inderground, Eko. and number of mile of the line of each structure	ing land		Stabilization Name
J ≌ ≓ 53	kiómegy-Hewthome tige-Gould	Mickway Transmission Mickway Transmission Substation - Hawthorne Tap Gould Transmission Substation - Hawthorne Tap	R.	38	- 	- 8	88	8 8 8	6.4 4.8	88	Steel Pole Wood Pole	~ ~	Q -	yrrch, Whitehouse, (merican Can ord Motor, Maumee
0 * 23	litte-A.M.C. Jeep	Divie Tranemitation Substation - A.M.C. Jeep Distribution Substation	528	310	88	380	8	138	0.7	2 8	Wood Pole Wood Pole	~	cu -	
म. अ त	lichtend-E. Lima	Richland Transmission Subsitation - E. Lima (Io T.E. Boundary - O.P.)	52	586	38 9	586	138	8	16.0	8	Wood Pole	-	-	
227. FI FI	lich land - Jobieon Park	Nchiand Transmission Substation - Robison Park (to T.E. Boundary - O.P.)	215	264	R	88	1 38	138	0.11	8	Wood Pole	-	-	
228. RI	tchland-Michway	Richtand Transmäsion Substation - Midway Transmission Substation	161	£71	179	6/1	881	138	33.1 1.5	01 02 03	Steel Towar Wood Pole	~ ~	CU 01	Napoleon Muni Ridgeville
N 633	laomi Tap- /auseon	Naomi Tap - Wauason Transmission Substation	157	180	B// 3	181	138	138	5.0	8	Wood Pole	-	-	
230. B	tidgevitte Jurotion- tryker	Pädgeville Junction - Stryker Transmission Substation	181	8	181	226	138	8 6	5.6	<u>6</u>	Steel Tower	-	-	
231.0)ttawa-Lakeview	Ottawa Transmission Substation - Laterview (to T.E. Boundary - O.E.)	278	8 8	3 15	401	138	138	616	1	Steel Tower	8	en .	

FirstEnergy Companies

<u>5</u>

4901:5-5-04(C)(1)(a) PUCO FORM FE3-17:

Characteristics Of Transmission Owner'S Existing Transmission Lines

Å. 2 AT\$1.Tolado Edia

ATSI-Toledo Edison Company							1							
Transmission Line Noone and Number	(a) Found of Origin and Terminus	Summer Cap	(RAN) YING	Winter Ceps	(TAN) (MAT)	Operating Voltage (kV)	Design vollage (kV)	Right	(-III-y	Type of Bepporting Structure	Number of	Grouts	Subatrikana On The Line	
List each Transmission Line of 125 k) Recre	or hidicate location of law's beginning and terimus.	Mormel Rating	Emong ency Rating	Normel Reting	Emarganey			(inequal (inequal)	Wedth (Feet)	Steel Towers, Wood Poles, pr Indeground. Eco. and Namber of nulle of the Une of dech structure	- uğımıq		Bubatation Nama	
222. Lamoyn a Wes t Fremont	Lemoyne Transmission Substation - Weat Fremont Transmission Substation	500	241	226	8	138		23.0	8	Wood Pole	-	{ ←	Woodville 2	
233. Allen Jurction- Silica	Allen Jarction Transmission Substation - Silika Distribution Substation	272	212	272	212	138	138	5 C	8	Wood Pole	-	-		
24. Divis-Locust	Dixle Transmission Substation - Locust Transmission Substation	107	134	8 2	138	8	86	6.0	8	Wood Pole	-	-	erstorp, Texilsather, Libbey ilaas	
236. Phynland- G.M. #1	Plichland Transmission Substation - General Motors Foundry	187	187	197	197	136	136	24	98 011	Wood Pole & Steel Tower	-	-		
38. Rtchland- G.M. #2	Richland Transmission Substation - General Mations Foundry	197	197	197	197	138	138	4.5	8 01	Wood Pole & Steel Towar	-	-		
288. Pra-Finish Metzeb Tap- Pra-Finish Metala	Tep on Mischear-Mickney Line to Pre-Finish Metalia	163	戞	<u>5</u>	163	138	138	0.7	8	Wood Pole	-	-		
239. North Star Steet Backup Supply	Point on Vuitan Tap-Wauseon Line - York Distribution Substation	284	284	284	284	138	136	9.6	8	Wood Pole	-	-		
240, Worthington Supply	Point on Vuican Tap-Wauseon Line-Worthington Industries	4				138	138	6	8	Wood Pole	-	F		

FirstEnergy Companies

:

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7:

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Toledo Edison Company Area

Transission Line Name and Number (a)	Point of Dright and Terrainus	Burrmer Cape	(MVA) (Alla	Winter Capelo	HINY (NVA)	Operating Voltage (kV)	Design Voltage (kV)	Rghter	r-Winy	Type of Supporting Structure	Nember of	Circuits	Substations On the Line
Lust weth Transmission Line of 125 kV of more	· Indicate location of and a bagin lag and tertmula.	Normal Rating	Emergency		Emergency Ruting			(Millers)	Width (Fwei)	Staul Towers, Wood Poles, er Underground, Etc. and rumber of mile of the line of each structure	Dealgn	Installed	Butstation Name
241. Detatot Supply	Paint on Five Point Tap Line-Delatoil Customer Substation	19 19				138 1	138	5	8	W cod Pole	-	-	apler, Omni Saurco, Doehler-Jarvis, Bayview
242. (row ile- Dixis	liconville Transmission Substation - Dixie Transmission Substation	8	8	1 08	23	8	138	5.4	110	Steal Tower	-	-	Jeoyoling Taoyoling
243. Bay Shore Decent	Bay Shore Generating Station - Decant Distribution Substation	ž	283	275	312	1 8	138	72	110	Sleal Tower	ભ	ณ	
244 Lemoyne - Weal Fremont	Lemoyne Transmission Substation - West Fremont Transmission Substation	500	241	ଞ୍ଚ	586	<u>\$</u>	138	4.3 0.9	≣ 8	Steel Tower Wood Pole	~ ~		AEP owns 19 miles in be- ween the segments shown.}
245 West Fremark Fremort Center	West Fremont Transmission Substation - Fremont Center (to T.E. boundery - O.P.)	312	₿.	55	450 4	138	85	6.9	8	Wood Pole	N		
246 Citawa - West Fremont	Ottawa Transmission Substation West Fremont Transmission Substation	181	1 82	181	8	ŝ	<u>8</u>		8	Steel Tower	N	N	
247 Midway-O.I. Levis	Niidwesy O.I. Levis	8/2	310	310	310	861 861	8	14.89	8	Wood Pole	-	-	Waterville, Johne Merwille
248 Chrysler-Maclean	Chtrysler Meichean	278	598	5 8 6	568	88 -	1 38	4.28	8	Wood Pole	-	÷	Walbridge, Calphalon, Conagra, Walgreens

4901:5-6-04(C)(1)(a) PUCO FORM FE3-17:

Characteristics Of Transmission Owner'S Existing Transmission Lines

•

ATSI-Cleveland Electric Illuminating Company Area

	Tremeniesion Line Namé and Number (s)	Point of Origin and Terminus	Summer Cept	ability (MVA)	Winter Cepelo	HITY (MVA)	Operating Voltage (KV)	Deelgn Vottage (kV)	Right-of	- Hint	Type of Supperting Structure	Number of	Chrouke	Substations On the Line
	List each Transmission Line of 125 AV or more.	indicate location of lines beginning and terimus.	Bulling Herring	Ethergancy Rating	Normal Plating	Em argancy Rating			(Miles)	Width (Feet)	Steel Towers, wood Pelee, or Underground. Etc. and number of mile of the time of each ettucture		Installed	Subsistion Mama
- -	Avon-Beaver #1	Avon 345 kV Station - Point of Interconnection with Ohio Edison, Sheffeld Township	617	1030	1116	1153	345	355	57	150	S.C.T.	 -	-	
2	Juniper-Star	Juriper Substation - Point of Interconnection with Chilo Edison, Richfield Township	1377	1377	1377	1377	346	345	0.6 1.5 0.2	150 150	D.C.T. S.C.T. D.C. H-Frame	N - N		
oj.	Hanna-Juniper	Jurriper Substation - Point of Interconnection with Chilo Edison, Osnaburg Township	1553	1553	1553	1553	345	345	54.0	150	S.C.T.	÷	-	
•	Ashtabul a . Erie West (Penelec)	Ashtabula 345 KV Shaiton - Interconnection Polint with Pannsylvania Electric Co., Chio-Penn State Line	1669	1609	1705	2281	345	345	14.Đ	<u>8</u>	S.C.T.	÷	-	
ц.	Percy-Eastiake	Perry Station - Eastlake 345 kV Station	1554	26/1	1786	1792	345	345	17.9 2.6	\$ \$	S.C.T. D.C.T.	- N	-	
9	Eastlake-Juniper	Jurriper Substation - Eastlake 345 kV Station	1370	1719	1765	1792	345	345	30.8 6.1	5 5	S.C.T. D.C.T.	- ∾	-	
Ň	Avon-Juniper	Avon 345 kV Station - Juniper Substation	1222	1258	1385	144	345	345	1.0 20.9 8.2	95 95 95 95	D.C.T. D.C. H.Frame D.C.P. H.Frame S.C.T.	0 0 0 -	-	
s ç	Juniper-Harding	Juniper Substation - Harding Substation	1395	1666	1710	1782	345	345	0.0 1.2 1.0	55 55 55 56 55	D.C.T. D.C. H.Frame D.C.P.	~ ~ ~	8	
4901:5-6-04(C)(1)(a) PUCO FORM FE3-T7: Characteristica Of

Characteristics Of Transmission Owner'S Existing Transmission Lines

•

Ē	insmission Line Name and Numbar (a)	Point of Origin and Terminue	Summer Cap	(NVA)	Winter Capeb	HIRY (MYA)	Operating Voltage (kV)	Design Vollege (kV)	Right-o	Ya Way	Type of Supporting Structure	Number of	Circults	Substations On the Line
List e.	ach Trensmilesion Line of 125 kV or anore.	Indicate location of line's beginning and tertinum.	Normel Rating	Emergency Rating	Normal Rating	Emergency Rating			(Milee)	Width (Teet)	Steel Towers, Wood Poles, or Underground. Elc. and number of mile of the line of each structure			Substantion New Substant
9. Hardir	ng-Fox	Harding Substation - Fox Substation	1195	1195	1195	1195	345	345	5.1 0.1	120	D.C.P. D.C.T.	~ ~	N	
10. Galaxi	vie Supply	Fowles Substation - Galaxie Substation	175	872	252	284	138	138 345	1.8 11.8	110 150	D.C. H-Frame D.C.P. H-Frame	N N N	and Circuit	
11. Avon-	Heaver#2	Avon 345 kV Station - Point of Interconnection with OE Avon- Beaver ROW, Lorain County	226	1030	1116	1153	345	345	3.6	150	D.C. H-Frame	N		
12. P erny - Inland		Perry Station - Inland Substation	1559	1673	1673	1673	345	34 5	43.8 11.4	150 120	D.C.T. D.C.S.P.	CI CI	~	
13. Inland	+Harding	Point on Penry-Macedonia- Mand Line - Harding Substation	1222	1288	1395	1441	345	345	0.1 0.1 0.1	<u>5</u> 5 5	D.C.S.P. D.C. 2P Structure D.C.T.	ରା ରା ରା	61	
14. Perny-	Ashtabula	Perry Station - Tap Point to Ashtabula Township, Ashtabula County	1559	1899	1765	2161	345	345	11	150 150	D.C.T. S.C.T.	a -	-	
15. Haroir	ng-Chamberlin	Harding Substation - Point of Interconnection with OE, Sagamore Hills	1564	1792	1765	1792	345	345	0.6 1.5	150 150	D.C.T. D.C. H.Frame	N N	-	
201. Avon- Foute	-Lorain- 16	Avon Lake Plant - Fowles Switching Station	175	215	215	215	138	138	9.71	10	0.0.1.	4	4	dimitaal stoo oraalin jysstat lateer
202. Avon-I (Benee	-Lorein-Fowles a Cutoff)	Avon Lake Plant - Fowles Switching Station	175	215	216	215	138	138	17.9 0.5	5 8	D.C.T. 8.P.	01 -	N N	poții

4901:5-5-04(C)(1)(n) PUCO FORM FE3-T7: Characteristics O

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Clevetand Electric Itiuminating Company Area

matchane. On the Line	Substation Nem a	poor_ 6			<u></u>		a nood al		
49		Crestwin Darwin Dawao	Dodge		Dunkid		Exton Fundan Grathar Humming		
Checulta	Installad	N	~	-	4	FN	4	CU.	~
Number o	Design	N N	8	0	4	20 20	4	CN	N
Type of Supporting Btructure	Steal Towars, Wood Potes, or Underground. Etc. and number of mile of the time of each structure	D.C.T. D.C.S.P.	D.C.S.F.	D.C.T.	D.C.T.	D.C.T. D.C.S.P. Structures w/6 S.C.P. al Customer Station	0.0.1	D.C.T.	D.C.S.P
Augus	Nah (Fau)	11D 60	69	110	110	01 02	11	110	69
Right-of	Length V (Milee)	1.8 7.2	1.4	ç. F	99	0.8	0.6	0	0.3
Dealgn Voltage (kV)		138	138	8	88	8	8	138	138
Operating Vottege (kV)		138	ŝ	138	138	138	138	138	138
Mity (MVA)	Emargency Reting	392	ୟ	523	ş	4	164	91	â
Wimer Cape	Normal Reting	88.	20	181	146	4 F	- 46	51	29
MIRY (MVA)	Emergency Reting	뜛	8	193	132	<u>र</u> म	132	су Э	8
Summer Cap	Normel Reting	273	8	181	103	4	102	44	6 4
Point of Origin and Terminue	Indicate location of three beglaning and textmus.	Point on Avon-Lonain-Powles Line, Avon Lake - Dawson Substation	Dawson Substation - Clague Road and N&W Railroad Right-of-Way	Lorain Switching Station • Point of Interconnection with Ohlo Edison, Sheffield Twp	Fowles Switching Station - NASA Customer Station, Cleveland	Point on Fowkee-NASA Line, Climsted Township - Cadillac Customer Station, Brook Park	Fowless Brindhing Station - Climton Substation	Point on Fowles-Clinton Line, Brook Park - Fond Customer Station, Brook Park	Point on Fowles-Clinton Line - General Mocors Chevrolet Customer Stettion, Parma
Trensmission Line Neme and Number (a)	List each Trementieeon Line of 125 NV or more.	203. Dawson Supply- Avon	204. Dawson Supply- Clague	205. Lorah-Chio Edison 1 (Jahnson Sub)	206. Fowles-NASA	207. IX Center Supply (Formety Cadillac)	208. Fowles-Clinton	209. Ford Tap	210. General Motors Supply

FirstEnergy Companies

109

ATSI-Cleveland Electric III	iminaling Company Area												
Transmission Une Name and Number (a)	Point of Origin and Terminue	Summer Cop	obility (MYA)	Winter Capab	HIY (MVA)	Operating Vottage (kV)	Design Volkege (kV)	o-mgin	-Wiay	Type of Supporting Birecture	Number of	Circuits	Substations On the Line
Ljuit aach Tenaarniadon Line of 1. XV ar moon.	15 Indicate location of line's beginning and wide to the location of the second se	Normal Rating	Emergency Reting	Rome Rething	Emergency Redung			(Millan)	Width (Feel)	Etesi Towers, Wood Polas, or Underpround, Ete. and number of mile of the line of each Meructure		(mathalled	Substration Name
211. Fowles-Mayfield	Forwiss Switching Station - Mayfield Substation	8	<u>چ</u>	- -	<u>8</u>	138		575 E	5 6 6 9	D.C.T. D.C.S.P.	- य र	4	iaber aitlin mperial umiper crick borgfield baxwal bason forway beaant Valley
212. Plaasant Valley. Chic Eckson (UE) (West Akron)	Fleesent Valley Switching Station - Point ol Interconnection with Chio Edison, Richtield Township	143	143	143	541 143	138	82	6.2	011	D.G.T.	~	م م	ickory .
213. Fleasant Valley- Jennings	Pleasant Valley Switching Stalion - Jennings Switching Stalion	52	288	586	286	138	8	6.9	110	D.C.T.	4	4	stant Istock Ister Ster
214. LTV Steel Supply Formerly Republic Steel)	Point on Pleasant Valley- Jennings Line, Neurburgh Heights - LTV Steel Customer Station (Formerly Republic Steel)	ŝ	4 <u>7</u>	रू स	Q	138	8	0.3	110	D.C.T.	4	4	
215. Jennings-Clark	Jennings Switching Station, Newtourgh Heights - Clark Substation	Q .	4	2 4	S	8	5 5	0 0 F	5 2 2	H 23 X	- N	- α.	

Charaoleristics Of Transmission Owner'S Existing Transmission Lines

110

FirstEnergy Companies

Characteristics Of Transmission Owner'S Existing Transmission Lines

Ó

ATSI-Cleveland Electric Illuminating Company Area

L

_	Tranamiasion Line Name and Number (a)	Paint of Origin and Terminue	Summer Cape	(WAW) falligi	Winter Capet	HIRY (MYA)	Operating Voltage (KV)	Deelgn Voltage (kY)	Right-of	Viiiny	Type of Supporting Structure	Number of	Circuita	Substations on the Line
3	it and from the cold 25	l matcate location of the beginning and tertmus.	Normal Rating	Envergency Reting	Normal Rediver	Emergeoury Reting			(eegin)	(iddi) (Fores)	Staul Towers, Neood bles, or Underground. Etc. and number of alle of the line of each etructure	Dealgn	bollar	Subelection, Manue
216. Jer Lau	mings-Jonez & ughin Steel	Jerunings Switching Station - LTV Steel Customer Station (Formerly Jones & Laughlin)	8	67	۲.	8	<u>8</u>	8	0.1	110	D.C.T.	N	~	
217. Jor	nings-Hazel	Jernrings Switching Station - Hazei Terminal Structure	285	286	286	286	<u>8</u>	138	5	110	D.C.T.	N	N	Horizon
218. Hæ	zel-Lake Shore	Hazel Terminal Sinucture - Lako Shore Plant	236	Ĩ.	286	88	138	138	4 12	<u>5</u>	Underground	2	QI	Hamilton
219, Jan Tap	nings-Oak) Structure	Jennings Switching Slation - Cak Tap Structure, Cuyahoga Heights	215	215	215	215	138	138	3.1	60 110	D.C.S.P. D.C.T.	~ ~	2	In cea
220. Ple Oal	asant Valley- k Tap Structure	Pleasant Valley Switching Station - Oak Tap Siruchure, Quyahoga Heights	215	215	215	215	ŝ	138	6.5 0.2	110	D.C.T. Underground	~~~~	~	Cark Substation was removed in 1976
221. Jun	ilper-Hillside	Juniper Substation - Hillside Structure	215	215	215	215	138	138	5.9	110	D.C.T.	2	2	Hilliside is a transmission sinucture
222 Jun	D(c).Fredt	Jumiper Bubstation - Point on the Mayfield-Lloyd Line	215	215	215	215	5 8	8	8 14 15	5 2 2	D.C.T. D.C.S.P.	N N	~	Inkin Inkin Inkin Jud Jud Subdurg Newburgh Newburgh
223. Ker Lee	ndail-Keily- ter Supphy	Point on the Fowles-Mayfield Line - Kelly Substation	273	ŝ	308	362	138	138	7.6	8	D.C.S.P.	CI	C)	Kendall Lester

Trensmission Line Name and Number (a)	Point of Origin and Terminus	Summer Cap	(AVA)	Winter Capal	(WAA)	Operating Vottege (kV)	Design Voltege (kV)	Hgitt	ol-Way	Type of Supporting Structure	Number of	Circuite	Substations On the Line
Liet each Transmission Lins of 128 KV on more.	 Inclusion of Invis beginning and total tage. 	Normal Railing	Elweigency Roting	Nomial Rating	Emergency Rating			(Milea)	Width (Feet)	Steel Towers, Wood Peles, or Underground. Etc. and humber of mile of the line of each etructure	6. 990	Pallan	Surbartation Alleria
224. Mayfield-Lloyd	Mayfield Substation - Loyd Substation	202	215	215	215	138	8	16.7	Ę	BIG.T.	•	4	Lamoni Marbia Newport Lincoln
225. Mayfield- Ashtabula	Mayfield Substation - Ashtabula Plant Trensmission Station	103	114	114	114	138	138	43.4	110	D.C.T.	4	+	Santhorm Lerroy Centier Spruce
226. Laroy Canten- Eastlako Plant	Lency Cervier Switching Station - Eastleke Plant Transmission Station	143	143	143	143	138	138	18.3 2.4	01 08	D.C.S.P.	~ ~	~	Nash Nathar Vewelf Vursery
227. Pinegrove Supply	Point on Mayfield-Ashtabula Lina, Chardon Township - Pilnegrove Substation	116	115	115	115	8	136	1.0	110	D.C.T.	~	N	
228. Eestako Tap	Eastleke Plant - Eastleke Tap Structure, Cky of Eastleke	R	287	246	287	138	138	2.5	110	D.C.T.	N	œ	
229. Ashtabula- Conneaut	Ashtabula Plant - Pittsburgh & Conneaut Books Customer Station, Conneaut	274	333	310	334	138	8	17.7 0.1	110 80	D.C.T. D.C.S.P.	~ ~	N	Zenth

Characteristics Of Transmission Owner'S Existing Transmission Lines

Ő

ATSI-Cleveland Electric Numinating Company Area

FirstEnergy Companies

Eaton Cleveland Hopkins Airport II

~ ~ ~

D.C.S.P. D.C.S. 2P H Structure

8 <u>₽</u> ₽

2 8 8 5

13B

138

1<u>0</u>

9

6

9

Point on Fowless-CAD Line, Brook Park - Ford Customer Station, Brook Park

231. IX Center-Ford Line

.

