To: Docketing Division
From: George Martin, Grade Crossing Planner, Rail Division fu
Re: In the matter of the authorization of CSX Transportation, Indiana \& Ohio Railway, and Norfolk Southern Railway to install active grade crossing warning devices in five counties

Date: November 6, 2007
The Ohio Rail Development Commission (ORDC) has authorized the funding for CSX Transportation (CSX), Indiana \& Ohio Railway (IORY), and Norfolk Southern Railway (NS) to install active grade crossing waming devices at the following locations:

CSX
Auglaize County, Pusheta Township, Owl Creek Rd/TR 126, DOT\# 155-270D
Miami County, City of Troy, Union St, DOT\# 155-181L
Logan County, Near De Graff, CR 11, DOT\# 538-716T
IORY
Clinton County, Village of Sabina, Hulse St, DOT\# 151-936P
NS
Montgomery County, City of Miamisburg, Kercher St, DOT\# 524-650E
These crossings were surveyed by staff from the railroads, the Commission, ORDC, and local authorities and were found to warrant upgrades. Due to the complexity of the CSX project in Miami County it is anticipated that extensions will be requested.

These projects are actual cost and will be federally funded. Staff requests an Entry with plans and estimates to be submitted within 90 days and completion within one year. Upon approval of the plans and estimates by ORDC construction may commence. A suggested case coding and heading would be:

PUCO Case No. 07- $1 / 69$
-RR-FED In the malter of the authorization of CSX Transportation, Indiana \& Ohio Railway, and Norfolk Southern Railway to install active grade crossing warning devices in five counties

C: Legal Department

Please serve the following parties of record:

Ms Susan Kirkland
Ohio Rail Development Commission
50 W Broad St, $15^{\text {th }}$ Floor
Columbus, Oh 43215

Mr Rick Ray

Norfolk Southern Railway
1200 Peachtree St NE, Box 123
Atlanta, Ga 30309

Mr Mel McNichols
CSX Transportation
500 Water St J-301
Jacksonville, F| 32202

Mr Biff Conrad

Indiana \& Ohio Railway
497 Circle Freeway Dr, Ste 230
Cincinnati, Oh 45246

Pusheta Township Trustees
14002 Pusheta Rd
Wapakoneta, Oh 45895

Steve Leffel
City of Troy
100 S Market St
PO Box 3003
Troy, Oh 45373

Logan County Engineer
1991 CR 13
PO Box 427
Bellefontaine, On 43311-0427

Mayor Dean Carnahan
99 N Howard St
Sabina, Oh 45169

Robert Stanley, City Engineer
10 N First St
Miamisburg, Oh 45342

OHIO RAIL DEVELORMENT COMMISSION INTER-OFFICE COMMUNICATION

TO: George Martin, Planner, Railroad Division, PUCO
FROM: Susan Kirkland, Supervisor, Rail-Highway Safety Section BY: Tim Perkins, Grade Crossing Specialist inn 40, SUBJECT: Grade Crossing Warning Projects DATE: October 24, 2007

You may authorize the railroads to proceed with the non-field work for these projects. This construction authorization is made with the stipulation and understanding that any field work needs prior approval before work begins. This authorization is made with the stipulation and understanding that an approved estimate may contain entries for items or activities that may be cited and found to be ineligible for federal participation during the project audit. The construction portion and preliminary engineering will be financed with federal Eunds.

