

CC

			c	hc	ort	D			r I	Fa	ct	or	T	ah	ما				
able :	11.7 F	owe	r-Fact	or Im	prove	ement	U V	ve		a			10						
Origina	I								r	Desired	Power	Factor	(%)						
Factor (%)	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
50	0.982	1.008	1.034	1.060	1.086	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1.403	1.442	1.481	1.529
51 52	0.937	0.962	0.989	1.015	1.041 0.997	1.067	1.094 1.050	1.120 1.076	1.147 1.103	1.175 1.131	1.203 1.159	1.231 1.187	1.261 1.217	1.292 1.248	1.324 1.280	1.358 1:314	1.395 1.351	1.436 1.392	1.484 1.440
53	0.850	0.876	0.902	0.928	0.954	0.980	1.007	1.033	1.060	1.088	1.116	1.144	1.174	1.205	1.237	1.271	1.308	1.349	1.397
54	0.809	0.835	0.861	0.887	0.913	0.939	0.966	0.992	1.019	1.047	1.075	1.103	1.133	1.164	1.196	1.230	1.267	1.308	1.356
55	0.769	0.795	0.821	0.847	0.873	0.899	0.926	0.952	0.979	1.007	1.035	1.063	1.090	1.124	1.156	1.190	1.228	1.268	1.316
56	0.730	0.756	0.782	0.808	0.834	0.860	0.887	0.913	0.940	0.968	0.996	1.024	1.051	1.085	1.117	1.151	1.189	1.229	1.277
57	0.692	0.718	0.744	0.770	0.796	0.822	0.849	0.875	0.902	0.930	0.958	0.986	1.013	1.04/	1.0/9	1.113	1.151	1.191	1 202
58	0.655	0.681	0.670	0.696	0.739	0.748	0.775	0.801	0.828	0.856	0.884	0.912	0.939	0.973	1.005	1.039	1.077	1.117	1.165
60	0.584	0.610	0.636	0.662	0.688	0.714	0.741	0.767	0.794	0.822	0.850	0.878	0.905	0.939	0.971	1.005	1.043	1.083	1.131
61	0.549	0.575	0.601	0.627	0.653	0.679	0.706	0.732	0.759	0.787	0.815	0.843	0.870	0.904	0.936	0.970	1.008	1.048	1.096
62	0.515	0.541	0.567	0.593	0.619	0.645	0.672	0.698	0.725	0.753	0.781	0.809	0.836	0.870	0.902	0.936	0.974	0.982	1.062
64	0.483	0.509	0.535	0.528	0.554	0.580	0.607	0.633	0.660	0.688	0.715	0.744	0.771	0.805	0.837	0.871	0.909	0.949	0.997
65	0.419	0.445	0.471	0.497	0.523	0.549	0.576	0.602	0.629	0.657	0.685	0.713	0.740	0.774	0.806	0.840	0.878	0.918	0.966
66	0.388	0.414	0.440	0.466	0.492	0.518	0.545	0.571	0.598	0.626	0.554	0.682	0.709	0.743	0.775	0.809	0.847	0.887	0.935
67	0.358	0.384	0.410	0.436	0.462	0.488	0.515	0.541	0.568	0.596	0.624	0.652	0.679	0.713	0.745	0.779	0.817	0.857	0.905
68	0.329	0.355	0.381	0.407	0.433	0.459	0.486	0.512	0.539	0.567	0.595	0.623	0.650	0.684	0.716	0.750	0.788	0.828	0.8/6
69 70	0.299	0.325	0.351	0.377	0.403	0.429	0.456	0.482	0.509	0.508	0.536	0.564	0.591	0.625	0.657	0.691	0.729	0.769	0.811
								Ses	sion 5	.1.18								5	8