C)

-

-

W.P. H-Frame

<u>10</u>

90

<u>8</u>

138

246

246

246

246

Ashtabula Plant - Ashtabula C Plant

230. Ashtabula Generation Tie

112

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7: Chi

Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Cleveland Electric Illuminating Company Area

Ľ	Fransmission Line Name and Number (a)	Point of Origin and Terminue	Sum mar Cap	ibliky (MVA)	Winter Cape	(AVA) vilio	Operating Voltage (kV)	Design Vottege (kV)	o-ių6 _R j	-Winy	Type of Supporting Structure	Number of	Cheults	Substations On the Line
	t each Transmi solon Lifre of 125 KV or more.	Indicate location of fine's beginning and tertaus.	Normal Rating	Ensargoncy Rating	Bultes Heting	Emiergiency Rating			Length (Miles)	Width (Feet)	Steel Torrer, Wead bales, at Underground, Eta, and number of rele of the line of each structure	Line Contraction of the second s	Litetel ied	Substation Name
232. Dell	Aidding (Paint an Fowles-NASA Line, Olmsted Township - Dell	54	ส	8	5	138	138	60	8	D.C.S.P.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	
233. Edg Frai	jewater Supply mont Line	Substation Clegue Road and N&W Railroad, Westlake - Fremont Substation	ର	50	50	8	E E E	138	5	60	D.C.S.P.	N	Ci	Édyewater Freedom
234. Fow Line	Mes-Dunbar	Fowles Substation - Dunbar Substation	176	216	215	215	138	138	42	8	D.C.S.S.P. Structure	~	N	말
235. Gar	field Supply	Point on Grant-Jennings Line. Cuyahoga Heights - Garfield Subskition	287	287	287	287	138	138	1.5 0.6	69 01	D.C.S.P. D.C.T.	2 2	N	
2 36 . H27	1 Line	Point on Kendal-Kelly Line - Point on Eastiake-Loyd Line, Eastlake	273	331	308	385	8	138	16.8	8	4 2 2 2 2	CV .	N	(aith Canyon Lairk Capter
237. New Mick (U.C	voury-Burton- defield Line 2,)	Vicinity of Routes 306 & 87, Russel Township - Vicinity of Kineman & Witte Roads, Middlefield Township	6	6	۲	6	ж Ж	138	13.0	8	S.C.W.P.		-	
238. Lon Ects Car	ain-Ohio Ion II Aisie Sub)	Lorain Station - Point of Interconnection with Ohio Edison, Sheffield Township	ĸ	281	262	92 20	138	138	3.1 3.1	51 8	D.C.T. S.C.W.P.	01 F	.	
239. Emi	Alddns fa	Poirt an Fowles-Dunbar Line, Strongsville - Galaxie Substation, North Royalton	38	9 0 7	402	463	<u>8</u>	138	7.4 0.5	88	SCSWP. DCSP.	+ 01	-	Ąius

;

. . . .

Ā õ é

4901:5-5-04(C)(1)(a) PUCO FORM FE3-T7: Characteristics Of Transmission Owner'S Existing Transmission Lines

ATSI-Cleveland Electric Bluminating Company Area

Trenemiselon Line Name and Number (a)	Point at Origin and Terminue	Summer Cape	ibility (NVA)	Winter Cepeb	(INVA)	Operating Voltage (kV)	Design Voltage (NV)	Hight-o	Market	Type of Supporting Structure	Number of	1 Circuite	\$upstellors On the Une
Liet each Transmission Line of 125 kV at more.	Indicate location of lime's beginning and (entrue.	Normal Rating	Emergenury Rating	Normal Railing	Emergency Rating			Length (Miles)	Width (Feet)	Steel Towers, Wood Potes, or Underground. Etc. and number of mile of the line of each structure	Dealgn	Instelled	Substation Name
240. Inland-Lake Shore (8)	Inland Substation-Lake Shore Plant	992	352	386	438	138	138	0.3 5.3	88	s.c.s.P. D.c.s.P.			
241. Ph ain Dealer Supply	Point on Fowles-Clinton Line, City of Brooklyn	12	5	12	12	138	138	8:0	60	D.C.S.P.	IN .	2	
242. Horizan Supply	Hazel Terminel Structure, City of Clevelaud, Capabaga cousty - Horizoo Sabtatióa, City of Clevelaud, Cuyaboga Courty	ŝ	271	249	280	138	85 T	0 0	00	punostappun	4	4	

٦

(a) Letsed from City of Cleveland

FirstEnergy Companies

4901:5-5-04(C)(1)(b)

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

	Type		Line Association(s)	
	Transmission (T)		(FE-17 or FE-19	Line
Substation Name	Distribution (D)	Voltanes	Notation)	Eviction
R F Burger	T	120	Burner Kann (222)	EAISAIIIN
N. D. Duigo	•	130	Durgel-Kilox (223)	E
			Burger-Brookside (224)	E
			Burger-Cloverdale (225)	E
			Burger-Cloverdale (226)	E
			Burger-Cloverdale (227)	E
			Burger-Longview (228)	Е
Edgewater	т	138-69	Edgewater-Beaver (238)	Е
			Edgewater-U.S. Steel (239)	Е
Nilės	D	138-23	Niles-Evergreen (269)	Е
			Niles-Bluebell (268)	E
			Niles-Saft Springs (271)	Е
			Niles-Central (305)	E
W/ II Sammia	-			
W. H. Sammis	I	345-138	Sammis-Highland (9)	E
			Sammis-South Canton (OP) (10)	E
			Sammis-Star (11)	Е
			Sammis-Beaver Valley (DL) (3)	Е
			Sammis-Wylie Ridge (APS) (12)	Е
			Sammis Pidgeon (276)	Е
			Sammis-Boardman (277)	Е
			Sammis-Lowellville (278)	Е
			Sammis-East Akron (284)	E
A - 4	0			
Aetha	U	138-23-22.86-4.1	I (Aetna-West Akron (200)	E
Airpark	D	138-12.47	Clark-E. Springfield (236)	E
Avery	т	138-69	Avery-Greenfield (295)	E
-			Avery-Shinrock (320)	Ē
	_			-
Babb	D	138-22.86	Babb-Bast Akron (252)	Ê
			Babb-West Akron (288)	E
			Babb-Valley (CF) (299)	Е
Barberton	D	138-23-4.16	Barberton-Babcock & Wilcox (203)	В
			Barberton-Cloverdale (204)	Е
			Barberton-Star North (205)	E
			Barberton-Star South (206)	E
			Barberton-West Akron (207)	E
Beaver	т	345-138	Avon-Beaver #1 (CED (1)	F
		545-156	Requer Carlisia (2)	E E
			Beauer Davis Davis (Z)	E
			Deaver-Davis-Desse (1E) (40)	Б П
			Avon-Beaver #2 (CEI) (43)	R
			Beaver-Brookside (209)	E
			Beaver-Ford (210)	E
			Beaver-Johnson (211)	Е
			Beaver-NASA (212)	E
			Beaver-Edgewater (238)	Е
			Beaver-Greenfield (370)	E
Bluebell	T&D	138-69-23	Bluebell-American Steel (202)	Е
			Bluebell-Canton Central (213)	- -

FirstEnergy Companies

4901:5-5-04(C)(1)(b) PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

	Type Transmission (T)		Line Association(s)	
Substation Name	Distribution (D)	Voltogoo	(FE-17 OF FE-18	Line
odostation name	Distribution (b)	A Difañas	Notationi Pluchall Victoriand (214)	EAISUIN
			Bluebell Knov (215)	E
			Bluebell-Bidgeon (206)	10
			Niles-Bluebell (268)	E
Boardman	T&D	138-69-23	Boardman-Riverbend (215)	Е
			Boardman-Shenango (216)	E
			Sammis-Boardman (277)	Е
			Boardman-Nevada (279)	Е
Brady	D	138-12.47	Darrow-Hanna (294)	Е
Bridge	D	138-12.47	Evergreen-Ivanhoe (241)	В
Brookside	т	138-69	Beaver-Brookside (209)	Е
			Brookside-Cloverdale (217)	Е
			Brookside-Leaside (219)	E
			Brookside-Howard (OP) (220)	Б
			Brookside-Longview E. (221)	E
			Brookside-Longview W. (222)	E
			Burger-Brookside (224)	Е
			Brookside-Wellington (287)	Е
Brunswick	D	138-12.47	West Akron-West Medina (346)	E
Brush	D	138-12.47	Pleasant Valley-West Akron West (273	E
Buckeye	D	138-12.47	West Akron-West Medina (346)	Ė
Burton	D	138-12.47	Evergreen-Highland #3 (201)	Е
Cairns	D	138-1 2.47	General Motors-Longview (306)	E
Cardington	т	138-69	Galion-Cardington	E
Carlisle	т	345-138-69	Reaver-Carlisle (2)	P
	·	100 03	Carlisle-Star (46)	R
			Carlisle-Gates (343)	Ē
			Carlisle-Lorain (CEI) (341)	Ē
			Carlisle-Shinrock (247)	Ē
			Carlisle-Johnson (356)	E

0

4901:5-5-04(C)(1)(b) PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

	Type Transmission (T)	<u>.</u>	Line Association(s) (FE-T7 or FE-T9	Line
Substation Name	Distribution (D)	<u>Voltages</u>	Notation)	Existing
Chamberlin	т	345-138-69	Chamberlin-Harding (CEI) (30)	E
			Chamberlin-Mansfield (PP) (38)	В
			Chamberlin-Valley (CF) (293)	Е
			Chamberlin-Hudson East (298)	E
			Chamberlin-West Akron (322)	Ē
Clark	т	138-69	Clark-East Springfield (236)	E
			Clark-Greene (DPL) (291)	Е
			Clark-Urbana (DPL) (360)	Е
Clayben	D	138-12.47	Gilchrist-South Akron (251)	В
Cloverdale	T & D	138-69-23	Barberton-Cloverdale (204)	Е
			Brookside-Cloverdale (217)	E
			Cloverdale-East Wooster (OP) (218)	Е
			Burger-Cloverdale #1 (225)	Е
			Burger-Cloverdale #2 (226)	Ē
	•		Burger-Cloverdale #3 (227)	Е
			Canton Central (OP)-Cloverdale (229)	Е
			Cloverdale-Star (231)	E
			Cloverdale-Torrey (OP) (232)	Е
Commerce	D	138-12.47	Bluebell-Highland (214)	Е
Cortland	D	138-12.47	Central-Packard (270T)	Е
Crissinger	D	138-34.5	Crissinger-Roberts (275)	Е
-			Crissinger-Tangy (292)	Е
Dale	T&D	138-69-12.47	Dale-South Akron (282)	Е
			Dale-W, Canton (OP) (285)	Е
Darrow	т	138-69	Darrow-Hudson East (308)	E
			Darrow-Hanna (294)	E
Dobbins	D	138-12.47	Sammis-Lowellville (278)	E
Dual Rail	D	138-12.47	Galion-Roberts South (246)	Е
East Akron	D	38-23-22.86-12.4	4 East Akron-Gilchrist (234)	Е
			East Akron-West Ravenna (235)	Е
			Babb-East Akron (252)	Е
			Sammis-East Akron (284)	Е
			East Akron-Hanna (289)	Е
East Springfield	т	138-69	East Springfield-London (208)	E
			Clark-East Springfield (236)	Ē
			East Springfield-Tangy (237)	E

4901:5-5-04(C)(1)(b)

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 <i>or</i> FE-T9 <u>Notation)</u>	Line <u>Existing</u>
Elm	D	138-12.47	Central-Packard (270)	Е
Evans	D	1 38-22 .86	Babb-East Akron (252)	E
Evergreen	T&D	138-23	Evergreen-Highland #3 (201) Evergreen-Ivanhoe (241) Evergreen-Highland #2 (242) Evergreen-Highland #1 (243) Niles-Evergreen (269)	E E E E
Ford	т	138	Beaver-Ford (210) Ford-New Departure (366)	E
Galion	т	345-138-69	Ohio Power Lines (DA13) Ohio Power Lines (DA18) Galion-Leaside (350) Galion-Roberts North (245) Galion-Roberts South (246) Galion-General Motors (263)	E E E E E
Garden	D	138-12.47	Central-Packard (270)	Е
Gates	D	138-12.47	Gates-Johnson (249) Carlisle-Gates (343)	E E
Gilchrist	T & D	138-69-12.47	East Akron-Gilchrist (234) Gilchrist-South Akron (251)	E E
Granger	D	138-12.47	West Akron-West Medina (346)	Е
Greenfield	T&D	138-69-12.47	Greenfield-Ford (244) Greenfield-Lakeview (253) Greenfield-NASA (254) Avery-Greenfield (295) Greenfield-New Departure (319) Beaver-Greenfield (370)	Е Е Е В
Hanna	Т	345-138	Hanna-Highland (5) Beaver Valley (DL)-Hanna (31) CEI Line to (OP)-Hanna (4) CEI Line to (CEI)-Hanna (6) Hanna-Newton Falls (255) Hanna-West Ravenna #1 (256) Darrow-Hanna (294) East Akron-Hanna (289) Hanna-West Ravenna #2 (328)	E E E E E E E E E E E E

1

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

	Туре		Line Association(s)	
	Transmission (T)		(FE-T7 or FE-T9	Line
Substation Name	Distribution (D)	Voltages	Notation)	Existing
Highland	Т	345-138	Hanna-Highland (5)	E
			Sammis-Highland (9)	E
			Mansfield (PP)-Highland (32)	E
			Highland-Shenango (PP) (33)	Е
			Evergreen-Highland #3 (201)	Е
			Bluebell-Highland (214)	Е
			Evergreen-Highland #2 (242)	Е
			Evergreen-Highland #1 (243)	Е
			General Motors-Highland (248)	E
			Highland-Salt Springs (257)	Ē
			Highland-Mahoningside (303)	E
Ira	р	129 10 47	Chamberlin West Almon (202)	E
11.04	D	150-12,47	Chamberlin-west Akron (322)	Е
Ivanhoe	D	138-23	Ivanhoe-Packard (258)	Е
			Ivanhoe-Mahoningside (302)	E
			Evergreen -Ivanhoe (241)	E
Johnson	т	138 -69	Beaver-Johnson (211)	Е
			Johnson-Lorain (CEI) (230)	Е
			Johnson-Gates (249)	Ē
			Johnson-U.S. Steel (Lorain) (259)	Ē
			Carlisle-Johnson (356)	Ē
Kirby	т	138-69	Blue Jacket-Kirby (DPL) (365)	Е
			Kirby- Roberts (280)	Е
			Kirby-Tangy (286)	Е
Клох	т	138-60	Burger-Knoy (223)	FI
	•	150 05	Bluebell-Knov (315)	12
			BILLICH-MICK (515)	Ľ
Lakemore	D	138-12.47	Gilchrist-South Akron (251)	E
Lakeview	D	38-34.5-12.47-7	. Greenfield-Lakeview (253)	Е
			Lakeview-Ottawa (TE) (260)	Е
Leaside	Ť	138-69	Brookside-Leaside (219)	Е
			Galion-Leaside (350)	Е
Lincoln Park	D	138-23	Lincoln Park-Lowellville (261)	Е
			Lincoln Park-Masury (262)	Е
London	Т	138-69	Beatty Rd. (CSP)-London (304)	E
			East Springfield-London (208)	Е
Longview	T&D	138-69-12.47	Brookside-Longview East (221)	Е
			Brookside-Longview West (222)	Е
			Burger-Longview (228)	Е
			Longview-Empire Steel (240)	E
			General Motors-Longview (306)	E

4901:5-5-04(C)(1)(b)

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line Existing
Lowellville	T&D	138-69-23	Lincoln Park-Lowellville (261)	Е
			Sammis-Lowellville (278)	Ē
Madison	, D	138-1 2.47	Brookside-Longview W (222)	Е
Mahoningside	D	138-23	Ivanhoe-Mahoningside (302)	E
			Highland-Mahoningside (303)	Е
Masury	T & D	138 -6 9-23	Lincoln Park-Masury (262)	E
			Masury-Salt Springs (264) Crossland (PP)-Masury (265)	E F
			Masury-Shenango (PP) (266)	E
			Masury-Maysville (PP) (300)	E
Mill Creek	D	138-12.47	East Springfield-Tangy (237)	Е
Moore	D	138-12.47	Dale-South Akron (282)	Е
Murray	D	138-12.47	Gates-Johnson (249)	E
Nevada	т	138-69	Boardman-Nevada (279)	E
New Departure	т	138	Ford-New Departure (366)	Е
			Greenfield-New Departure (319)	E
Newton Falls	T & D	138-69-23	General Motors-Newton Falls (250)	Е
			Hanna-Newton Falls (255)	Е
Nordonia	D	138-12.47	Chamberlin-W. Akron (322)	Е
North Medina	т	345-138	Carlisle-North Medina 345kV (47)	Е
			North Medina-Star 345 kV (48)	Е
			North Medina-West Akron 138 kV (34	E
			Norui Meduna-west Meduna 156 K.4 (5	E
Ontario	D	138-12.47	General Motors-Longview (306)	Ε
Packard	D	138-13.2	Ivanhoe-Packard (258)	Е
			Central-Packard (270)	, E
Pidgeon	т	138-69	Sammis-Pidgeon (276)	Е
			Bluebell-Pidgeon (296)	E
Pine	D	138-12,47	Star-West Akron #1 (283)	Е
Riverbend	D	138-23	Boardman-Riverbend (215)	Ε
			Riverbend-Salt Springs (297)	Ē.
Roberts	D	138-34.5-13.8	Galion-Roberts North (245)	E
			Galion-Roberts south (246)	E
			Cossinger-Roberts (275) Kirby-Roberts (280)	E F