Please initiate a one (1) year order with the plan and estimate due in ninety (90) days for the following. PUSAKTA TWP
AUG - T.R. 126, Owi Creek - CSX AAR No. 155270 D (Actual cost)
MIA - Union Street - CSX AAR No. 155181 L (Actual cost) CiTY of TRoY
LOG - C.R. 11 - CSX AAR NO. 538716 T (Actual cost) LOGAN COUNTY (NEAR DE GRAR)
CLI - Hulse street - I\&O AAR No. 151936 P (Actual cost)VhaAGE of SABLJA
MOT - Kercher Street - NS AAR No. 524650 E (75\% ORDC / 25\% NS)
Thank you for your assistance with this matter.
TP:tp
c: S. Kirkland - File

The Public Utilities Commission of Ohio

Rail Division
180 East Broad Street
Columbus, OH 43215

Diagnostic Review Team Survey
Date: $9 / 61071030 \mathrm{Am}$
Location Data

In. 114.87
On-Site Review Team

8. \qquad
9. \qquad
10. \qquad
Existing Traffic Control Devices

	Initial Information (from database)	Revised
Number \& dates of crashes in previous 5 years	1317107	
Hazard Ranking 121	Date Run: 7×3107	112
Railroad Data		
Railroad Characteristics	Initial Information (from database)	Revised
Total trains per day	22	
<1 per day		
Day thru trains	8	
Night thru trains	13	
Daytime switching movements	1	
Nighttime switching movements	∞	
Total number of tracks	1	
Number of main tracks	1	
Number of other tracks	0	
Maximum train speed	58	
Typical train speed	45	
Amtrak	NO	
If non-gated crossing, is ciearing sight distance adequate in all quadrants? (See Table I) Xes \square No		
If multiple tracks, can two trains occupy crossing at the same time? \square Yes XNo Can one train block the motorists' view of another train at crossing? \square Yes (Explain below)		
Are there other track(s) crossing this same roadway within 100 ft of this crossing? Yes \square No If yes, Crossing DOT \#(ff different) \qquad If yes, distance \qquad (take measurement between track centerlines at closest point along roadway)		

Roadway Data

8

Field Dimensions

Field Sketch

TABLE I
Clearing Sight Distances

Maximum Authorized Train Speed	Distance (dT) Along Railroad from Crossing (ft)
$\mathrm{I}-10$	240
15	360
20	480
25	600
30	720
35	840
40	960
45	1080
50	1200
55	1320
60	1440
65	1560
70	1680
75	1800
80	1920
85	2040
90	2160

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5foot incremene.

Distances indicated are for 65 -ft double bottom semi-tractor trailers and level single track 90 degree crossings; and may need to be adjusted for multiple tracks, skewed crossings or approaches on grades.

Clearing Sight Distance is to be measured in each vehicle travel direction at non-gated crossings as viewed from a point 25 feet from centerline of nearest track in the center of whichever travel lane is nearest the direction along track beling measured.

Table 2

Stopping Sight Distances

Highway Vehicle Speed	Distance (dH) Along Roadway from Crossing (ft)
0	n/a
5	50
10	70
15	105
20	135
25	180
30	225
35	280
40	340
45	410
50	490
55	660
65	760
70	865

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65 -ft double bottom semi-tractor trailers on dry level pavements.
Stopping Sight Distance is to be measured on each roadway approach to crossing from stop bar.

The Public Utilities Commission of Ohio

Rail Division
180 East Broad Street
Columbus, OH 43215
Diagnostic Review Team Survey $\frac{\text { DEBBIE SWAN } 937,335}{\text { S }}$
Date: $9 / 6 / 07 \quad 1725$
Location Data

OnSite Review Team
(Include; Name - Organization - Phone Number)

4. BOp ROScMATN CSKT 944-359-1/C6
5. NEM E. TEATORD CITY of TROY 937-339-2641
6. STEVE LEFFE U " " " " "
7. \qquad
8. \qquad
9. \qquad
10. \qquad
Existing Traffic Control Devices

Is it the consensus of the Diagnostic Review Team that this is a potential closure project: No \square Yes
Explain reasons:

Type of Development

Utility Information

Field Dimensions

TABLE I
Clearing Sight Distances

Maximum Auchorized Train Speed	Distance (JT) Along Railroad from Crossing (f)
$1-10$	240
15	360
20	480
25	600
30	720
35	840
40	960
45	1080
50	1200
55	1320
60	1440
65	1560
70	1680
75	1800
80	1920
85	2040
90	2160

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65 -ft double bottom semi-cractor trailers and level single track 90 degree crossings; and may need to be adjusted for multiple tracks, skewed crossings or approaches on grades.