1

1

Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

Substation Name Rosemont

Transmission (T) Distribution (D) D

Туре

<u>Voltages</u>

Line Association(s) (FE-T7 or FE-T9 Notation) 138-12.47 Star-West Akron #1 (283)

Line Existing_ Е

4901:5-5-04(C)(1)(b)

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Lin e Existing
Ross	D	138-23-12.47	Brookside-Cloverdale (217)	Е
Ryan	D	138-12.47	Star-West Medina (344)	Е
Salt Springs	T & D	138-69-23	Riverbend-Salt Springs (297) Highland-Salt Springs (257) Masury-Salt Springs (264) Niles-Salt Springs (271) Salt Springs (201)	E E E F
Seville	т	138-69	Star-West medina (344)	E
Shalersville	т	138-69	Hanna-Shalersville (369)	Е
Shinrock	T&D	138-69-12.47	Carlisle-Shinrock (247) Avery-Shinrock (320)	E E
South Akron	D	138-23-22.86-4.1	(Gilchrist-South Akron (251) Firestone-South Akron (281) Dale-South Akron (282)	E E E
Star	т	345-138-69	Carlisle-Star (46) Juniper (CEI)-Star (7) South Canton (OP)-Star (8) Sammis-Star (11) Barberton-Star North (205) Barberton-Star South (206) Cloverdale-Star (231) Star-West Akron #1 (283) Star-Urban (330) Star-West Medina (344)	B E E E E E E E E E
Stoney	D	138-12.47	West Akron-West Medina (346)	Е
Tangy	т	345-138-69	Hyatt (OP)-Tangy (36) Marysville (OP-Tangy (37) Delaware (CSOE)-Tangy (233) East Springfield-Tangy (237) Crissinger-Tangy (292) Kirby-Tangy (286)	e e b e e
Terex	D	138-12.47	Darrow Sub 138 kV Bus	Е
Tod	D	138-12.47	General Motors-Highland (248)	Е
Tusc	D	138-12.47	Star-Urban (330)	E
Urban	D	138-23-22.86	Firestone-Urban (329) Star-Urban (330)	E E

4901:5-5-04(C)(1)(b)

PUCO FORM FE3-T8: Summary Of Existing Substations On Transmission Lines

ATSI-Ohio Edison Company Area

Qubriction Noma	Type Transmission (T)	Matheway	Line Association(\$) (FE-T7 or FE-T9	Line
Substanon Name	Distribution (D)			Existing
weiiingion	I	138-09	Brookside-weilington (287)	E
West Akron	T&D	138 -69- 12.47	Aetna-West Akron (200)	Е
			Barberton-West Akron (207)	E
			(East) Pleasant Valley (CEI) -	E
			West Akron (272)	
			(West) Pleasant Valley (CEI)	E
			West Akron (273)	
			Star-West Akron #1 (283)	Е
			Babb-West Akron (288)	E
			Chamberlin-West Akron (322)	E
			North Medina-West Akron 138 kV (34	E
West Medina	D	138-12.47	Star-West Medina (344)	Е
			North Medina-West Medina 138 kV (3	E
West Ravenna	T&D	138-69-23	East Akron-West Ravenna (235)	Е
			Hanna-West Ravenna #1 (256)	Е
			Hanna-West Ravenna #2 (328)	E
Wickliffe	D	138-4.1 6	Boardman-Riverbend (215)	Е

• • • •

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) Distribution (D)	Voltages	Line Association(s) (FE-T7 or FE-T9 Notation)	Line Existing
Allen Junction	T	345 kV	Allen Junction-Lulu-2	E
			Midway-Allen Junction-11	Е
	Т	138 kV	Allen Junction-Stryker-218	E
			Allen Junction-Vulcan-219	E
			Allen Junction-Silica-233	Е
			Jackman-Allen Junction-205	E
			Westgate-Allen Junction-206	Е
Angola	D	138-12.47 kV	Vulcan-Hawthorne Tap-209	E
Ayersville	D	138-12.47 kV	Richland-Richland-221	Е
Bay Shore	т	345 kV	Bay Shore-Monroe-8	Е
			Davis-Besse-Bay Shore-4	Е
			Bay Shore-Fostoria-9	Е
	Т	138 kV	Bay Shore-Jackman-201	Е
			Bay Shore-Ironville-202	: E
			Bay Shore-Maclean-Lemoyne No 2-203	E
			Bay Shore-Maclean-Lemoyne No 1-247	Е
			Bay Shore-Ottawa-Toussaint-204	Е
			Bay Shore-Decant-243	Е
Bellevue	D	138-12.47 kV	Jackman-Vulcan-220	Е
Brim	T	138-69 kV	Brim Tap-Brim-212	Е
Davis-Besse	Т	345 kV	Davis-Besse-Bay Shore-4	Е
			Davis-Besse-Lemoyne-3	Е
			Davis-Besse-Beaver-5	Е
Decant	Ť	138 kV	Bay Shore-Ottawa-Toussaint-204	Е
			Decant-Ottawa - 216	В
			Bay Shore-Decant-243	Е

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voitages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line <u>Existing</u>
S. W. Defiance	D	138-12.47 kV	Richland-Richland-221	Е
Delta	Т	138 kV	Vulcan Tap-Wauseon-222	Е
Dixie	Т	138-69 kV	Ironville-Jackman-207 Dixie-Locust-234 Dixie-A.M.C. Jeep-224	E E B
Eber	Т	138 kV	Vulcan Tap-Wauseon-222	E
Fayette	D	138-12.47 kV	Allen Junction-Stryker-218	Б
Five Point	D	138-12.47 kV	Five Point-Five Point Tap-208	Е
Fort Industry	D	138-12.47 kV	Bay Shore-Jackman-201	Е
West Fremont	Т	138-69 kV	Lemoyne-West Fremont-232 Lemoyne-West Fremont-244 West Fremont-Fremont Center-245	E E E
Frey	D	138-12.47 kV	West Fremont-Ottawa 216 Bay Shore-Maclean-Lernoyne-247	Е
Gould	Т	138 kV	Maclean-Vulcan-210 Midway-Hawthorne Tap-Gould-223	E E
Hawthome	D	138-12.47 kV	Vulcan-Hawthorne Tap-209	E
Ironville	Т	138-69 kV	Bay Shore-Ironville-202 Ironville-Jackman-207	E E
Jackman	Т	138 kV	Bay Shore-Jackman-201 Ironville-Jackman-207 Jackman-Allen Junction-205 Jackman-Allen Junction-206 Jackman-Vulcan-220	E E E E
Lapier	Т	138 kV	Ironville-Jackman-207	Е

ē

Summary Of Existing Substations On Transmission Lines

<u>Substation Name</u> Lemoyne	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u> 345 kV	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u> Lemoyne-Majestic-7	Line Existing E
	т	138 kV	Lemoyne-Fostoria-6 Lemoyne-Midway-1 Davis-Besse-Lemoyne-3 Lemoyne-Walbridge Junction-214	E E E
			Lemoyne-Midway-213 Lemoyne-Fremont-West End-215 Lemoyne-West Fremont-232 Bayshore-Maclean-Lemoyne-247	E E E E
			Bayshore-Maclean-Lemoyne-203	E
Lime City	D	138-12.47 kV	Chrysler-O.I.Levis (211)	E
Lynch	D	138-7.2 kV	Midway-Hawthorne Tap-Gould-223	E
Lyons	D	138-12.47 kV	Allen Junction-Stryker-218	E
Maclean	т	138-69 kV	Bay Shore-Maclean-Lemoyne-203 Bay Shore-Maclean-Lemoyne-247 Chrysler-Maclean 248	E E E
Maumee	D	138-12.47 kV	Midway-Hawthorne Tap-Gould-223	Е
Midway	Т	345-138-69 kV	Lemoyne-Midway-1 Midway-Allen Junction-11 Midway-Hawthorne Tap-Gould-223 Lemoyne-Midway-213 Richland-Midway-228 Midway-O.I. Levis 247	E E E E E
O. I. Levis	D	138-12.47 kV	Chrysler-O.I.Levis - 211 Midway-O.I. Levis 247	Е
Oregon	D	1 38-12.47 kV	Bay Shore-Maclean-Lemoyne-203	Е
Ottawa	T	138 kV	Ottawa-Lakeview-231 Decant-Ottawa-216 Bay Shore-Ottawa-204 Ottawa-West Fremont-232	E E E
Penta County	D	138-12.47 kV	Maclean-Vulcan-210	В

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line Existing
Reynolds	D	138-12.47 kV	Allen Junction-Vulcan-219	E
Richland	Т	138-69 kV	Richland-Richland-221 Richland-East Lima-226 Richland-Robison Park-227 Richland-Midway-228 Richland-G.M. #1-235 Richland-G.M. #2-236	E E E E E
Ridgeville	D	138-12.47 kV	Richland-Midway-228	B
Silica	D	138-12.47 kV	Allen Junction-Silica-233	Е
Stryker	Т	138-69 kV	Allen Junction-Stryker-218 Ridgeville Junction-Stryker-230	E E
Swanton	Т	138 kV	Vulcan Tap-Wauseon-222	E
Sylvania	D	138-12.47 kV	Jackman-Allen Junction-206	E
Talmadge	D	138-12.47 kV	Jackman-Allen Junction-206	Е
Toussaint	Т	138-69 kV	Bay Shore-Ottawa-204	E
Vulcan	т	138-69 kV	Jackman-Vulcan-220 Allen Junction-Vulcan-219 Vulcan-Hawthome Tap-209	E E E
Waterville	D	138-12.47 kV	Midway-O.I. Levis 247	E
Wauseon	Т	138-69 kV	Vulcan Tap-Wauseon-222 Naomi Tap-Wauseon-229	e E
Wentworth	D	138-12.47 kV	Vulcan Tap-Wauseon-222	E
Westgate	Ť	1 38 kV	Jackman-Allen Junction-206	Е
Whitehouse	D	138- 12.47 kV	Midway-Hawthorne Tap-Gould-223	E
Woodville #2	Т	138 kV	Lemoyne-West Fremont-232	E
York	D	138-34 .5 kV	Vulcan Tap -Wauscon-222	E
Manville (2) Carpenter	D	138- 12.47 kV	Richland 13236	Е
Lear	D	138-12.47 kV	222	,E
First Solar	D	138-1 2.47 kV	Chrysler-O.I.Levis (211)	Е
Toledo Hospital	D	138-12.47 kV	209	Ē
St. Luke's Hospital	D	138-12.47kV	11	E
Chrysler Jeep (Expansion)	D	138.12.47kV	202	E

Summary Of Existing Substations On Transmission Lines

Substation Name Astor Substation	Type Transmission (T) <u>Distribution (D)</u> D	<u>Voltages</u> 138-13.2 kV	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u> 201	Line <u>Existing</u> E
Ashtabula 345 kV Transmission Substation	Т	345-138 kV	4	Е
Ashtabula Plant Transmission Substation	Т	138 kV	225 229	E E
Austinburg Substation	D	138-13.2kV	225	Е
Avon 345 kV Transmission Substation	Т	345-138 kV	i 11	E E
Avon Lake Plant Transmission Substation	Т	138 kV	201 202	E E
Avondale	D	138 - 34kV	201	Е
Charter Steel	D	138 - 34.5 - 11.5	213	Е
Clifford Substation	D	138-13.2 kV	202	Е
Clark Substation	D	138-11 kV	215	E
Clinton Substation	D	138-11 kV	208	В
Crestwood Substation	D	138-13.2 kV	203	Ε
Crystal Substation	D	138-13.2 kV	201	E
Dunbar Substation	D	138-13.2 kV	234	Е
Dodge Substation	D	138-13.2 kV	204 233	E E
Dunkirk Substation	D	138-13.2 kV	206	E
Dell Substation	D	138-13.2 kV	232	Е
Dawson Substation	D	138-33 kV	203 204	E E
Darwin Substation	D	138-13.2 kV	203	Ε
Eastlake 345 kV Transmission Substation	Т	34 5- 138 kV	5 6	E E

Summary Of Existing Substations On Transmission Lines

Substation Name	Typ e Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line <u>Existing</u>
Eastlake Plant Transmission Substation	Т	138 kV	226 228	, E E
Elden Substation	D	138-13.2 kV	208	Ē
Erie Substation	D	138-13.2 kV	234	Ē
Essex Substation	D	138-13.2 kV	208	Е
Eaton Substation	D	138-13.2 kV	231	Е
Edgewater Substation	D	138-13.2 kV	233	E
Emily Substation	D	138-13.2 kV	239	E
Faber Substation	D	138-13.2 kV	211	Е
Freedom Substation	D	138-13.2 kV	233	Е
Furlong Substation	D	138-13.2 kV	208	Е
Fowles Switching Substation	Т	138 kV	10 201 202 206 208 211 231	E E E E E E
Fox Substation	Т	345-138 kV	9 208	E E
Garfield Substation	D	138-13.2 kV	235	Е
Graham Substation	D	138-13.2 kV	208	Е
Griffin Substation	D	138-13.2 kV	211	E
Grant Substation	D	138-66-11 kV	213	E
Grovewood Substation	D	138-33 kV	208	E
Galaxie Substation	D	138-13.2 kV	10 239	E E
Hancock Substation	D	1 38-13.2 kV	213	Ē

Ö

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line <u>Existing</u>
Harding Substation	Т	345-138 kV	9	Е
2			12	E
			13	E
			213	Ē
Hickory Substation	D	1 38-13.2 kV	212	E
Hamilton Substation	D	1 38-11 kV	218	Е
Hummel Substation	D	138-33-11 kV	208	E
Horizon Substation	D	1 38-11 kV	242	Е
Hazel Terminal	Т	138 kV	217	'E
Structure			218	E
			242	E
Iron	D	138 - 13.2kV	?	E
Issler Substation	D	1 38-13.2 kV	213	Е
Inland Substation	Т	345-138 kV	12	Е
			222	E
			240	E
Inca Substation	D	138-13.2 kV	219	E
			220	Ē
Issler Substation	D	138-13.2 kV	213	Е
Imperial Substation	D	138-13.2 kV	211	E
Ivy Substation	D	138-33 kV	222	E
Irwin Substation	D	138-13.2 kV	222	Е
Jordan Substation	D	138-33 kV	222	Е
Jennings Switching	Т	138 kV	213	Е
Substation			215	Ē
			216	Е
			217	Е
			219	E
Judi Substation	D	138-13.2 kV	222	Έ

•

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Tr ansmissi on (T) <u>Distribution (D)</u>	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u>	Line Existing
Juniper Substation	Т	345-138 kV	2	E
•			3	E
			6	Е
			7	· E
			8	E
			15	Е
			211	E
			221	Е
			222	Е
Kendall Substation	D	138-13.2 kV	223	E
Keith Substation	D	138-13.2 kV	236	Е
Kipling Substation	D	138-13.2 kV	222	Ĕ
Krick Substation	D	138-13.2 kV	211	Ē
Kelly Substation	D	138-13.2 kV	223	. Е
Kepler Substation	D	138-13.2 kV	236	E
Kenyon Substation	D	138-13.2 kV	236	E
Lark Substation	D	138-13.2 kV	236	Ε
Liberty Switching	Т	138 kV	224	E
Substation			236	Е
Leroy Center Switching Substation	Т	1 38 kV	225 226	E E
Lester Substation	D	138 13 2 LV	273	Ę
	Ľ	130-13.2 KV	to the second	Ľ
Longfield Substation	D	138-13.2 kV	211	В
Lincoln Substation	D	138-13.2 kV	224	E
Lamont Substation	D	138-13,2 kV	224	E
Lorain Switching	r	138 kV	202	В
Substation			205	Е
			238	Е

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) <u>Distribution (D)</u> T	<u>Voltages</u>	Line Association(s) (FE-T7 or FE-T9 <u>Notation)</u> 218	Line <u>Existina</u> F
Transmission Substation	1	136 K V	240	E
Lloyd Substation	D	1 38-33 kV	224	E
Marble Substation	D	138-13.2 kV	224 228	E B
Mayfield Substation	D	138-33 kV	211 224 225	E E E
Maxwell Substation	D	138-13.2 kV	211	E
Newburgh Substation	D	138-66-11 kV	222	E
Newell Substation	D	138-13.2 kV	226	E
Northfield Substation	D	138-33 kV	211	Е
Nottingham Switching Substation	Т	138 kV	222	E
Nelson Substation	D	138-13.2 kV	211	Б
Newport Substation	D	138-13.2 kV	224	В
Nash Substation	D	138-13.2 kV	226	Ε
Nathan Substation	D	138-33 kV	226	В
Norway Substation	D	138-13.2 kV	211	Е
Nursery Substation	D	138-33-13.2 kV	226	E
Pawnee Substation	D	1 38-13.2 kV	243	Е
Pinegrove Substation	D	1 3 8-1 3.2 kV	227	E
Pleasant Valley Switching Substation	Т	138 kV	211 212 213 220	E E E B

Summary Of Existing Substations On Transmission Lines

Substation Name	Type Transmission (T) Distribution (D)	Voltages	Line Association(s) (FE-T7 or FE-T9 Notation)	Line Evisting
Perry Plant	T	345 kV	5	E
Transmission Substation			12	Е
			14	E
Progressive Insurance	D	138-13.2 kV		Е
Queen	D	138-13.2 kV	,	Е
Ruth Substation	D	138-13.2 k¥	Existing 33 kV System	
Sanborn Substation	D	138-33 kV	225	Е
Spruce Substation	D	138-13.2 kV	225	Е
Zenith Substation	D	138-13.2 kV	229	E
GE Quatz Strongsville	D	138-13kV	Q-14-AV-EY-X	Е
Steelyard Commons	D	138-13kV	Q-12-HD-JG-X	E
Slater	D	138-13kV	201	Е
Ashtabula East Yard	D	138-13kV	Breaker B-92	Е

4901 PUC	:5-5-04(D)(1) Q FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines
ATS	-Ohio Edison Company A	\rea
1	Line Name and Number	Chamberlin - Shalersville 138kV Line
2	Point of Origin and Termination	O-Chamberlin Substation T-Shalersville Substation
3	Right of Way	Length in mile: Approx.12.0 Miles, 9.5 miles of existing and 2.5 miles of new Average width in feet: 225 Number of transmission lines above 125 kV: 1
4	Voltage	138,000 Volts Operation with approximately 9.5 miles constructed for 345,000 Volts
5	Application for Certificate	2009
6	Construction	Commence: 2010 Complete: 2012 Operation: 2012
7	Capital Investment	Land Acquisition: 0 Facilities and Equipment: \$9,400,000
8	Substations	No. of planned substations: None
9	Supporting Structures	Conceptually planned as 9.5 miles of existing steel towers, 2.5 miles of wood poles
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Relieve first contingency line overloads under peak loading with generation on-line.

 12
 Consequence of Line
 Existing facilities would be overloaded, resulting in decreased equipment life

 Construction Deferment
 or Termination
 and possible equipment failure. Based on 2012 loads, loss of the Chamberlin 345/138kV

 transformer overloads the Chamberlin - Shalersville 69kV line. 122%SN -101%SE (76/93MVA)

13 Miscellaneous

Additional load growth is expected in the area. Included in MTEP07 Appendix A, MTEP08 Appendix A, and MTEP09 Appendix A

SI	il-Ohio Edison Company Area				
	Line Name and Number	East Springfield-London #2 138kV			
	Point of Origin and Termination	O - East Springfield Substation T - London Substation			
I	Right of Way	Length in mile: 15.5 miles, 12.3 miles existing towers and 3.6 miles new construction Average width in feet: 60 Number of transmission lines above 125 kV: 1			
	Voltage	138,000 Volts			
,	Application for Certificate	2012			
i	Construction	Commence: 2013 Complete: 2015 Operation: 2015			
•	Capital Investment	Facilities and Equipment: \$26,500,000 (Includes cost for this line and the London -Tangy 138 kV line)			
	Substations	No. of planned substations: N/A Voltage: N/A Location: N/A			
•	Supporting Structures	Existing steel towers, and new wood poles			
•	Participation with other Utilities	None			
	Purpose of Planned Transmission Line	Provides FE the ability to sustain the loss of two 138kV transmission lines (2 tle lines to DPL - Clark-Urbana and Clark-Greene 138 kV lines) without having to drop several hundred MW of load. With the addition of 138kV line from Tangy to London back to E.Springfield, FE will be less dependent on importing from AEP through the London-Beatty 138kV line.			
2	Consequence of Line Construction Deferment	FE will have to drop 200-300 MW of load to prevent system collapse starting in 2015.			
	Or Temination				
;	Miscellaneous	Included in MTEP07 Appendix C, MTEP08 Appendix C, and MTEP09 Appendix C			

Specifications Of Planned Electric Transmission Lines

,

4901:5-5-04(D)(1) PUCO FORM FE3-T9:

Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

- 1 Line Name and Number
- 2 Point of Origin and Termination O - London Substation T - Tangy Substation
- 3 Right of Way Length in mile: 38.6 mi Average width in feet: 60 Number of transmission lines above 125 kV: 1

London-Tangy 138kV

- 4 Voltage 138,000 Volts
- 5 Application for 2012 Certificate

6

7

- Construction Commence: 2013
 - Complete: 2015 Operation: 2015
- Capital Investment Facilities and Equipment: \$26,500,000 (includes cost for this line and the E. Springfield - London #2 line)
- 8 Substations No. of planned substations: N/A
 - Voltage: N/A Location: N/A
- 9 Supporting Structures Wood poles
- 10 Participation with other None

Construction Determent

- Utilities
- Purpose of Planned Transmission Line
 Provides FE the ability to sustain the loss of two 138kV transmission lines (2 tie lines to DPL - Clark-Urbana and Clark-Greene 138 kV lines) without having to drop several hundred MW of load. With the addition of 138kV line from Tangy to London back to E.Springlield, FE will be less dependent on importing from AEP through the London-Beatty 138kV line.
 Consequence of Line
 FE will have to drop 200-300 MW of load to prevent system collapse starting in 2015.
 - Or Temination
- 13 Miscellaneous

Included in MTEP07 Appendix C, MTEP08 Appendix C, and MTEP09 Appendix C

4901 PUC	:5-5-04(D)(1) O FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines
ATS	-Ohio Edison Company /	Area
1	Line Name and Number	Barberton-South Akron 138 kV
2	Point of Origin and Termination	O - Barberton Substation T - South Akron Substation
3	Right of Way	Length in mile: 8.1 Average width in feet: 60 Number of transmission lines above 125 kV; 1
4	Voltage	138,000 Volts
5	Application for Certificate	Letter of Notification
6	Construction	Commence: 2015 Complete: 2017 Operation: 2017
7	Capital Investment	Land Acquisition: 0 Facilities and Equipment: \$3,500,000
8	Substations	No. of planned substations: N/A
		Voltage: N/A Location: N/A
9	Supporting Structures	Existing tower line
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Based on 2017 loads, loss of the Star - Urban 138 kV Line at Star loads the Barberton - South Akron 23 kV Line to 100% SN and SE
12	Consequence of Line Construction Deferment Or Ternination	Based on 2017 loads, the Dale-West Canton Line loads to 110% normally and loads to 145% SN and 108% SE under loss of the South Canton - Star 345 kV Line
13	Miscellaneous	Included in MTEP07 Appendix C, MTEP08 Appendix C, and MTEP09 Appendix C

Õ •

4901:5-5-04(D)(1) PUCO FORM FE3-T9:

0

 Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

1	Line Name and Number	Loop existing Chamberlin-Mansfield 345 kV into Hanna Sub to create Chamberlin-Hanna 345 kV Hanna-Mansfield 345 kV
2	Point of Origin and Termination	O - Chamberlin Substation T - Hanna Substation
3	Right of Way	Length in mile: Approx 0.7 miles of new construction Average width in feet: 100
4	Voltage	345,000 Volts
5	Application for Certificate	Letter of Notification
6	Construction	Commence: 2012 Complete: 2013 Operation: 2013
7	Capital Investment	Facilities and Equipment \$5,600,000
8	Substations	No. of planned substations: N/A
		Location: N/A
9	Supporting Structures	Existing Steel Pole
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	In the 2013 timeframe, loss of the Mansfield-Chamberlin line with Penry and Eastlake out of service results voltage Instability in the CEI area. Additionally, loss of Mansfield-Chamberlin and Star- South-Canton with Perry out of service results in potential voltage instability in the CEI area
12	Consequence of Line Construction Deferment Or Temination	The loss of the Chamberlin-Mansfield 345 kV Line with the Perry Generator out of service has caused loading problems on the Hanna-Juniper 345 kV Line. This project reduces the exposure on the Chamberlin-Mansfield 345 kV Line by splitting it at Hanna Substation (78 miles to 26 miles)
13	Miscellaneous	Included in MTEP07 Appendix A, MTEP08 Appendix A, and MTEP09 Appendix A

4901 PUC	:5-5-04(D)(1) 0 FORM FE3-T9: 5	Specifications Of Planned Electric Transmission Lines
ATS	-Ohio Edison Company A	rea
1	Line Name and Number	Loop to New Berlin Lake Area Sub to create: Bluebell-Berlin Lake Area Sub 138 kV Niles-Berlin Lake Area Sub 138 kV
2	Point of Origin and Termination	Bluebell-Berlin Lake Area Sub 138 kV O - Bluebell T - Berlin Lake Area Sub Niles-Berlin Lake Area Sub 138 kV O - Berlin Lake Area Sub T - Niles
3	Right of Way	Length in mile: Approx imately 1 mile of 138 kV line Average width in feet: 60
4	Voltage	138,000 Volts
5	Application for Certificate	Letter of Notification
6	Construction	Commence: 2012 Complete: 2013 Operation: 2013
7	Capital Investment	\$14,100,000
8	Substations	No. of planned substations: 1 Voltage: 138-69 kV Location: Berlin Lake Area
9	Supporting Structures	Wood poles
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Long-term solution resulting in increased capacity, increased voltage, decreased line exposure. Loss of either end of the Boardman-Pidgeon North 69kV line results in thermal overloads on the in- service end, plus voltages below 83% on the remote end.
12	Consequence of Line Construction Deferment	Possible loss of 75+ MVA for N-1 condition.
	Or Temination	
13	Miscellaneous	Not included in MTEP07, MTEP08 or MTEP09. Planned to be submitted for MTEP10

. .

4901:5-5-04(D)(1) PUCO FORM FE3-T9:

(

0

Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

1	Line Name and Number	Loop to Henrietta Sub to create: Brookside-Henrietta 138 kV Beaver-Henrietta 138 kV
2	Point of Origin and Termination	Brookside-Henrietta 138 kV O-Brookside T-Henrietta Beaver-Henrietta 138 kV O-Beaver T-Henrietta
3	Right of Way	Length in mile: Several hundred feet of 138 kV Average width in feet: 60
	Right of Way	
4	Voltage	138,000 Volts
5	Application for Certificate	Letter of Notification
6	Construction	Complete: 2010 Complete: 2011 Operation: 2011
7	Capital Investment	\$6,100,000
8	Substations	No. of planned substations: 1 Voltage: 138-69 kV Location: Lorain County
9	Supporting Structures	Wood poles
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Based on the model year 2007 FE load flow case, loss of the Johnson Terminal of the Johnson- Oberlin 69 kV Line causes extremely low voltages (below 70%) at Amherst Muni. and overloads the Oberlin-Shinrock 69 kV Line by 150%. This situation existed for over 400 hrs in 2006. The mitigation measure is to quickly drop Amherst Muni until they can reduce their load below the level needed to eliminate the criteria violations.
12	Consequence of Line Construction Deferment Or Temination	It is necessary to drop Amherst Muni for the loss of the Johnson Terminal of the Johnson-Oberlin 69 kV Line. The amount of time that this contingency problem exists increases by several hundred hours every year
13	Miscellaneous	Included in MTEP08 Appendix A and MTEP09 Appendix A

4901: PUC(4901:5-5-04(D)(1) PUCO FORM FE3-T9: Specifications Of Planned Electric Transmission Lines				
ATSH	Ohio Edison Company A	rea			
1	Line Name and Number	Broadview-E. Springfield 138 kV and Broadview - Tangy 138 kV Create 138kV loop around city of Springfield			
2	Point of Origin and Termination	O - Point on the existing East Springfield-Tangy 138 kV Transmission Line T- existing Broadview distribution substation			
3	Right of Way	Length in mile: Approximately 8 miles of 138 kV line Average width in feet: 150 Number of transmission lines above 125 kV: 2			
4	Voltage	138,000 Volts			
5	Application for Certificale	Filing Date: 2011			
6	Construction	Commence: 2013 Complete: 2015 Operation: 2015			
7	Capital Investment	Land Acquisition: Existing + 8 miles of new right of way Facilities and Equipment \$13,100,000			
8	Substations	No. of planned substations: 1 (Expand existing 69 kV sub Into 139 kV) Voltage: 138,000 volts			
9	Supporting Structures	Wood Poles/Tower			
10	Participation with other Utilities	None			
11	Purpose of Planned Transmission Line	Load Center Growth Provides FE the ablity to sustain the loss of two 138kV transmission lines (2 tie lines to DPL - Clark-Urbana and Clark-Greene 138 kV lines) without having to drop several hundred MW of load. With the addition of 138kV line from Tangy to London back to E.Springfield, FE will be less dependent on importing from AEP through the London-Beatty 138kV line.			
12	Consequence of Line Construction Deferment	Loss of both DP&L ties shows possibility of voltage collapse in Springfield division. Local generation at Mad River has been able to mitigate this contingency in the past, but the load in the area is expected to exceed the amount of capacity generated by Mad River combined with the thermal capability of the remaining lines feeding the Springfield load. In addition, it is unknown how long the generation at Mad River will be available.			
	Or Temination				
13	Miscellaneous	Included in MTEP07 Appendix C, MTEP08 Appendix C, and MTEP09 Appendix C			

Ó

. 1

;

4901:6-5-04(D)(1) PUCO FORM FE3-T9: Specifications Of Pla

Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

1	Line Name and Number	Hayes Substation Beaver-Hayes 345 kV Davis Besse-Hayes 345 kV Greenfield-Hayes #1 138 kV Greenfield-Hayes #2 138 kV Avery-Hayes 138 kV
2	Point of Origin and Termination	Beaver-Hayes 345 kV O-Beaver T-Hayes Davis Besse-Hayes 345 kV O-Davis Besse T-Hayes Greenfield-Hayes #1 138 kV O-Greenfield T-Hayes Greenfield-Hayes #2 138 kV O-Greenfield T-Hayes Avery-Hayes 138 kV O-Avery T-Hayes
3	Right of Way	Length in mile: 59.2 mile of new 345 kV on existing tower. Approx 1 mile of new 138 kV line Average width in feet: Existing. New 138 kV would be 60 foot right of way.
4	Voltage	345,000 and 138,000 Volts
5	Application for Certificate	
6	Construction	Commence: 2014 Complete: 2018 Operation: 2018
7	Capital Investment	\$36,000,000
8	Substations	No. of planned substations: 1 Voltage: 345-138 kV Location:
9	Supporting Structures	Wood pole for new 138 kV line
10	Participation with other	None
11	Purpose of Planned	To mitigate low voltages in the Sandusky area under post-contingency conditions. Based on 2018 loads, loss of the Ottawa leed into the Sandusky area cause low voltages (85%-
12	Transmission Line Consequence of Line	87%) over most of the former Bay Division Potential loss of load in Sandusky area under post-contingency. In addition to not addressing published report findings, risk of contingency overload of Lakeview- Otawa 138kV Line during extreme transfer conditions, which may result in concestion, operational
	Construction Determent Or Temination	switching, etc. to alleviate condition.
13	Miscellaneous	Substation. The site location is in close proximity to where the 2 - 138 kV lines (Avery-Greenfield and Beaver-Greenfield) cross the property. (1) The Avery-Greenfield 138 kV line would be split by Hayes Substation and become the Avery- Hayes 138 kV line and one of the two Greenfield-Hayes 138 kV lines
		(2) The portion of the Beaver-Greenfield 138 kV line that is not being converted to 345 kV (the portion that departs from the 345 kV tower and heads to Greenfield Sub) would become the second of the Greenfield-Hayes 138 kV lines. Since the substation property is not right where the 138 kV lines head north to Greenfield, there would be a small amount of new 136 kV line (approximately 0.8-0.9 miles) that would be needed from Hayes substation to where the existing line would head north since we have to abandon that position on the 345 kV tower. Included in MTEP09 Appendix C

4901:5	-5-04(E)(1)
PUCO	FORM	FE3-T9:

Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

- 1 Line Name and Number West Medina Substation on the N Medina-Seville 138 kV line
- 2 Point of Origin N Medina W Medina 138 kV and Termination O-N Medina T-W Medina Seville- W Medina 138 kV O-Seville T-W Medina
- 3 Right of Way Length in mile: several hundred feet of 138 kV line Average width in feet: 60 feet
- 4 Voltage 138,000 Volts
- 5 Application for 2011 Certificate
- 6 Construction Commence: 2012 Complete: 2014 Operation: 2014
- 7 Capital Investment \$6,500,000
- 8 Substations No. of planned substations: 1 Voltage: 138-69 kV Location:
- 9 Supporting Structures

10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Places a source where the load center is. The Region is planning on adding a Mod Sub on the Medina - Star 69 kV Line Relieves overload condition under post-contingency Based on 2013 loads and the addition of mod-sub, loss of the Medina - West Akron 69 kV Line loads the Medina - Star 69 kV line to 118% SN (76 MVA) and 97% SE (93 MVA). Without the mod sub the loadings are 97% SN (76 MVA) and 80% SE (93 MVA)
12	Consequence of Line Construction Deferment Or Temination	The loss of the Medina - West Akron 69 kV Line overloads loads the Medina - Star 69 kV Line.
13	Miscellaneous	Included in MTEP07 Appendix A, MTEP08 Appendix A, and MTEP09 Appendix A
4901:5-5-04(D)(1)		
-------------------	----	
PUCO FORM FE3-T	9:	

Specifications Of Planned Electric Transmission Lines

ATSI-Ohio Edison Company Area

- 1 Line Name and Number MISO G689 Generation Project on the Highland-Sammis 345 kV line
- 2 Point of Origin Sammis-G689 345 kV and Termination O-Sammis T-G689 Susbtation Highland - G689 345 kV O-Highland_ T-G689 Susbtation 3 Right of Way Length in mile: 1.25 miles Average width in feet: 345,000 Volts Voltage 4 Application for 2010 5 Certificate Construction Commence: 2011 6 Complete: 2012 Operation: 2012 \$7,600,000 Capital Investment 7
- 8 Substations No. of planned substations: 1 Voltage: 345-18 kV Location: Coumbiana County, OH (approximately 6 miles from Sammis Plant)
- 9 Supporting Structures

 10
 Participation with other Utilities
 None

 11
 Purpose of Planned Transmission Line
 Interconnection commitment

 12
 Consequence of Line Construction Deferment Or Temination
 Violation of contractual Interconnection agreement

13 Miscellaneous Included as part of the MISO generation interconnection queue (Queue #: G689)

1	Line Name and Number	Ashtabula-Mayfield 138 kV Loop to Stacy Substation
2		
	Point of Origin and Termination	O - Point on the Ashtabula-Mayfield 138 kV Transmission Line T - Stacy Substation
3	Right of Way	Length in mile: 14.7 Average width in feet: 60 Number of transmission lines above 125 kV: 2 (Loop designed for double circuit construction)
4	Voltage	138,000 Volts
5	Application for Certificate	07-0171-EL-BTX
6	Construction	Commence: 2009 Complete: 2012 Operation: 2012
7	Capital Investment	Facilities and Equipment: \$24,000,000
8	Substations	No. of planned substations: 1 - Stacy Substation Voltage: 138 - 36kV Location: Geauga County
9	Supporting Structures	Wood poles
10	Participation with other Utilities	None
11	Purpose of Planned	With the loss of any one of the Mayfield transformers or circuits which serves the Middlefield erea thermal and voltage violations exist. Mayfield 36kV Substation will be overloaded by 7% in 2007 and 9% in 2008. R-21&22-Mayfield circuits will exceed their planned ratings by 17% in 2007 and
	Transmission Line	19% in 2008.
12	Consequence of Line	Continued low voltage, poor reliability and degraded customer relations. Routine maintenance is almost impossible even under low load conditions
	Construction Deferment	
	O. T	

ł

 -

4901 PUC	:5-5-04(D)(1) O FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines
ATSI	-CEI Company Area	
1	Line Name and Number	CPP 4th 138 kV Interconnection
2	Point of Origin and Termination	Inland Substation O-Inland 138 kV T-Holton 138 kV (CPP owned)
3	Right of Way	Length in mile: 0.1 mjiles Average width in feet: 60 feet
4	Voltage	138,000 Volts
5	Application for Certificate	Filed
6	Construction	Commence: 2009 Complete: October 2010 Operation: October 2010
7	Capital Investment	
8	Substations	No. of planned substations:
		Voltage Location:
9	Supporting Structures	Wood poles
10	Participation with other Utilities	Cleveland Public Power (CPP)
11	Purpose of Planned Transmission Line	Interconnection commitment
12	Consequence of Line Construction Deferment Or Temination	Failure to meet contractual obligations.
13	Miscellaneous	Included in MTEP09 Appendix A

4901 PUC	:5-5-04(D)(1) 0 FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines	
ATSI	-CEI Company Area		
1	Line Name and Number	CPP 5th 138 kV interconnection on the Juniper-Jennings Q-15 138 kV line	
2	Point of Origin and Termination	Juniper-Harvard (CPP) 138 kV O-Harvard (CPP) T-Juniper Harvard (CPP) - Jennings 138 kV O-Harvard (CPP) T-Jennings	
3	Right of Way	Length in mile: 0.3 miles of new 138 kV line Average width in feet: 60 feet	
4	Voltage	138,000 Volts	
5	Application for Certificate	2010	
6	Construction	Commence: 2011 Complete: 2012 Operation: 2012	
7	Capital Investment		
8	Substations	No. of planned substations: 1 (Harvard Substation - CPP)	
		Voltage: 138 kV Location: Cuyahoga County	
9	Supporting Structures		
10	Participation with other Utilities	Cleveland Public Power (CPP)	
11	Purpose of Planned Transmission Line	Interconnection commitment	
12	Consequence of Line Construction Deferment Or Temination	Failure to meet contractual obligations.	
13	Miscellaneous	Not yet submitted to MTEP. Planned to be submitted to MTEP10.	