Clearing Sight Distance is to be measured in each vehicle travel direction at non-gated crossinga as viewed from a point 25 feet from centerline of nearest track in the center of whichever travel lane is nearest the direction along track being measured.

Table 2
Stopping Sight Dlstances

Highway Vehicle Speed	Distance (dH) Along Raadway from Crossing (ft)
0	n/a
5	50
10	70
15	105
20	135
25	180
30	225
35	280
40	340
45	410
50	490
55	570
60	660
65	76
70	

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)

Notes:

All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65 -ft double bottom semi-tractor trailers on dry level pavements.
Stopping Sight Distance is to be measured on each roadway approach to crossing from stop bar.

The Public Utilities Commission of Ohio

Rail Division
180 East Broad Street
Columbines, OH 43215
Sean coleman 937-592-

Diagnostic Review Team Survey $\quad 1$

Location Data

Existing Traffic Control Devices

Safety Data（Obtain crash reports，if possible，prior to review）

	Initial Information（from database）	Revised
Number \＆dates of crashes in prevous 5 years	18106	
Hazard Ranking 37	Date Run： $7 / 36107$	

Railroad Data

Railroad Characteristics	Initial Information（from database）	Revised
Total trains per day	39	
＜I per day		
Day thru trains	16	
Night thru trains	19	
Daytime switching movements	2	
Nighttime switching movements	2	
Tocal number of tracks	2	
Number of main tracks	2	
Number of other tracks	0	
Maximum tralin speed	60	
Typlcal train speed	50	
Amtrak		
If non－gated crossing，is clearing sight distance adequate in all quadrants？（See Table 1）区 Yes：\square No		
If multiple tracks，can two trains occupy crossing at the same time？区Yes\square No		PAS
Are there other track（s）crossing this If yes，Crossing DOT \＃（fif differen If yes，distance \qquad （tal	dway within 100 ft of this crossing？ ement between track centerlines at close	\|way)

Roadway Data

1

Utility Information

Diagnostic Team Recommendations

Install/upgrade active devices	
\square Automatic Flashing Lights (AFLS)	
\square AFLS /Cants	
\square AFLS / Gates	
\square ARLS / Gates / Cants	
\square Upgrade circuitry	
\square Sidelights	
\square Guardrail Needed	
\square Install/Replace curb	
\square Other (define)	
Comments:	
\square Install/upgrade traffic signal preemption	
\square No improvements needed	
\square Other (define)	

Crossing Angle \square
\square
Sketch by: $1 / \mathrm{M}$

TABLEI
Clearing Sight Distances

Maximum Authorized Train Speed	Distance (dT) Along Railroad from Crossing (f)
$1-10$	240
15	360
20	480
25	600
30	720
35	840
40	960
45	1080
50	1200
55	1320
60	1440
65	1560
70	1680
75	1800
80	1920
85	2040
90	2160

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65 -ft double bottom semi-tractior trallers and level single track 90 degree crossings; and may need to be adjusted for multiple tracks, skewed crossings or approaches on grades.
Clearing Sight Distance is to be measured in each vehicle travel direction at non-eated crossinge as viewed from a point 25 feet from centerline of nearest track in the center of whichever travel lane is nearest the direction along track being measured.

Table 2
Stopping Sight Distances

Highway Vehicie Speed	Distance (dH) Along Roadway from Crossing (ft)
0	n / a
5	50
10	70
15	105
20	135
25	180
30	225
35	280
40	340
45	410
50	490
55	570
60	660
65	760
70	865

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5 foot increment.

Distances indicated are for 65 -ft double bottom semi-tractor trailers on dry level pavements.
Stopping Sight Distance is to be measured on each roadway approach to crossing from stop bar.