.

4901 PUC	:5-5-04(D)(1) O FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines
ATSI	-CEI Company Area	
1	Line Name and Number	iniand-Jordan Q-11 and Inland-Jordan Q-14 loops to Clinic Health Substation
2	Point of Origin and Termination	Inland-Clinic Health O-Inland T-Clinic Health O-Inland T-Clinic Health Jordan-Clinic Health O-Jordan T-Clinic Health Jordan-Clinic Health O-Jordan T-Clinic Health
3	Right of Way	Length in mile: 0.3 miles of new 138 kV line Average width in feet: 60
4	Voltage	138,000 Volts
5	Application for Certificate	2010
6	Construction	Commence: 2010 Complete: 2012 Operation: 2012
7	Capital Investment	
8	Substations	No. of planned substations: 1 Voltage: 138-36 kV Location: Cleveland , Ohio
9	Supporting Structures	
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	To serve area customer load. Load is growing significantly in the adjacent area.
12	Consequence of Line Construction Deferment Or Temination	Inability of existing system to serve needs of growing load.
13	Miscellaneous	Not yet submitted to MTEP. Planned to be submitted to MTEP10.

•

4901 PUC	:5-5-04(D)(1) O FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines	
ATSI	-CEI Company Area		
1	Line Name and Number	Pleasant Valley-West Akron 138 kV loop to Harper Substation	
2	Point of Origin and Termination	Hamper-Pleasant Valley 138 kV O-Hamper T-Pleasant Valley Harper -West Akron 138 kV O-Harper T-West Akron	
3	Right of Way	Length in mile: 2 spans (several hundred feet) Average width in feet: 60	
4	Voltage	138,000 Volts	
5	Application for Certificate	Letter of Notification: 2010	
6	Construction	Commence: 2011 Complete: 2011 Operation: 2012	
7	Capital Investment		
8	Substations	No. of planned substations: 1 Voltage: 138-12.47 kV Location:	
9	Supporting Structures		
10	Participation with other Utilities	None	
11	Purpose of Planned Transmission Line	New mod sub location is closest to load center allowing least cost option for distribution line construction and also provides load relief to both Hickory and Galaxie Substations.	
12	Consequence of Line Construction Deferment Or Temination	Overloads of area facilities.	
13	Miscellaneous	Not yet submitted to MTEP. Planned to be submitted to MTEP10.	

•

4901: PUC(:5-5-04(D)(1) D FORM FE3-T9: \$	specifications Of Planned Electric Transmission Lines	
ATSI	Toledo Edison Company	Area	
1	Line Name and Number	Re-configuration for new ring bus at BP Oli Husky Sub to create: Bayshore-BP Oil Husky #1 138 kV BP Oil Husky-Jackman 138 kV Bayshore-BP Oil Husky #2 138 kV Lemoyne-BP Oil Husky 138 kV	
2	Point of Origin and Termination	Bayshore-BP Oil Husky 138 kV O-Bayshore T-BP Oil Husky BP Oil Husky O-BP Oil Husky T-Jackman Lemoyne-BP Oil Husky 138 kV O-BP Oil Husky T-Lemoyne	
3	Right of Way	Length in mile: Existing plus 4 new 138 kV extension from existing lines to BP Husly Sub Average width in feet: 150	
4	Voltage	138,000 Volts	
5	Application for Certificate	Letter of Notification	
6	Construction	Commence: 2009 Complete: 2011 Operation: 2011	
7	Capital Investment	\$2,500,000	
8	Substations	No. of planned substations: N/A	
		Voltage: N/A Location: N/A	
9	Supporting Structures		
10	Participation with other Utilities	None	
11	Purpose of Planned Transmission Line	Satisfy connection request. Customer is planning significant load growth which is unable to be served on the 69 kV system without causing siginficant overloads under post-contingency conditions.	
12	Consequence of Line Construction Deferment Or Temination	System modifications required to serve additional customer load.	
13	Miscellaneous	Construct 5 new steel pole structures and loop (2) 138 kV circuits (from the Bayshore-Jackman and Bayshore-Lemoyne lines) into the new BP Husky 138/69 kV sub. (Line lengths are approx. 200 ¹ -400' each) Included in MTEP09 Appendix A	

•

4901:5-5-04(D)(1) PUCO FORM FE3-T9: Specifications Of Plan

Specifications Of Planned Electric Transmission Lines

ATSI-Toledo Edison Company Area

1	Line Name and Number	Re-configuration for Fulton Sub to create: Allen Junction-Fulton 345 kV Fulton-Midway 345 kV Fulton-North Star Steel 345 kV Fulton-Swanton 138 kV Delta-Fulton 138 kV
2	Point of Origin and Termination	Alleri Junction-Fulton 345 kV O-Allen Junction T-Fulton Fulton-Midway 345 kV O-Fulton T-Midway Fulton-North Star Steel 345 kV O-Fulton T-North Star Steel 345 kV O-Fulton T-North Star Steel Fulton-Swanton 138 kV O-Fulton T-Swanton Delta-Fulton 138 kV O-Delta T-Fulton
3	Right of Way	Length in mile: 1 mile of new 138 kV line Average width in feet: 60
4	Voltage	138,000 Volts
5	Application for Certificate	2014
6	Construction	Commence: 2015 Complete: 2017 Operation: 2017
7	Capital Investment	\$16,500,000
8	Substations	No. of planned substations: 1
		Voltage: 345-138 kV Location: N/A
9	Supporting Structures	Wood poles
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Fulton Substation provides a long term solution to voltage and thermal loading concerns in the fast growing area west of Toledo Airport. The other option does not provide as much support as Fulton and will require substantially more siting work. The Delta area has been the target of industrial concerns like ZincOx, a proposed 30 MW EAF recycling facility. Fulton will mitigate voltage fluctuations for customers like ZincOx better than the other option.
		Based upon 2010 loads, the loss of Vulcan-Wentworth 138 kV Line Segment results in voltage at Wentworth of 0.925 pu and loading of Naomi-Wausson 138 kV line section of 99.2% of SE rating.
		Based upon 2015 loads, the loss of Vulcan-Wentworth 138 kV Line results in voltage at Wentworth of 0.904 pu and loading of Naomi-Wauseon 138 kV line section of 111% of SE rating (which is to be reconductored as a separate project)
		* Note: Zinc Ox load (25-30 MW) is expected to begin service in late 2010.
12	Consequence of Line Construction Deferment Or Temination	Voltage and thermal criteria violations.
13	Miscellaneous	Included in MTEP09 Appendix C

4001	•5-5-04(D)(1)		
PUC	O FORM FE3-T9:	Specifications Of Planned Electric Transmission Lines	
ATSI	-Toledo Edison Company	у Агеа	
1	Line Name and Number	Delta-Wauseon 138 kV Tap to ZincOx	
2	Point of Origin and Termination	Tap off Delta-Wauseon 138kV line	
З	Right of Way	Length in mile: approximately 1 miles Average width in feet: 60	
4	Voltage	138,000 Volts	
5	Application for Certificate	LON Filed 1/20/2009	
6	Construction	Commence: 2009 Complete: 2010 Operation: 2010	
7	Capital Investment	\$125,000	
8	Substations	No. of planned substations: N/A	
		Voltage: 138 KV Location: N/A	
9	Supporting Structures	Wood poles	
10	Participation with other Utilities	None	
11	Purpose of Planned Transmission Line	Customer service request	
12	Consequence of Line Construction Deferment Or Temination	Violation of contractual agreement	
13	Miscellaneous	Included in MTEP09 Appendix A	

t

4901:5-5-04(D)(1) PUCO FORM FE3-T9: Specifications Of Planned Electric Transmission Lines ATSI-Toledo Edison Company Area 1 Line Name and Number Re-configuration for new ring bus at Fayette Sub to create: Allen Junction-Fayette 138 kV 2 Point of Origin and Termination Allen Junction-Fayette 138 kV T-Fayette Fayette-Stryker 138 kV

O-Fayette T-Stryker 3 Right of Way Length in mile: Existing Average width in feet: Existing

- 4 Voltage 138,000 Volts
- 5 Application for Certificate
- 6 Construction Commence: 2009 Complete: 2010 Operation: 2010
- 7 Capital Investment \$8,500,000
- 8 Substations No. of planned substations: 1 Voltage: 138-69 kV Location: N/A
- 9 Supporting Structures

10

11

Participation with other None Utilities The recommended solution meets all of the requirements for the merger settlement for provision of the ability to provide firm backup service and facilitates implementation of requested primary services consistent with the long range area plan for Williams County in a timely, cost effective Purpose of Planned manner. Transmission Line For 2009 assessment and assuming 10 MW firm backup at Pioneer and 15 MW firm backup at Bryan, for the loss of the Stryker-West Unity 69 kV line section, voltage at West Unity is 82.5%, Pioneer is 82.9%, Exit 2 is 83.6%, Montpelier is 83.6%, Edon is 85% and Edgerton is 89.3%. If Holiday City/Chase Brass were to take service from the FE facilities rather than JV-4, the 69 kV line from Stryker-West Unity Tap-West Unity would load in excess of 100%. The addition of the Holiday City/Chase Brass load (for which we have an connection application) drives these voltages lower and closer to potential voltage collapse

- 12 Consequence of Line Violation of contractual agreement Construction Deferment Or Ternination
- 13 Miscellaneous

Included in MTEP08 Appendix A and MTEP09 Appendix A

4901:5-5-04(D)(1) PUCO FORM FE3-T9:

Specifications Of Planned Electric Transmission Lines

ATSI-Toledo Edison Company Area

1	Line Name and Number	Bayshore-Maclean-Lemoyne 3-terminal line elimination to create: Bayshore-Lemoyne 138 kV Bayshore-Maclean 138 kV Maclean-Lemoyne 138 kV
2	Point of Origin and Termination	Bayshore-Lemoyne 138 kV O-Baysore T-Lemoyne Bayshore-Maclean 138 kV O-Baysore T-Maclean Maclean-Lemoyne 138 kV O-Lemoyne T-Maclean
3	Right of Way	Length in mile: Existing Average width in leet: Existing
4	Voltage	138,000 Volis
5	Application for Certificate	Filed 8/26/08
6	Construction	Commence: 2009 Complete: 2011 Operation: 2011
7	Capital Investment	\$1,500,000
8	Substations	No. of planned substations: N/A Voltage: N/A Location: N/A
9	Supporting Structures	Existing
10	Participation with other Utilities	None
11	Purpose of Planned Transmission Line	Mitigates contingency overloads and improves reliability by minimizing overtrippings and simplifying switching. Improves loadability of the transmission lines. Based on 2009 loads, the NERC category B outage of Bayshore-Lemoyne-Maclean (Q-5) results in loadings on Walbridge JctMaclean portion of Q-4 of 98.5% of SE (292 MVA). Assuming 1% load growth, this facility would overload by summer 2011.
12	Consequence of Line Construction Deferment Or Temination	Overtrippings, switching errors and contingency overloads.Must Do per transmission Planning
13	Miscellaneous	Included in MTEP07 Appendix A, MTEP08 Appendix A, and MTEP09 Appendix A

•

4801:5-5-04(D)(2) PUCO FORM FE3-T10:	Summary Of Propose	d Substations				
ATSI-Ohio Edison Company Area					Line Existing or	Minimum
Substation Name:	Type of Substation	<u>Voltage (kV)</u>	Timing	Line Association(s):	Proposed:	Site Acreage:
Henrietta Substation	Transmission	138 - 69 kV	ISD: 6/11	Beaver-Brookside 139 kV (209) Loop to Henrietta Sub	Existing Proposed	
Berlin Lake Area Substation	Transmission	138 - 6 9 kV	ISD: 6/13	Niles-Bluebell 138 kV (268) Loop to Berlin Lake Ares Sub	Existing Proposed	
Hayes Substation	Transmission	345 - 138 kV	ISD: \$/18	Beaver - Davis Besse #2 345 kV Greenfield-Hayes #1 138 kV (formerly Avery-	Proposed	
				Greentiekd 138 kV) Greentiekd-Hayes #2 138 kV (formerly Beaver-	Proposed	
				Greentield 136 kV) Avery-Hayes 138 kV (formeriy Avery-Greentield	Proposed	
				138 kV)	Proposed	
Broadview	Transnasion	138 - 69 kV	ISD: 6/15	East Springfield - Tangy 138 kV	Exterting	
				Loop to Broadview Sub	Praposed	
				Clark - Urbana 138 kV	Existing	
				Loop to Broadview Sub	Proposed	
West Medina	Trenemiseion	130 - 69 kV	ISD: 12/14	North Medina - Seville 138 kV	Extering	
				Loop to West Medina Sub	Proposed	

FirstEnergy Companies

,

4901:5-5-04(D)(2) PUCO FORM FE3-T10:

IO: Summary Of Proposed Substations

ATSI-Cleveland Electric Illuminating Company Area					Line Existing or	Minimum
<u>Substation Name:</u>	Type of Substation	<u>Voltage (kV)</u>	Timing	Line Association(s);	Proposed:	Site Acreage:
Stacy Substation	Distribution	136 - 36kV	ISD: 6/12	Q-3-AT-MF-X Loop to Stacy Sub	Proposed	
Clinic Health	Distribution	138 - 36 KV	ISD: 12/12	Juniper-Lioyd (Intend-Jordan Q-11) 138 kV Loop to Cleveland Clinic Sub Juniper-Lioyd (Intend-Jordan Q-14) 138 kV Loop to Cleveland Clinic Sub	Existing Proposed Existing Proposed	
Hørper	Distribution	138 - kV	ISD: 6/13	Pleasant Valley-West Alron (OE) 136 kV Loop to Harper Sub	Existing Proposed	
CPP 4th Interconnection (Hotton - near Intend Substation)	Transmission	138 KV	ISD: 10/10	Inland Substation Tap from Inland Substation	Existing Proposed	
CPP 5th interconnection (Harvard Substation)	Tranmission	138 KV	ISD: 6/12	Juniper-Jennings G- 15 138 kV Loop to CPP-Harvard Sub	Existing Proposed	

Site Acreage: Minimum Line Existing or <u>Proposed:</u> Existing Proposed Existing Proposed Existing Proposed Existing Proposed Existing Proposed Existing Proposed Bayshore-Leymone-Maclean (Frey) Q-4 136 kV Loop to BP Oil Husky Sub Bayshore-Jackman (Ft Industry) 138 kV Loop to BP Oil Heaky Sub 345 - 138 kV ISD: 6/17 Allen Junction-Midway 345 kV (11) Loop to Futton Sub 138 - 12.47 kV Completed Chrysler-OI Levis 138 kV (211) in 2008 Tap to Lime City Sub ISD: 11/10 Allen Junction-Fayette 138kV Fayette-Stryker 138 kV 138-12.47 kV ISD: 12/10 Dette-Wausson 138 kV Tap to Zinc Ox Line Association(s): ISD: 6/11 <u>Timing</u> Summary Of Proposed Substations Type of Substation Voltage (kV) 138-69 kV 138-69 kV Transmission Transmission Distribution Distribution Distribution Fayette (addition of 138 kV ring bus and 1**38-69 k**V transformer) ATSI-Toledo Edison Company Area BP Oli Husky Substation 4901:6-5-04(D)(2) PUCO FORM FE3-T10: Substation Name: Fuitton Sub Lime City Zine Ox

APPENDIX D DISTRIBUTION FORECAST FORMS

)			
)			
)			
)			
)			
)			
)			
)			
Ì			
Ì			
, ,			
/ 			
,			
/			
,			
,			
)			
)			
)			
)			
)			
)			
)			
)			
)			
)			
)			

4901:5-5-05(B)(1)(a) PUCO FORM FE - D1 Electric Utility Service Area Energy Consumption Forecast (Megawatt Hours/Year)

Ohio Edison Company

		(1)	(2)	(3)	(4)	(5)	(6) (1 +2+3+4+5)	(2)	(8) (6 + 7)
								Losses And	
							Total End-Use	Unaccounted	Net Energy For
	Year	Residential	Commercial	Industrial	Transportation ^a	Other ^b	Delivery	For Company	Load ^c
မှ	2005	9,237,000	7,199,000	9,429,000		148,000	26,013,000	2,163,000	28,176,000
4	2006	8,890,000	7,075,000	9,321,000	3	146,000	25,432,000	2,113,000	27,545,000
ကု	2007	9,379,000	7,297,000	9,230,000	•	146,000	26,052,000	1,610,000	27,662,000
Ņ	2008	9,250,000	7,157,000	8,726,000	•	146,000	25,279,000	1,531,000	26,810,000
Ţ	2009	8,974,000	6,835,000	6,900,000	ŀ	148,000	22,857,000	1,571,000	24,428,000
0	2010	9,227,000	6,969,000	6,882,000	ı	140,000	23,218,000	1,757,000	24,975,000
-	2011	9,079,000	7,082,000	7,624,000	•	141,000	23,926,000	1,755,000	25,681,000
CI	2012	9,192,000	7,250,000	7,862,000	•	140,000	24,444,000	1,761,000	26,205,000
ю	2013	9,197,000	6,898,000	8,477,000	•	140,000	24,712,000	1,754,000	26,466,000
4	2014	9,148,000	6,815,000	8,690,000		140,000	24,793,000	1,750,000	26,543,000
Ŋ	2015	9,117,000	6,711,000	8,767,000	ı	139,000	24,734,000	1,741,000	26,475,000
g	2016	9,086,000	6,608,000	8,807,000	•	139,000	24,640,000	1,730,000	26,370,000
7	2017	9,069,000	6,506,000	8,848,000	•	139,000	24,562,000	1,721,000	26,283,000
ß	2018	9,035,000	6,397,000	8,877,000	•	138,000	24,447,000	1,712,000	26,159,000
თ	2019	8,921,000	6,148,000	8,877,000		138,000	24,084,000	1,680,000	25,764,000
10	2020	8,819,000	5,869,000	8,867,000	•	138,000	23,693,000	1,647,000	25,340,000

^a Transportation includes railroads & railways.

^b Other includes street & highway lighting, public authorities and interdepartmental sales.

^c Years 0 through 10 are calculated by applying a loss factor to each class (Columns 1- 3, 5) then summing the results. The loss factor accounts for planned transmission & distribution efficiency improvements as part of the Companies EE&PDR Portfolio Plan.