The Public Utilities Commission of Ohio

Rail Division
180 East Broad Street
Columbus, OH 43215

Diagnostic Review Team Survey $97-302-0840$
Bob D 私
Date:
Location Data

OnSite Review Team

6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
Existing Traffic Control Devices

Safety Data (Obtain crash reports, if possible, prior to review)

Railroad Data

Roadway Data

Local Highway Authority: (Who maintains this roadway?)
VILLAGE OF SABINA

Quadrant \qquad Curb and Gutter: \square Functional (Curb height $=\mathbf{4}^{\prime \prime}$ or more) Non-functional (Curb height $=$ Less than $4^{\prime \prime}$) None	Quadrant \qquad Curb and Gutter: \square Functional (Curb height $=4^{\prime \prime}$ or more) Non-functional (Curb height $=$ Less than $4^{\prime \prime}$) None
Pedestrians: \square No \square Yes	
Is sidewalk present? \square No \square Yes	
Is there a nearby intersection that could cause queuing over the If yes, Distance \qquad Is this incersection signalized? \square No Are the signals currently interconnected with the existing cros	\square No \square Yes g warning devices? \square INo Yes
Is it the consensus of the Diagnostic Review Team that this is a p Explain reasons:	开tial closure project \square Yos
Type of Development	
\square Open Space \square Institurional Location of nearty $\square]$ Industrial \square Commercial \varnothing Residential	schools: $1 / 4 \text { MLL }$
Utility Information	
Is commercial power avallable? Utlity Provider (Company Name) Nearest Available Power Source \qquad What other utilities are present? \qquad 06 CAB Is there potential utility conflict(s) Yes \square No Dou	Phone Number \qquad
Diagnostic Team Recommendations	
7	Quadrants Needed
D Inscall/upgrade active devices	
$7 \square$ Automatic Flashing Lights (AFLS)	
\square AFLS/Cants	
\#/ AFLS/Gates	
17 AFLS/Gates / Cants	
[] Upgrade circuitry	
\square Sidelights	
\square Guardrail Needed	
\square Install/Replace curb	
\square Other (define)	
Comments:	
\square Install/upgrade traffic signal preemption	
\square No Improvements needed	
\square Other (define)	

Field Sketch

Crossing Angle \square 42 Quadrant?
Sketch by $A M M$

TABLEI
Clearing Sight Distances

Maximum Authorized Train Speed	Distance (d) Along Railroad from Crossing (f)
$1-10$	240
15	360
20	480
25	600
30	720
35	840
40	960
45	1080
50	1200
55	1320
60	1440
65	1560
70	1680
75	1800
80	1920
85	2040
90	2160

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)

Notes:

All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65-ft double bottom semi-tractor trailers and level single track 90 degree crossings; and may need to be adjusted for multiple tracks, skewed crossings or approaches on grades.

Clearing Sight Distance is to be measured in each vehicle travel direction at non-gated crossings as viewed from a point 25 feet from centerline of nearest track in the center of whichever cravel lane is nearest the direction along crack being measured.

Table 2
Stopping Sight Distances

Highway Vehicle Speed	Distance (dH) Along Roadway from Crossing (ft)
0	n/a
5	50
10	70
15	105
20	135
25	180
30	225
35	280
40	340
45	410
50	490
55	570
60	660
65	760
70	865

Source: R-H Grade Crossing Handtook Table 36 (pp. |32-133)

Notes:

All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65-ft double bottom semi-tractor trailers on dry level pavements.

Stopping Sight Distance is to be measured on each roadway approach to crossing from stop bar.