PUCO FORM FE - D1 Electric Utility Service Area Energy Consumption Forecast (Megawatt Hours/Year)

4901:5-5-05(B)(1)(a)

The Cleveland Electric Illuminating Company

(8) (6 + 7)	Net Energy For	Load ^c	21,649,000	20,627,000	21,115,000	20,661,000	18,802,000	19,741,000	19,650,000	19,709,000	19,984,000	20,679,000	20,816,000	20,719,000	20,643,000	20,554,000	20,266,000	19,968,000
(2)	Losses And Unaccounted	For Company	1,738,000	1,335,000	1,397,000	1,359,000	1,163,000	1,457,000	1,435,000	1,418,000	1,428,000	1,464,000	1,469,000	1,461,000	1,455,000	1,446,000	1,423,000	1,398,000
(6) (1 +2+3+4+5)	Total End-Use	Delivery	19,911,000	19,292,000	19,718,000	19,302,000	17,639,000	18,284,000	18,215,000	18,291,000	18,556,000	19,215,000	19,347,000	19,258,000	19,188,000	19,108,000	18,843,000	18,570,000
(5)		Other ^b	172,000	168,000	168,000	167,000	155,000	162,000	163,000	162,000	162,000	161,000	160,000	159,000	158,000	158,000	157,000	156,000
(4)		Transportation ^a		•	ſ	•	ı		•		ſ	•	•		•	•	·	•
(3)		Industrial	9,041,000	8,898,000	8,944,000	8,689,000	7,409,000	7,591,000	7,550,000	7,561,000	8,056,000	8,833,000	9,070,000	9,080,000	9,097,000	9,119,000	9,123,000	9,127,000
(2)		Commercial	4,998,000	4,784,000	4,936,000	4,840,000	4,646,000	4,942,000	5,040,000	5,128,000	4,881,000	4,802,000	4,730,000	4,664,000	4,614,000	4,555,000	4,391,000	4,233,000
(1)		Residential	5,700,000	5,442,000	5,670,000	5,606,000	5,429,000	5,589,000	5,462,000	5,440,000	5,457,000	5,419,000	5,387,000	5,355,000	5,319,000	5,276,000	5,172,000	5,054,000
		Year	200 5	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
			ιņ	4	ကု	Ņ	Ŧ	0	-	CI	ო	4	ŋ	9	~	æ	თ	위

^a Transportation includes railroads & railways.

^b Other includes street & highway lighting, public authorities and interdepartmental sales.

^C Years 0 through 10 is calculated by applying a loss factor to each class (Columns 1- 3, 5) then summing the results. The loss factor accounts for transmission & distribution planned efficiency improvements through the Companies EE&PDR Portfolio Plan.

4901:5-5-05(B)(1)(a) PUCO FORM FE - D1 Electric Utility Service Area Energy Consumption Forecast (Megawatt Hours/Year)

The Toledo Edison Company

		(1)	(2)	(3)	(4)	(5)	(6) (1 +2+3+4+5)	(2)	(8) (6 + 7)
								Losses And	
							Total End-Use	Unaccounted	Net Energy For
	Year	Residential	Commercial	Industrial	Transportation ^a	Other ^b	Delivery	For Company	Load ^c
μ	2005	2,543,000	2,938,000	5,110,000		64,000	10,655,000	685,000	11,340,000
4	2006	2,430,000	2,821,000	5,139,000	7	58,000	10,448,000	730,000	11,178,000
ကု	2007	2,538,000	2,889,000	5,205,000	•	58,000	10,690,000	587,000	11,277,000
လု	2008	2,523,000	2,850,000	4,851,000		57,000	10,281,000	607,000	10,888,000
Ŧ	2009	2,405,000	2,584,000	4,466,000		48,000	9,503,000	551,000	10,054,000
0	2010	2,479,000	2,712,000	4,738,000	·	54,000	9,983,000	594,000	10,577,000
-	2011	2,449,000	2,751,000	4,873,000		55,000	10,128,000	573,000	10,701,000
2	2012	2,470,000	2,774,000	4,939,000		54,000	10,237,000	547,000	10,784,000
ო	2013	2,491,000	2,635,000	5,315,000		54,000	10,495,000	549,000	11,044,000
4	2014	2,477,000	2,584,000	5,535,000	•	53,000	10,649,000	549,000	11,198,000
S	2015	2,463,000	2,528,000	5,643,000	•	53,000	10,687,000	547,000	11,234,000
9	2016	2,446,000	2,473,000	5,694,000	ł	53,000	10,666,000	543,000	11,209,000
~	2017	2,428,000	2,420,000	5,731,000		52,000	10,631,000	539,000	11,170,000
œ	2018	2,404,000	2,363,000	5,752,000	•	52,000	10,571,000	532,000	11,103,000
6	2019	2,349,000	2,247,000	5,747,000	•	51,000	10,394,000	520,000	10,914,000
10	2020	2,290,000	2,133,000	5,736,000		51,000	10,210,000	505,000	10,715,000

^a Transportation includes railroads & railways.

^b Other Includes street & highway lighting, public authorities and interdepartmental sales.

^C Years 0 through 10 is calculated by applying a loss factor to each class (Columns 1-3, 5) then summing the results. The loss factor accounts for transmission & distribution planned efficiency improvements through the Companies EE&PDR Portfolio Plan.

4901:5-5-05(B)(1)(b) PUCO FORM FE-D1:

System Service Area Energy Consumption Forecast

(Megawatt Hours/Year)

Total Ohio

		(1)	(2)	(E)	(4)	(5)	(6) (1 +2+3+4+5)	(2)	(8) (6 + 7)
								Losses And	
							Total End-Use	Unaccounted	Net Energy For
	Year	Residential	Commercial	Industrial	Transportation ^a	Other ^b	Delivery	For Company	Load
ယ်	2005	17,480,000	15,135,000	23,580,000		384,000	56,579,000	4,586,000	61,165,000
4	2006	16,762,000	14,680,000	23,358,000	ŀ	372,000	55,172,000	4,178,000	59,350,000
ကု	2007	17,587,000	15,122,000	23,379,000	ŀ	372,000	56,460,000	3,594,000	60,054,000
Ņ	2008	17,379,000	14,847,000	22,266,000	1	370,000	54,862,000	3,497,000	58,359,000
Ţ	2009	16,808,000	14,065,000	18,775,000	•	351,000	49,999,000	3,285,000	53,284,000
0	2010	17,295,000	14,623,000	19,211,000	ı	356,000	51,485,000	3,808,000	55,293,000
	2011	16,990,000	14,873,000	20,047,000	•	359,000	52,269,000	3,763,000	56,032,000
2	2012	17,102,000	15,152,000	20,362,000	•	356,000	52,972,000	3,726,000	56,698,000
თ	2013	17,145,000	14,414,000	21,848,000		356,000	53,763,000	3,731,000	57,494,000
4	2014	17,044,000	14,201,000	23,058,000	,	354,000	54,657,000	3,763,000	58,420,000
ъ	2015	16,967,000	13,969,000	23,480,000	•	352,000	54,768,000	3,757,000	58,525,000
g	2016	16,887,000	13,745,000	23,581,000	ı	351,000	54,564,000	3,734,000	58,298,000
~	2017	16,816,000	13,540,000	23,676,000	•	349,000	54,381,000	3,715,000	58,096,000
Ø	2018	16,715,000	13,315,000	23,748,000	•	348,000	54,126,000	3,690,000	57,816,000
თ	2019	16,442,000	12,786,000	23,747,000	ı	346,000	53,321,000	3,623,000	56,944,000
위	2020	16,163,000	12,235,000	23,730,000	•	345,000	52,473,000	3,550,000	56,023,000

^a Transportation includes railroads & railways. ^b Other includes street & highway lighting, public authorities and interdepartmental sales.

System Service Area Energy Consumption Forecast (Megawatt Hours/Year)^c 4901:5-5-05(B)(1)(b) PUCO FORM FE-D2:

FirstEnergy System

(7) $(6+7)$	ses And	xcounted Net Energy For	Company Load	1,969,000 66,215,000	l,484,000 64,326,000	,365,000 65,562,000	I,114,000 63,667,000	1,539,000 57,774,000	1,121,000 59,967,000	1,076,000 60,680,000	l,041,000 61,429,000	l,054,000 62,408,000	1,099,000 63,633,000	1,099,000 63,869,000	082 000 63 707 000		1,067,000 63,573,000	,067,000 63,573,000 ,049,000 63,361,000	,049,000 63,573,000 ,049,000 63,513,000 1,985,000 63,361,000
(6) (1 +2+3+4+5)	LOSS	Total End-Use Unac	Delivery For C	61,246,000 4	59,842,000 4	61,197,000 4	59,553,000 4	54,235,000 3	55,846,000 4	56,604,000 4	57,388,000 4	58,354,000 4	59,534,000 4	59,770,000 4	59,625,000 4		59,506,000 4	59,506,000 4 59,312,000 4	59,506,000 4 59,312,000 4 58,570,000 3
(2)		-	Other	391,000	379,000	378,000	376,000	357,000	363,000	365,000	364,000	362,000	361,000	359,000	357,000		300,000	356,000 354,000	356,000 354,000 353,000
(4)			Transportation ^a		•	1	•	•	•	•	•	•	•		•	1	•		• • •
(3)			Industrial	25,209,000	25,055,000	25,006,000	23,880,000	20,004,000	20,436,000	21,260,000	21,600,000	23,219,000	24,654,000	25,150,000	25,259,000	25,362,000		25,440,000	25,446,000
(2)			Commercial	16,502,000	16,036,000	16,536,000	16,251,000	15,432,000	16,051,000	16,281,000	16,601,000	15,914,000	15,736,000	15,527,000	15,325,000	15.146.000		14,947,000	14,947,000 14,443,000
(1)			Residential	19,144,000	18,372,000	19,277,000	19,046,000	18,442,000	18,996,000	18,698,000	18,823,000	18,859,000	18,783,000	18,734,000	18,684,000	18,642,000		18,571,000	18,571,000 18,328,000
			Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017		2018	2018 2019
				ŵ	4	ņ	Ņ	٦	0	-	2	ო	4	ស	g	7		œ	യറ

^a Transportation includes railroads & railways.

 $^{\rm b}$ Other includes street & highway lighting, public authorities and interdepartmental sales. $^{\rm c}$ These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Electric rtility Ohio Seasonal Peak Load Demand Forecast (Megawatts)

The Ohio Edison Company

		Nativ	ve Load	Interna	ll Load ^b
	Year	Summer	<u>Wintera</u>	Summer	Wintera
-5	2005	5,218	4,175	5,418	4,375
-4	2006	5,292	4,209	5,492	4,409
-3	2007	5,145	3,953	5,345	4,153
-2	2008	4,797	3,854	4,997	4,054
-1	2009	4,616	4,023	4,682	4,089
0	2010	4,827	3,884	4,893	3,950
1	2011	4,961	3,967	4,994	4,000
2	2012	5,030	4,007	5,063	4,040
З	2013	5,041	4,036	5,074	4,069
4	2014	5,087	4,071	5,087	4,071
5	2015	5,077	4,056	5,077	4,056
6	2016	5,061	4,042	5,061	4,042
7	2017	5,047	4,026	5,047	4,026
8	2018	5,027	4,008	5,027	4,008
9	2019	5,032	4,025	5,032	4,025
10	2020	5,049	4,043	5,049	4,043

^a Winter load reference is to peak loads which follow the summer peak load.

^b Internal Load equals Native plus Interruptible.

Electric rtility Ohio Seasonal Peak Load Demand Forecast (Megawatts)

The Cleveland Illrminating Company

		Native	Load	Interna	I Load ^b
	Year	Summer	Wintera	<u>Summer</u>	Wintera
-5	2005	4,086	3,109	4,196	3,219
-4	2006	4,231	3,175	4,341	3,285
-3	2007	4,045	3,042	4,155	3,152
-2	2008	3,876	2,966	3,986	3,076
-1	2009	3,742	3,188	3,790	3,236
0	2010	3,787	2,999	3,835	3,047
1	2011	3,766	3,009	3,800	3,043
2	2012	3,763	2,978	3,797	3,012
3	2013	3,781	3,057	3,815	3,091
4	2014	3,903	3,150	3,903	3,150
5	2015	3,905	3,134	3,905	3,134
6	2016	3,890	3,120	3,890	3,120
7	2017	3,877	3,106	3,877	3,106
8	2018	3,861	3,093	3,861	3,093
9	2019	3,866	3,107	3,866	3,107
10	2020	3,881	3,124	3,881	3,124

^a Winter load reference is to peak loads which follow the summer peak load.

 -

Electric rtility Ohio Seasonal Peak Load Demand Forecast (Megawatts)

The Toledo Edison Company

		Nat	ive Load	Interna	al Load ^b
	<u>Year</u>	Summer	Winter ^a	<u>Summer</u>	Winter ^a
-5	2005	1,833	1,468	2,001	1,636
-4	2006	1,951	1,504	2,119	1,672
-3	2007	1,834	1,452	2,002	1,620
-2	2008	1,731	1,796	1,899	1,964
-1	2009	1,6 9 7	1,456	1,841	1,600
0	2010	1,812	1,529	1,956	1,673
1	2011	1,956	1,671	1,968	1,683
2	2012	1,967	1,692	1,979	1,704
3	2013	1,983	1,719	1,995	1,731
4	2014	2,018	1,749	2,018	1,749
5	2015	2,029	1,758	2,029	1,758
6	2016	2,037	1,765	2,037	1,765
7	2017	2,043	1,770	2,043	1,770
8	2018	2,047	1,775	2,047	1,775
9	2019	2,061	1,794	2,061	1,794
10	2020	2,080	1,812	2,080	1,812

^a Winter load reference is to peak loads which follow the summer peak load.

Electric Utility Ohio Seasonal Peak Load Demand Forecast (Megawatts)

Total Ohio

ē

		Native	e Load	Interna	al Load ^b
	Year	Summer	<u>Winter^a</u>	Summer	<u>Winter^a</u>
-5	2005	11,071	8,725	11,549	9,203
-4	2006	11, 289	8,850	11,767	9,328
-3	2007	10,864	8,354	11,342	8,832
-2	2008	10,392	8,265	10,870	8,743
-1	2009	10,036	8,594	10,294	8,852
0	2010	11, 179	9,225	11,437	9,483
1	2011	11,441	9,468	11,520	9,547
2	2012	11,527	9,507	11,606	9,586
3	2013	11,580	9,648	11,659	9,727
4	2014	11,788	9,813	11,788	9,813
5	2015	11,801	9,79 9	11,801	9,7 99
6	2016	11,786	9,786	11,786	9,786
7	2017	11,775	9,770	11,775	9,770
8	2018	11,752	9,750	11,752	9,750
9	2019	11,783	9,808	11,783	9,808
10	2020	11,840	9,867	11,840	9,867

^a Winter load reference is to peak loads which follow the summer peak load.

Electric Utility Ohio Seasonal Peak Load Demand Forecast (Megawatts)

FirstEnergy System

0

		Native	Load	Interna	Load ^b
	<u>Year</u>	<u>Summer</u>	<u>Winter</u> ^a	<u>Summer</u>	Winter ^a
-5	2005	12,092	9,585	12,570	10,063
-4	2006	12,273	9,756	12,751	10,234
-3	2007	11,905	9,233	12,383	9,711
-2	2008	11,404	9,080	11,882	9,558
-1	2009	10,937	9,472	11,195	9,730
0	2010	11,114	9,151	11,372	9,409
1	2011	11,363	9,386	11,442	9,465
2	2012	11,448	9,428	11,527	9,507
3	2013	11,521	9,603	11,600	9,682
4	2014	11,768	9,796	11,768	9,796
5	2015	11,787	9,784	11,787	9,784
6	2016	11,774	9,774	11,774	9,774
7	2017	11,764	9,760	11,764	9,760
8	2018	11,743	9,743	11,743	9,743
9	2019	11,775	9,803	11,775	9,803
10	2020	11,834	9,864	11,834	9,864

^a Winter load reference is to peak loads which follow the summer peak load.

-

Monthly Net Energy For Load Forecast (Megawatt Hours/Year) "

Ohio Edison Company

	Monthly Net	t Energy
	For Load F	orecast
Year 0-2010	Ohio Service Area	<u>System "</u>
January*	2,306,000	5,492,000
February*	2,112,000	5,033,000
March	2,078,000	5,048,000
April	1,891,000	4,626,000
Мау	1,929,000	4,672,000
June	2,107,000	5,035,000
July	2,282,000	5,449,000
August	2,257,000	5,356,000
September	1,984,000	4,764,000
October	1,926,000	4,654,000
November	1,913,000	4,636,000
December	2,190,000	5,202,000
Year 1-2011		
January	2,266,000	5,381,000
February	2,115,000	5,026,000
March	2,147,000	5,130,000
April	1,952,000	4,689,000
Мау	1,991,000	4,729,000
June	2,167,000	5,088,000
July	2,342,000	5,496,000
August	2,323,000	5,411,000
September	2,059,000	4,841,000
October	2,026,000	4,777,000
November	2,055,000	4,853,000
December	2,238,000	5,259,000

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Monthly Net Energy For Load Forecast (Megawatt Hours/Year) *

The Cleveland Illuminating Company

	Monthly Net Energy							
	For Load F	orecast						
Year 0-2010	Ohio Service Area	System ^b						
January*	1,809,000	5,492,000						
February*	1,628,000	5,033,000						
March	1,687,000	5,048,000						
April	1,547,000	4,626,000						
May	1,548,000	4,672,000						
June	1,651,000	5,035,000						
July	1,797,000	5,449,000						
August	1,745,000	5,356,000						
September	1,559,000	4,764,000						
October	1,537,000	4,654,000						
November	1,531,000	4,636,000						
December	1,702,000	5,202,000						
Year 1-2011								
January	1,742,000	5,381,000						
February	1,642,000	5,026,000						
March	1,692,000	5,130,000						
April	1,543,000	4,689,000						
May	1,538,000	4,729,000						
June	1,637,000	5,088,000						
July	1,778,000	5,496,000						
August	1,727,000	5,411,000						
September	1,547,000	4,841,000						
October	1,538,000	4,777,000						
November	1,561,000	4,853,000						
December	1,705,000	5,259,000						

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Monthly Net Energy For Load Forecast (Megawatt Hours/Year) "

The Toledo Edison Company

	Monthly Net	Energy
	For Load Fe	orecast
Year 0-2010	Ohio Service Area	System ^b
January*	922,000	5,492,000
February*	864,000	5,033,000
March	878,000	5,048,000
April	826,000	4,626,000
Мау	838,000	4,672,000
June	883,000	5,035,000
July	968,000	5,449,000
August	958,000	5,356,000
September	872,000	4,764,000
October	841,000	4,654,000
November	824,000	4,636,000
December	903,000	5,202,000
Year 1-2011		
January	929,000	5,381,000
February	863,000	5,026,000
March	887,000	5,130,000
April	833,000	4,689,000
May	844,000	4,729,000
June	889,000	5,088,000
July	971,000	5,496,000
August	964,000	5,411,000
September	885,000	4,841,000
October	863,000	4,777,000
November	865,000	4,853,000
December	908,000	5,259,000

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Monthly Net Energy For Load Forecast (Megawatt Hours/Year) *

Total Ohio

	Monthly Ne For Load	et Energy Forecast
Year 0-2010	Ohio Service Area	System ^b
January*	5,037,000	5,605,000
February*	4,604,000	5,100,000
March	4,643,000	5,231,000
April	4,264,000	4,829,000
Мау	4,315,000	4,963,000
June	4,641,000	5,379,000
July	5,047,000	5,774,000
August	4,960,000	5,833,000
September	4,415,000	5,143,000
October	4,304,000	5,106,000
November	4,268,000	4,986,000
December	4,795,000	5,583,000
Year 1-2011		
January	4,937,000	5,740,000
February	4,620,000	5,235,000
March	4,726,000	5,375,000
April	4,328,000	4,963,000
May	4,373,000	5,101,000
June	4,693,000	5,520,000
July	5,091,000	5,905,000
August	5,014,000	5,969,000
September	4,491,000	5,278,000
October	4,427,000	5,241,000
November	4,481,000	5,113,000
December	4,851,000	5,717,000

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

۲

Monthly Peak Load Forecast (Megawatts) ^a

Ohio Edison Company

	Monthly Load Fo	Native recast	Monthly I Load Fo	nternal recast
Year 0-2010	<u>Ohio Service</u> <u>Area</u>	System ^b	<u>Ohio Service</u> <u>Area</u>	System ^b
January *	3,796	8,917	3,862	9,175
February *	3,704	8,703	3,770	8,961
March	3,533	8,423	3,599	8,681
April	3,340	8,034	3,406	8,292
May	3,652	8,753	3,718	9,011
June	4,443	10,356	4,509	10,614
July	4,648	10,905	4,714	11,163
August	4,827	11,114	4,893	11,372
September	3,926	9,418	3,992	9,676
October	3,366	8,060	3,432	8,318
November	3,344	8,079	3,410	8,337
December	3,760	8,911	3,826	9,169
Year 1-2011				
January	3,884	9,151	3,950	9,409
February	3,778	8,901	3,844	9,159
March	3,625	8,506	3,691	8,764
April	3,423	8,090	3,489	8,348
Мау	3,737	8,803	3,803	9,061
June	4,564	10,586	4,597	10,665
July	4,773	11,142	4,806	11,221
August	4,961	11,363	4,994	11,442
September	4,068	9,681	4,101	9,760
October	3,514	8,334	3,547	8,413
November	3,502	8,374	3,535	8,453
December	3,883	9,182	3,916	9,261

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Monthly Peak Load Forecast (Megawatts) ^a

The Cleveland Illuminating Company

	Monthly Load Fo	Native recast	Monthly I Load Fo	nternal recast
Year 0-2010	<u>Ohio Service</u> <u>Area</u>	System ^b	<u>Ohio Service</u> <u>Area</u>	System ^b
January *	2,992	8,917	3,040	9,175
February *	2,919	8,703	2,967	8,961
March	2,825	8,423	2,873	8,681
April	2,799	8,034	2,847	8,292
May	2,977	8,753	3,025	9,011
June	3,573	10,356	3,621	10,614
July	3,782	10,905	3,830	11,163
August	3,787	11,114	3,835	11,372
September	3,233	9,418	3,281	9,676
October	2,793	8,060	2,841	8,318
November	2,670	8,079	2,718	8,337
December	2,910	8,911	2,958	9,169
Year 1-2011				
January	2,999	9,151	3,047	9,409
February	2,912	8,901	2,960	9,159
March	2,813	8,506	2,861	8, 764
April	2,772	8,090	2,820	8,348
Мау	2,942	8,803	2,990	9 ,061
June	3,551	10,586	3,585	10,665
July	3,760	11,142	3,794	11,221
August	3,766	11,363	3,800	11,442
September	3,213	9,681	3,247	9,760
October	2,777	8,334	2,811	8,413
November	2,657	8,374	2,691	8,453
December	2,911	9,182	2,945	9,261

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

Ö

0

Monthly Peak Load Forecast (Megawatts)

The Toledo Edison Company

ear 1-2011 anuary * ebruary * arch pril ay une uly ugust eptember ctober ovember ecember ecember ear 1-2011 anuary ebruary arch pril ay une uly ugust eptember ctober ovember ecember	Monthly Load Fo	Native precast	Monthly Internal Load Forecast				
Year 0-2010	<u>Ohio Service</u> <u>Area</u>	System ^b	<u>Ohio Service</u> <u>Area</u>	<u>System ^b</u>			
January *	1,456	8.917	1,600	9,175			
February *	1,329	8,703	1,473	8,961			
March	1,459	8,423	1,603	8,681			
April	1,396	8,034	1,540	8,292			
May	1,485	8,753	1,629	9,011			
June	1,737	10,356	1,881	10,614			
July	1,762	10,905	1,906	11,163			
August	1,812	11,114	1,956	11,372			
September	1,589	9,418	1,733	9,676			
October	1,440	8,060	1,584	8,318			
November	1,427	8,079	1,571	8,337			
December	1,512	8,911	1,656	9,169			
Year 1-2011							
January	1,529	9,151	1,673	9,409			
February	1,517	8,901	1,661	9,159			
March	1,470	8,506	1,614	8,764			
April	1,405	8,090	1,549	8,348			
Мау	1,493	8,803	1,637	9,061			
June	1,878	10,586	1,890	10,665			
July	1,904	11,142	1,916	11,221			
August	1,956	11,363	1,968	11,442			
September	1,736	9,681	1,748	9, 760			
October	1,590	8,334	1,602	8,413			
November	1,580	8,374	1,592	8,453			
December	1,661	9,182	1,673	9,261			

^a Actual data shall be indicated with an asterisk (*).

^b These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

APPENDIX E RESOURCE FORECAST FORMS

FirstEnergy Companies

4901-5-5-06(A)(6)(a) PUCO Form FE-R1:

Monthly Forecast of Electric Utility's Ohio Service Area Peak Load and Resources Dedicated to Meet Ohio Service Area Peak Load (Megawatts)

Ohio Edison Company

· _					Curr	ent Calen	dar Year -	2010				
	Jan*	Feb*	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	0	0	0	0	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0	0	0	0	0
Purchases ^a	4,069	3,972	3,792	3,588	3,917	4,712	4,926	5,113	4,172	3,586	3,564	3,998
Sales	Q	0	0	0	0	0	0	0	0	0	0	0
Available Capability ^b	4,069	3,972	3,792	3,588	3,917	4,712	4,926	5,113	4,172	3,586	3,564	3,998
Native Load °	3,796	3,704	3,533	3,340	3,652	4,443	4,648	4,827	3,926	3,366	3,344	3,760
Available Reserve ^d	273	268	259	248	265	269	278	286	246	220	219	238
Internal Load *	3,862	3,770	3,599	3,406	3,718	4,509	4,714	4,893	3,992	3,432	3,410	3,826
Reserve ^f	207	202	193	182	199	203	212	220	180	154	153	172

					Ne	ot Calenda	ar Year -2	011				
~	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	0	0	0	0	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	Û	0	0	0	0	0
Purchases *	4,128	4,017	3,857	3,646	3,975	4,785	5,003	5,199	4,269	3,692	3,680	4,077
Sales	0	0	0	0	D	0	0	0	0	0	0	Ô
Available Capability ^b	4 ,1 28	4,017	3,857	3,646	3,975	4,785	5,003	5,199	4,269	3,692	3,680	4,077
Native Load ^e	3,884	3,778	3,625	3,423	3,737	4,564	4,773	4,961	4,068	3,514	3,502	3,883
Available Reserve ^d	244	239	232	223	237	221	230	238	201	178	178	194
Internal Load ^e	3,950	3,844	3,691	3,489	3,803	4,597	4,806	4,994	4,101	3,547	3,535	3,916
Reserve [†]	178	173	166	157	171	188	197	205	168	145	145	161

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^b Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

^e Native Load is Internal Load less Interruptible Capability.

^o Available Reserve is equal to the Available Capability minus the Native Load.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

^f January 2010 through May 2011 is based upon the Non-coincident Planning Reserve Zone, as documented in MISO's Resource Adequacy Business Practice Manual; 5:35% January 2010 through May 2010 and 4.5% from June 2010 through May 2011. June 2011 through December 2011 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology in this document.

* Actual data

4901-5-5-06(A)(6)(a) PUCO Form FE-R1:

Monthly Forecast of Electric Utility's Ohio Service Area Peak Load and Resources Dedicated to Meet Ohio Service Area Peak Load

(Megawatts) The Cleveland Electric Illuminating Company

					Cum	ent Calene	dar Year -:	2010				
	Jan*	Feb"	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability												
Net Seasonal Capability												
Purchases *	3,203	3,126	3,027	2,999	3,186	3,784	4,002	4,008	3,428	2,969	2,840	3,091
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Available Capability ^b	3,203	3,126	3,027	2,999	3,186	3,784	4,002	4,008	3,428	2,969	2,840	3,091
Native Load °	2,992	2,919	2,825	2,799	2,977	3,573	3,782	3,787	3,233	2,793	2,670	2,910
Available Reserve ^d	211	207	202	200	210	211	220	221	195	176	170	181
Internal Load *	3,040	2,967	2,873	2,847	3,025	3,621	3,830	3,835	3,281	2,841	2,718	2,958
Reserve ^f	163	159	154	152	162	163	172	173	148	128	122	133
					Ne	xt Calenda	ar Year -20	011				
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Net Demonstrated Capability												
Net Seasonal Capability												
Purchases *	3,184	3,094	2,990	2,947	3,125	3,732	3,949	3,956	3,380	2,926	2,802	3,066
Sales	0	0	0	0	0	0	0	G	· 0	0	0	0
Available Capability ^b	3,184	3,094	2,990	2,947	3,125	3,732	3,949	3,956	3,380	2,926	2,802	3,066
Native Load *	2,999	2,912	2,813	2,772	2,942	3,551	3,760	3,766	3,213	2,777	2,857	2,911
Available Reserve ^d	185	181	177	175	183	181	190	190	167	149	144	155
Internal Load ^e	3,047	2,960	2,861	2,820	2,990	3,585	3,794	3,800	3,247	2,811	2,691	2,945
Reserve [†]	137	133	129	127	135	147	156	156	133	115	110	121

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^b Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

° Native Load is Internal Load less Interruptible Capability.

^e Available Reserve is equal to the Available Capability minus the Native Load.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ January 2010 through May 2011 is based upon the Non-coincident Planning Reserve Zone, as documented in MISO's Resource Adequacy Business Practice Manual; 5:35% January 2010 through May 2010 and 4:5% from June 2010 through May 2011. June 2011 through December 2011 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology in this document.

* Actual data

PUCO Form FE-R1:

Monthly Forecast of Electric Utility's Ohlo Service Area Peak Load and Resources Dedicated to Meet Ohio Service Area Peak Load (Megawatts)

The Toledo Edison Company

					Сип	ent Calen	dar Year -	2010				
	Jan*	Feb*	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability							-					
Net Seasonal Capability												
Purchases [®]	1,686	1,552	1,688	1,623	1,716	1,966	1,992	2,044	1,811	1,656	1,642	1,730
Sales	0	0	0	Q	0	0	0	0	D	D	0	0
Available Capability ^b	1,686	1,552	1,688	1,623	1,716	1,966	1,992	2,044	1, 811	1,656	1,642	1,730
Native Load [°]	1,456	1,329	1,45 9	1,396	1,485	1,737	1,762	1,812	1,589	1,440	1,427	1,512
Available Reserve ^d	230	223	230	226	231	229	230	232	222	215	215	219
Internal Load*	1,600	1,473	1,603	1,540	1,629	1,881	1,906	1,956	1,733	1,584	1,571	1,656
Reserve ^f	86	79	86	82	87	85	86	88	78	71	71	75

					Ne	xt Calenda	ar Year -20	011				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability Net Seasonal Capability												
Purchases *	1,748	1,736	1,687	1,619	1,711	1,967	1,995	2,048	1,819	1,668	1,658	1,742
Available Capability ^b	1,748	1,736	0 1,687	1,619	1,711	1,967	1,995	2,048	1,819	1,668	1,658	1,742
Native Load °	1,529	1,517	1,470	1,405	1,493	1,878	1,904	1,956	1,736	1,590	1,580	1,661
Available Reserve ^d	219	219	217	214	218	89	91	93	84	78	77	81
Internal Load*	1,673	1,661	1,614	1,549	1,637	1,890	1,916	1,968	1,748	1,602	1,592	1,673
Reserve '	75	75	73	70	74	77	79	81	72	66	65	69

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

"Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^b Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

^e Native Load is Internal Load less Interruptible Capability.

^o Available Reserve is equal to the Available Capability minus the Native Load.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ January 2010 through May 2011 is based upon the Non-coincident Planning Reserve Zone, as documented in MISO's Resource Adequacy Business Practice Manual; 5:35% January 2010 through May 2010 and 4.5% from June 2010 through May 2011. June 2011 through December 2011 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology in this document.

* Actual data
4901-5-5-06(A)(6)(b) PUCO Form FE-R2:

FirstEnergy System ^a

Monthly Forecast of System Peak Load and Resources Dedicated to Meet System Peak Load (Megawatts)

					Curr	rent Calen	dar Year -:	2010 _				
	Jan*	Feb*	Mar	Apr	May_	Jun	Jul	Aug	Sép	Oct	Nov	Dec
Net Demonstrated Capability	0	0	Ū.	0	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0	0	0	0	0
Purchases *	9,666	9,440	9,145	8,735	9,493	11,091	11,666	11,884	10,112	8,692	8,712	9,581
Sales	0	0	0	0	0	0	0	0	0	0	0	0
Available Capability b	9,666	9,440	9,145	8,735	9,493	11,091	11,666	11,884	10,112	8,692	8,712	9,581
Native Load *	8,917	8,703	8,423	8,034	8,753	10,356	10,905	11,114	9,418	8,060	8,079	8,911
Available Reserve ^d	749	737	722	702	740	736	760	770	693	632	633	671
Internal Load [®]	9,175	8,961	8,681	8,292	9,011	10,614	11,163	11,372	9,676	8,318	8,337	9,169
Reserve	491	479	464	444	482	478	502	512	435	374	375	413

					Ne	ext Calenda	ar Year -20	011				
	Jan	Feb	Mar	Apr	May	Jun	วันโ	Aug	Sep	Oct	Nov	Dec
Net Demonstrated Capability	0	0	0	0	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	Q	0	0	0	0	0	0	0	0
Purchases *	9,832	9,571	9,158	8,724	9,469	11,103	11,681	11,911	10,160	8,758	8,800	9,641
Sales	0	0	D	0	0	0	0	0	0	0	0	Ú
Available Capability b	9,832	9,571	9,158	8,724	9,469	11,103	11,681	11,911	10,160	8,758	8,800	9,641
Native Load °	9,151	8,901	8,506	8,090	8,803	10,586	11,142	11,363	9,681	8,334	8,374	9,182
Available Reserve ^d	681	670	652	634	666	516	539	548	479	424	426	459
Internal Load ^e	9,409	9,159	8,764	8,348	9,061	10,665	11,221	11,442	9,760	8,413	8,453	9,261
Reserve ^f	423	412	394	376	408	437	460	469	400	345	347	380

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^b Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

^e Native Load is Internal Load less Interruptible Capability.

^a Available Reserve is equal to the Available Capability minus the Native Load.

" internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ January 2010 through May 2011 is based upon the Non-coincident Planning Reserve Zone, as documented in MISO's Resource Adequacy Business Practice Manual; 5:35% January 2010 through May 2010 and 4:5% from June 2010 through May 2011. June 2011 through December 2011 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison, Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology in this document.

⁹ These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

* Actual data

4901-5-5-06(A)(6)(c) PUCO Form FE-R3:

Summary of Existing Electric Generation Facilities for the System ^a (as of 12/31/2009)

	Environmental Protection	Measures	
Generation	Winter	(MM)	
Generation	Summer	(MM)	
Expected	Retirement	Date	
Date of First	On-Line	Service	
		Type of Units	
		Unit No.	
	Station Name &	Location	

^a The companies do not own or operate generation, nor intend to, for the duration of this forecast. Please see section 4901:5-5-06(A)(1) for further information FirstEnergy Companles

Actual Generating Capability Dedicated to Meet Ohio Peak Load ^a (as of 12/31/2009) 4901-5-5-06(A)(6)(d)(i) PUCO Form FE-R4:

Seasonal Total Description Unit Designation

Unit Name Year/Season ^a The companies do not own or operate generation, nor intend to, for the duration of this forecast. Please see section 4901:5-5-06(A)(1) for further information

FirstEnergy Companies

Projected Generating Capability Changes To Meet Future Future Ohio Peak Load a 4901-5-5-06(A)(6)(d)(ii) PUCO Form FE-R5:

Year/Season Unit Name Description Changes		Unit De	esignation	Capability	Seasonal
	Year/Season	Unit Name	Description	Changes	Total

^a The companies do not own or operate generation, nor intend to, for the duration of this forecast. Please see section 4901:5-5-06(A)(1) for further information

.

FirstEnergy Companies

4901-5-5-06(A)(6)(d)(iii) PUCO Form FE-R6:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Summer Season

Ohio Edison Company

								C m 1
	(-5)	(-4)	(-3)	(-2)	(-1)	(0)	(1)	(2)
	2005	2006	2007	2008	2009	2010	2011	2012
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases *	5,609	5,678	5,558	5,197	4,869	5,110	5,198	5,261
Sales	0	0	0	0	0	0	0	0
Available Capability ^b	5,609	5,678	5,558	5,197	4,869	5,110	5,198	5,261
Native Load	5,193	5,259	5,145	4,797	4,616	4,827	4,961	5,030
Available Reserve ^d	416	418	414	400	253	283	236	231
Internal Load ^e	5,393	5,459	5,345	4,997	4,682	4,893	4,994	5,063
Reserve [†]	216	218	214	200	187	217	203	198
	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	2013	2014	2015	2016	2017	2018	2019	2020
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	O	0
Purchases *	5,268	5,281	5,270	5,254	5,240	5,219	5,224	5,242
Sales	0	0	Ó	0	0	0	0	0
Available Capability ^b	5,268	5,281	5,270	5,254	5,240	5,219	5,224	5,242
Native Load	5,041	5,087	5,077	5,061	5,047	5,027	5,032	5,049
Available Reserve ^d	227	194	194	193	193	192	192	193
Internal Load ^e	5,074	5,087	5,077	5,061	5,047	5,027	5,032	5,049
Reserve [†]	194	194	194	193	193	192	192	193

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions), CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE. ° Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

° Native Load is Internal Load less Interruptible Capability.

" All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are supplied by the LSE.

* Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the remainder of the

4901-5-5-06(A)(6)(d)(iii) PUCO Form FE-R6:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Summer Season

The Cleveland Electric Illuminating Company

	(-5) 2005	(-4) 2006	(-3) 2007	(-2) 2008	(-1) 2009	(0) 2010	(1) 2011	(2) 2012	
Net Demonstrated Capability	D	0	0	0	0	0	0	0	
Net Seasonal Capability	0	0	0	0	0	0	0	0	
Purchases *	4,364	4,515	4,321	4,141	3,941	4,008	3,956	3,947	
Sales	o	0	0	0	o	0	0	0	
Available Capability ^b	4,364	4,515	4,321	4,141	3,941	4,008	3,956	3,947	
Native Load c	4,086	4,231	4,045	3,872	3,726	3,787	3,766	3,763	
Available Reserve ^d	278	284	276	269	216	221	190	183	
Internal Load ^e	4.196	4,341	4,155	3.982	3,790	3,835	3,800	3,797	
Reserve ^f	168	174	166	159	152	173	156	149	
	(3) 2013	(4) 2014	(5) 2015	(6) 2016	(7) 2017	(8) 2018	(9) 2019	(10) 2020	
Net Demonstrated Capability							· · · ·		_
Net Seasonal Capability									
Purchases *	3,961	4,052	4,055	4,039	4,025	4,009	4,013	4,029	
Sales	0	0	0	0	0	0	0	0	
Available Capability ^b	3,961	4,052	4,055	4,039	4,025	4,009	4,013	4,029	
Native Load ^c	3,781	3,903	3,905	3,890	3,877	3,861	3,866	3,881	
Available Reserve ^d	180	149	149	149	148	147	148	148	
Internal Load*	3,815	3,903	3,905	3,890	3,877	3,861	3,866	3,881	
Reserve [†]	146	149	149	149	148	147	148	148	

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^P Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

[°]Native Load is internal Load less Interruptible Capability.