Public Utilities Commission of Ohio

The Public Utilities Commission of Ohio

Safety Data (Obtain crash reports, if possible, prior to review)

	Initial Information (from database)	Revised
Number \& dates of crashes in previous 5 years	16181041	
Hazard Ranking 90	Date Run: $7 / 3107$	86
Railroad Data		
Railroad Characteristics	Initial Information (from database)	Revised
Total trains per day	18.	
< I per day		
Day thru trains	6	
Night thru trains	10	
Daytime switching movements	2	
Nighttime switching movements	0	
Total number of tracks	2	
Number of main tracks	2	
Number of other tracks	0	
Maximum train speed	45	
Typical train speed	45	
Amtrak		
If non-gated crossing, is clearing sight distance adequate in all quadrants? (See Table I)		No (NE

Are there other track(s) crossing this same roadway within 100 ft of this crossing? \square Yes No
If yes, Crossing DOT \#(if different)
If yes, distance ____ (take measurement between track centerlines at closest point along roadway)

Roadway Data

\qquad N \square Functional（Curb height $=4$＂or more） Non－functional（Curb height $=$ Less than $4^{1 "}$ ） None	Quadrant \qquad Curb and Gutter：χ^{\prime} Functional（Curb height $=4^{\prime \prime}$ or more） Non－functional（Curb height $=$ Less than $4^{\prime \prime}$ ） None
Pedestrians：\square No ${ }^{\text {N }}$ Yes	
Is sidewalk present？$\square^{\text {No }}$ N $\nabla^{\text {a }}$ Yes	
Is there a nearby intersection that could cause queuing over the crossing？No \square Yes If yes， Distance \qquad Is this intersection signalized？ \square No Are the signals currently interconnected with the existing crossing warning devices？No Yes	
Is it the consensus of the Diagnostic Review Team that this is a p Explain reasons：	tential closure project：$X N_{0} \quad \square$ Yes
Type of Development	
\square Open Space \square institutional Location of nearby Q Induscrial \square Commercial $母$ Residential	schools：
Utility Information	
Is commercial power available？ \square № $x^{\text {Yes }}$ Utility Provider（Company Name） \qquad DP $\Delta P \& L$ Nearest Available Power Source \qquad What other utilities are present？ \square IT CROSSing NEW GISct Is there potential utility conflict（s） \qquad \square No DUnknown	
Diagnostic Team Recommendations	
7	Quadrants Needed
D Install／upgrade active devicos	
\square Automatc Flashing Lights（AFLS）	
－${ }^{\text {a }}$ AFLS／Gates	
\square AFLS／Gates／Cants	
\square Upgrade circulitry	
\square Sidelights	
\square Guardrail Needed	
\square Insall／Replace curb	
\square Other（define）	
Comments：	
\square Installupgrade trafic signal preemption	
\square No improvements needed	
Other（define）	
WARNING SUUN TATAT WAS MISSWOB	

TABLE I
Clearing Sight Distances

Maximum Authorized Train Speed	Distance (dT) Along Railroad from Crossing (ft)
$1-10$	240
15	360
20	480
25	600
30	720
35	840
40	960
45	1080
50	1200
55	1320
60	1440
65	1560
70	1680
75	1800
80	1920
85	2040
90	2160

Source: R-H Grade Crossing Handbook Table 36 (pp. I 32-133)

Notes:

All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65 -ft double bottom semi-tractor trailers and level single track 90 degree crossings; and may need to be adjusted for multiple tracks, skewed crossings or approaches on grades.
Clearing Sight Distance is to be measured in each vehicle travel direction at non-gated crossings as viewed from a point 25 feet from centerline of nearest track in the center of whichever travel lane is nearest the direction along track being measured.

Table 2
Stopping Sight Distances

Higtway Vehicle Speed	Distance (dH) Along Roadway from Crossing (f)
0	n/a
5	50
10	70
15	105
20	135
25	180
30	225
35	280
40	340
45	410
50	490
55	570
60	660
65	760
70	865

Source: R-H Grade Crossing Handbook Table 36 (pp. 132-133)
Notes:
All calculated distances are rounded up to the next higher 5foot increment.

Distances indicated are for 65-ft double bottom semi-tractor trailers on dry level pavements.
Stopping Sight Distance is to be measured on each roadway approach to crossing from stop bar.