^o All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are supplied by the LSE.
^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage

Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the remainder of the

4901-5-5-06(A)(6)(d)(iii) PUCO Form FE-R6:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Summer Season

The Toledo Edison Company

	(-5) 2005	(-4) 2006	(-3) 2007	(-2) 2008	(-1) 2009	(0) 2010	(1) 2011	(2) 2012
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases *	2,050	2,185	2,083	1,975	1,915	2,044	2,048	2,057
Sales	0	0	0	0	0	0	0	0
Available Capability ^b	2,050	2,185	2,083	1,975	1,915	2,044	2,048	2,057
Native Load °	1,803	1,933	1,834	1,731	1,697	1,812	1,956	1,967
Available Reserve ^d	247	252	248	244	218	232	93	90
Internal Load*	1,971	2,101	2.002	1.899	1.841	1,956	1,968	1,979
Reserve ¹	79	84	80	76	74	88	81	78
	(3) 2013	(4) 2014	(5) 2015	(6) 2016	(7) 2017	(8) 2018	(9) 2019	(10) 2020
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	. 0	0	0	0	0	0	0	0
Purchases ^a	2,072	2,095	2,107	2,115	2,121	2,126	2,140	2,159
Sales	0	0	0	0	0	0	0	0
Available Capability ^b	2,072	2,095	2,107	2,115	2,121	2,128	2,140	2,159
Native Load ^c	1,983	2,018	2,029	2,037	2,043	2,047	2,061	2,080
Available Reserve ^d	88	77	78	78	78	78	79	79
Internal Load [®]	1,995	2,018	2,029	2,037	2,043	2,047	2,061	2,080
Reserve '	76	77	78	78	78	78	79	79

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retall Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

° Native Load is Internal Load less Interruptible Capability.

" All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are supplied by the LSE.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the remainder of the

4901-5-5-06(A)(6)(d)(iv) PUCO Form FE-R7:

Actual and Forecast System Peak Load and Resources Dedicated to Meet System Peak Load (Megawatts) - Summer Season

FirstEnergy System⁹

	(-5) 2005	(-4) 2006	(-3) 2007	(-2) 2008	(-1) 2009	(0) 2010	, (1) 2011	(2) 2012
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	12,594	12,778	12,400	11,879	11,385	11,626	11,832	11,901
Purchases *	0	0	0	0	0	0	0	Û
Sales	12,594	12,778	12,400	11,879	11,385	11,626	11,832	11,901
Available Capability ^b	12,092	12,268	11,905	11,404	10,937	11,114	11,363	11,448
Native Load ^c	503	510	495	475	448	512	469	453
Available Reserve ^d	12,570	12,746	12,383	11,882	11,195	11,372	11,442	11,527
Internal Load ^e Reserve '	503	510	495	475	448	512	469	453
	(3) 2013		(5) 2015	(6) 2016	(7) 2017	(8) 2018	(9) 2019	(10) 2020
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases ^a	11,964	12,217	12,238	12,224	12,214	12,192	12,225	12,286
Sales	0	0	0	۵	0	0	0	0
Available Capability ^b	11,964	12,217	12,238	12,224	12,214	12,192	12,225	12,286
Native Load ^c	11,521	11,768	11,787	11,774	11,764	11,743	11,775	11,834
Available Reserve ^d	443	450	450	450	449	449	450	452
Internal Load ^e	11,600	11,768	11,787	11,774	11,764	11,743	11,775	11,834
Reserve ¹	443	450	450	450	449	449	450	452

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

" Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

⁶ Native Load is Internal Load less Interruptible Capability.

^a All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are ^a Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company. ⁺ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 Is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement g These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

4901-5-5-06(A)(6)(d)(v) PUCO Form FE-R8:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Winter Season

Ohio Edison Company

		(4)	(=)	(0)	1.43	(2)	145	(0)
	(-5)	(-4)	(-3)	(-2)	(-1)	(0)	(1)	(2)
	2005	2006	2007	2008	2009	2010	2011	2012
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	D	0
Purchases ^a	4,550	4,585	4,319	4,216	4,273	4,128	4,164	4,19 9
Sales	0	0	0	0	0	0	0	0
Available Capability ^b	4,550	4,585	4,319	4,216	4,273	4,128	4,164	4,199
Native Load ^c	4,175	4,209	3,953	3,854	4,023	3,884	3,967	4,007
Available Reserve ^d	375	376	366	362	250	244	197	192
Internal Load ^e	4,375	4,409	4,153	4,054	4,089	3,950	4,000	4,040
Reserve ^f	175	176	166	162	184	178	164	159
	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	2013	2014	2015	2016	2017	2018	2019	2020
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases *	4,224	4,227	4,211	4,196	4,180	4,161	4,179	4,197
Sales	0	0	0	0	0	0	D	0
Available Capability ^b	4,224	4,227	4,211	4,196	4,180	4,161	4,179	4,197
Native Load c	4,036	4,071	4,056	4,042	4,026	4,008	4,025	4,043
Available Reserve ^d	188	156	155	154	154	153	154	154
Internal Load *	4,069	4,071	4,056	4,042	4,026	4,008	4,025	4,043
Reserve ¹	155	156	155	154	154	153	154	154

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements. ^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

⁹ Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

° Native Load is Internal Load less Interruptible Capability

^d Available Reserve is equal to the Available Capability minus the Native Load.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the re

4901-5-5-06(A)(6)(d)(v) PUCO Form FE-R8:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Winter Season

The Cleveland Electric Illuminating Company

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(-5)	(-4)	(-3)	(-2)	(-1)	(0)	(1)	(2)
let Demonstrated Capability 0 <th< th=""><th></th><th>2005</th><th>2006</th><th>2007</th><th>2008</th><th>2009</th><th>2010</th><th>2011</th><th>2012</th></th<>		2005	2006	2007	2008	2009	2010	2011	2012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Net Demonstrated Capability	0	0	0	0	0	0	0	0
nurchases a 3,348 3,417 3,278 3,199 3,365 3,184 3,168 3,130 ales 0	Net Seasonal Capability	0	0	0	0	0	0	0	0
ales0000000000vailable Capability3,3483,4173,2783,1993,3653,1843,1683,130lative Load3,1093,1753,0422,9663,1882,9993,0092,978vailable Reserve4239241236233177185159152thernal Load93,2193,2853,1523,0763,2363,0473,0433,012teserve129131126123129137125118(3)(4)(5)(6)(7)(8)(9)(10)20132014201520162017201820192020let Demonstrated Capability00000000let Seasonal Capability00000000lurchases3,2093,2703,2543,2393,2253,2113,2263,243jales000000000vailable Capability3,0573,1503,1343,1203,1063,0933,1073,124vailable Capability5,2093,2703,2543,2393,2253,2113,2263,243jales000000000vailable Capability3,0573,1503,134 <td>Purchases *</td> <td>3,348</td> <td>3,417</td> <td>3,278</td> <td>3,199</td> <td>3,365</td> <td>3,184</td> <td>3,168</td> <td>3,130</td>	Purchases *	3,348	3,417	3,278	3,199	3,365	3,184	3,168	3,130
valiable Capability b 3,348 3,417 3,276 3,199 3,365 3,184 3,168 3,130 lative Load c 3,109 3,175 3,042 2,966 3,188 2,999 3,009 2,978 valiable Reserve d 239 241 236 233 177 185 159 152 thernal Load e 3,219 3,285 3,152 3,076 3,236 3,047 3,043 3,012 leserve f 129 131 126 123 129 137 125 118 (3) (4) (5) (6) (7) (8) (9) (10) 2013 2014 2015 2016 2017 2018 2019 2020 let Demonstrated Capability 0	Sales	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Available Capability ^b	3,348	3,417	3,278	3,199	3,365	3,184	3,168	3,130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Native Load ^c	3,109	3,175	3,042	2,966	3,188	2,999	3,009	2,978
Internal Load ^e 3,219 3,285 3,152 3,076 3,236 3,047 3,043 3,012 leserve ¹ 129 131 126 123 129 137 125 118 (3) (4) (5) (6) (7) (8) (9) (10) 2013 2014 2015 2016 2017 2018 2019 2020 let Demonstrated Capability 0 <td>Available Reserve ^d</td> <td>239</td> <td>241</td> <td>236</td> <td>233</td> <td>177</td> <td>185</td> <td>159</td> <td>152</td>	Available Reserve ^d	239	241	236	233	177	185	159	152
leserve '129131126123129137125118(3)(4)(5)(6)(7)(8)(9)(10)20132014201520162017201820192020let Demonstrated Capability000000000let Seasonal Capability0000000000let Seasonal Capability0000000000let Seasonal Capability0000000000let Seasonal Capability0000000000let Seasonal Capability000000000let Seasonal Capability000000000let Seasonal Capability00000000let Seasonal Capability00000000let Seasonal Capability00000000let Seasonal Capability3,2093,2703,2543,2393,2253,2113,2263,243lative Load c3,0573,1503,1343,1203,1063,0933,1073,124let serve d152120120119 <th< td=""><td>Internal Load ^e</td><td>3,219</td><td>3,285</td><td>3,152</td><td>3,076</td><td>3,236</td><td>3,047</td><td>3,043</td><td>3,012</td></th<>	Internal Load ^e	3,219	3,285	3,152	3,076	3,236	3,047	3,043	3,012
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reserve '	129	131	126	123	129	137	125	118
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
let Demonstrated Capability000000000let Seasonal Capability0000000000Purchases a3,2093,2703,2543,2393,2253,2113,2263,243gales0000000000ovailable Capability b3,2093,2703,2543,2393,2253,2113,2263,243lative Load c3,0573,1503,1343,1203,1063,0933,1073,124lative Load c152120120119119118119119nternal Load a3,0913,1503,1343,1203,1063,0933,1073,124leserve 1118120120119119118119119		2013	2014	_ 2015 _	2016	2017	2018	2019	2020
let Seasonal Capability000000000Purchases a 3,2093,2703,2543,2393,2253,2113,2263,243gales0000000000vailable Capability b 3,2093,2703,2543,2393,2253,2113,2263,243lative Load c 3,0573,1503,1343,1203,1063,0933,1073,124vailable Reserve d 152120120119119118119119internal Load e 3,0913,1503,1343,1203,1063,0933,1073,124teserve 1 118120120119119118119119	Net Demonstrated Capability	Ō	0	0	0	0	0	Ó	0
Purchases a 3,209 3,270 3,254 3,239 3,225 3,211 3,226 3,243 gales 0	Net Seasonal Capability	0	0	0	0	0	· 0	¢	0
iales000000000wailable Capability b $3,209$ $3,270$ $3,254$ $3,239$ $3,225$ $3,211$ $3,226$ $3,243$ lative Load c $3,057$ $3,150$ $3,134$ $3,120$ $3,106$ $3,093$ $3,107$ $3,124$ wailable Reserve d 152 120 120 119 119 118 119 119 internal Load e $3,091$ $3,150$ $3,134$ $3,120$ $3,106$ $3,093$ $3,107$ $3,124$ teserve t 118 120 120 119 119 118 119 119	Purchases ^a	3,209	3,270	3,254	3,239	3,225	3,211	3,226	3,243
Available Capability ^b 3,209 3,270 3,254 3,239 3,225 3,211 3,226 3,243 Jative Load ^c 3,057 3,150 3,134 3,120 3,106 3,093 3,107 3,124 Available Reserve ^d 152 120 120 119 119 118 119 119 Internal Load ^e 3,091 3,150 3,134 3,120 3,106 3,093 3,107 3,124 Reserve ¹ 118 120 120 119 119 118 119 119	Sales	0	0	0	0	0	0	0	0
Native Load c 3,057 3,150 3,134 3,120 3,106 3,093 3,107 3,124 Available Reserve d 152 120 120 119 119 118 119 119 Internal Load e 3,091 3,150 3,134 3,120 3,106 3,093 3,107 3,124 Iternal Load e 118 120 120 119 119 118 119 119	Available Capability ^b	3,209	3,270	3,254	3,239	3,225	3,211	3,226	3,243
vailable Reserve ^d 152 120 120 119 119 118 119 119 htemal Load ^e 3,091 3,150 3,134 3,120 3,106 3,093 3,107 3,124 heserve ¹ 118 120 120 119 119 118 119 119	Native Load c	3,057	3,150	3,134	3,120	3,106	3,093	3,107	3,124
nternal Load ^e 3,091 3,150 3,134 3,120 3,106 3,093 3,107 3,124 Reserve ^f 118 120 120 119 119 118 119 119	Available Reserve ^d	152	120	120	119	119	118	119	119
leserve ¹ 118 120 120 119 119 118 119 119	Internal Load ^e	3,091	3,150	3,134	3,120	3,106	3,093	3,107	3,124
	Reserve ^f	118	120	120	119	119	118	119	119

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements. ^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^b Available Capability is equal to Purchases since the Companies do not have any Net Demonstrated or Net Seasonal Capability.

° Native Load is Internal Load less Interruptible Capability

^d Available Reserve is equal to the Available Capability minus the Native Load.

^e Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the re

4901-5-5-06(A)(6)(d)(v) PUCO Form FE-R8:

Electric Utility's Actual and Forecast Ohio Peak Load and Resources Dedicated to Meet Electric Utility's Ohio Peak Load (Megawatts) - Winter Season

The Toledo Edison Company

	(-5)	(-4)	(-3)	(-2)	(-1)	(0)	(1)	(2)
	2005	2006	2007	2008	2009	2010	2011	2012
Net Demonstrated Capability	0	0	0	· 0	0	0	0	Ū
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases	1,702	1,739	1,685	1,889	1,667	1,748	1,752	1,771
Sales	0	D	0	0	0	· 0	0	0
Available Capability ^b	1,702	1,739	1,685	1,889	1,667	1,748	1,752	1,771
Native Load ^c	1,468	1,504	1,452	1,648	1,459	1,529	1,671	1,692
Available Reserve ^d	233	235	233	241	208	219	81	79
Internal Load [®]	1,636	1,672	1,620	1,816	1,603	1,673	1, 6 83	1,704
Reserve	65	67	65	73	64	75	69	67
	(3) 2013	(4) 2014	(5) 2015	(6) 2016	(7) 2017	(8) 2018	(9) 2019	(10) 2020
Net Demonstrated Capability	0	0	0	0	0	0	0	0
Net Seasonal Capability	0	0	0	0	0	0	0	0
Purchases ^a	1,797	1,815	1,825	1,832	1,838	1,843	1,862	1,881
Sales	0	0	0	0	0	0	0	0
Available Capability ^b	1, 797	1,815	1,825	1,832	1,838	1,843	1,862	1,881
Native Load ^c	1,719	1,749	1,758	1,765	1,770	1,775	1,794	1,812
Available Reserve ^d	78	67	67	67	68	68	69	69
Internal Load ^e	1,731	1,749	1,758	1,765	1,770	1,775	1,794	1,812
Reserve ¹	66	67	67	67	68	68	69	69

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements.

^a Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^o Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

°Native Load is Internal Load less Interruptible Capability.

^a All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are supplied by the ^a Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

¹ For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held constant for the re

4901-5-5-06(A)(6)(d)(vi) PUCO Form FE-R9:

Actual and Forecast System Peak Load and Resources Dedicated to Meet System Peak Load (Megawatts) - Winter Season

FirstEnergy System⁹

	(-5) 2005	(-4) 2006	(-3) 2007	(-2) 2008	(-1) 2009	(0) 2010	(1) 2011	(2) 2012
Net Demonstrated Capability						· ·	- · · <u>- ·</u> · · · ·	
Net Seasonal Capability								
Purchases #	10,466	10.643	10.099	9,941	10,168	9,832	9,853	9,880
Sales	-				·			
Available Capability ^b	10.466	10.643	10.099	9.941	10,168	9.832	9,853	9,880
Native Load	9,585	9.756	9.233	9.080	9,472	9,151	9,386	9,428
Available Reserve ^d	881	887	866	860	696	681	467	453
Internal Load ^e	10.063	10.234	9.711	9,558	9.730	9,409	9.465	9,507
Reserve ^f	403	409	388	382	438	423	388	374
	(3) 2013	(4) 2014	(5) 2015	(6) 2016	(7) 2017	(8) 2018	(9) 2019	(10) 2020
Net Demonstrated Capability			_		······			
Net Seasonal Capability								
Purchases [®]	10.052	10.171	10.158	10.147	10.133	10.115	10.178	10.241
Sales		,				,		
Available Capability ^b	10.052	10.171	10.158	10.147	10.133	10,115	10,178	10,241
Native Load c	9.603	9.796	9.784	9,774	9,760	9.743	9.803	9,864
Available Reserve d	449	374	374	373	373	372	374	377
Internal Load [®]	9,682	9 796	9,784	9.774	9,760	9,743	9,803	9,864
Reserve ^f	370	374	374	373	373	372	374	377

The Companies have not owned or operated any generation in the state of Ohio since 2005. The energy and capacity requirements associated with the Companies Internal Load are supplied either by Competitive Retail Electric Service providers (CRES Providers), or by wholesale suppliers through master supplier agreements (SSO Suppliers) (With the exception of April-May 2009 when energy and capacity requirements were served by FirstEnergy Solutions). CRES Providers and the SSO Suppliers act as the load serving entity in the RTO's and as such are responsible for complying with all reserve requirements. "Purchases are calculated by adding the Reserve amount to Internal Load. This amount represents the amount of capacity that the LSEs will have to have in order to serve the Companies' Internal Load. Available Reserve can be used to cover the LSE's reserve obligation if the interruptible customers have committed their capability to the LSE directly and the LSE's have registered the Available Reserve on either Module E in MISO or the Available Reserve has cleared through the PJM auction as submitted by the LSE.

^o Available Capability is equal to Net Seasonal Capability plus Purchases minus Sales.

^cNative Load is Internal Load less interruptible Capability.

^a All of the Companies native load and internal load is served by Load Serving Entities (LSE), either as a Certified Retail Electric Supplier (CRES) or as suppliers for the Standard Service Offer (SSO). The reserves above are theoretical. The Companies currently are not, nor intend to become an LSE, therefore, do not have any reserves. Reserve requirements are ^a Internal Load is equal to Column 3 on PUCO Form FE-D6 for each Company.

^f For 2005 and 2006, MISO resource adequacy requirements called for the LSEs to meet their current NERC sub-region Planning Reserve Margin (PRM) requirements. The Companies had belonged to ECAR, but ECAR did not have a PRM requirement so MISO adopted the 4% Operating Reserve requirement as the interim requirement for ECAR LSEs. The 4% requirement was dropped in 2007, and in 2008, a 13.7% PRM requirement was established. For the sake of simplicity and continuity, the Companies have used a 4% reserve requirement from 2005 through 2008. Between January 2009 and May of 2011, the Companies used the Non-coincident Planning Reserve Zone of 4.5% for 2009 and 5.35% for 2010, as documented in MISO's Resource Adequacy Business Practice Manual. Reserve requirement for June 2011 through 2014 is as documented by PJM on its June 2009 PJM Reserve Requirement Study, Appendix F, ISO Reserve Requirement Comparison. Because the methodologies for determining the reserve requirement are so different between MISO and PJM, PJM has provided a percentage that would be considered the equivalent of the MISO methodology. The reserve requirement for 2014 was held con g These data include energy for Pennsylvania Power as well as the 3 Ohio companies.

4901-5-5-06(A)(6)(e) PUCO Form FE-R10:

Specifications of Planned Electric Generation Facilities ^a

- 1. Facility Name
- 2. Facility Location
- 3. Facility Type
- 4. Anticipated Capability
- 5. Anticipated Capital Cost
- 6. Application Timing
- 7. Construction Timing
- 8. Planned Pollution Control Measures
- 9. Fuel

10. Miscellaneous

^a The companies do not own or operate generation, nor intend to, for the duration of this forecast. Please see section 4901:5-5-06(A)(1) for further information