CEM Review Questions								
 If power factor correction capacitors ar located at the utility meter, but on the customer's side of the meter, the power out in the customer's facility will not be improved. 	re er factor e							
A. True B. False								
2. A facility has a 100 kW electric resistance oven for drying parts. What is the power factor of the oven?								
A. 0 % B. 50% C. 90% D. 10	0%							
Session 5.1.19	Cee							

P 50 PM 1750	SERVICE FACTOR 1 15
PM 1780	TIME RATING COLL
DITC (CAL)	Time deline C.C.R.F
ULIS SCC	PHASE & HERTZ CU
MP 61,1	RVAA 16.6
4:0	DEG. C. MAR. CLASS
LSZGVIPI	C FRAME TYPE & CODE C
UPPER OIL	2.0 CTS 180 52
LOMER SRE	ASE RYKON PREN 12

	IDENTIFICATI	ON NO.	08RS0001006	G 001 V		3	65T		
	HP 75	VOLTS	230/460	PHASE	3 DESI	GN B	TYPE P		
6	RPM 1780	AMPS	175/87.6	HZ 6	0 AMB	40°C	SF 1.15		
	BEARING 6	5BC03J3	OX		DUT	CONT	CLASS F		
	OPP D.E. 6	5BC03J3	OX		ENCL	TEFC	CODE G		
				POWER	84.9	NEMA NO	94.1		
				MAX CORR.	17.0	GUARAN	CY 93.6		
	WOTOR 795 LB								

 Δ kVAR = 33.15 (tan cos⁻¹ 0.7 – tan cos⁻¹ 0.9) = 17.77 kVAR

You will find the quantity in () above in PF table (see Appendix)

New kVA = 33.15/0.9 = 36.83 kVA = $36.83 = (kV)I\sqrt{3}$

 $I = 36.83/(0.480\sqrt{3}) = 44.30$ amps

Thus, PF correction dropped amperage (upstream of the capacitor) from 56.96 to 44.30 amps or 22% Also, new kVA = $\sqrt{3}$ kV I = 36.83 kVA Session 5.2.29 33.15

Motor Sample Problem

- A recent advertisement said a premium efficiency 50 hp motor is available at 94.5%. It would replace a motor that presently runs at 90.7%. Given the parameters below, calculate the cost of operating both motors and the savings for conversion:
 - Motor runs 8760 hours/year
 - Demand cost is \$10 per kW month
 - Energy cost is \$0.06/kWh
 - Motor runs at 80% load all the time

Session 5.2.31

CRE

Origin	al T								r	Desired	Power	Factor	(%)						
Facto (%)	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
50	0.982	1.008	1.034	1.060	1.086	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1.403	1.442	1.481	1.529
51	0.937	0.962	0.989	1.015	1.041	1.067	1.094	1.120	1.147	1.175	1.203	1.231	1.261	1.292	1.324	1.358	1.395	1.436	1.484
52	0.893	0.919	0.945	0.971	0.997	1.023	1.050	1.076	1.103	1.131	1.159	1.187	1.217	1.248	1.280	1:314	1.351	1.392	1.440
53	0.850	0.876	0.902	0.928	0.954	0.980	1.007	1.033	1.060	1.088	1.116	1.144	1.174	1.205	1.237	1.271	1.308	1.349	1.39/
54	0.809	0.835	0.861	0.887	0.913	0.939	0.966	0.992	0.979	1.047	1.075	1.105	1.090	1.124	1.156	1.190	1.228	1.268	1.316
55	0.769	0.795	0.621	0.847	0.87.3	0.099	0.920	0.952	0.373	1.007	1.000	11000	11050						
56	0.730	0.756	0.782	0.808	0.834	0.860	0.887	0.913	0.940	0.968	0.996	1.024	1.051	1.085	1.117	1.151	1.189	1.229	1.277
57	0.692	0.718	0.744	0.770	0.796	0.822	0.849	0.875	0.902	0.930	0.958	0.986	1.013	1.047	1.079	1.113	1.151	1.191	1.235
58	0.655	0.681	0.707	0.733	0.759	0.785	0.812	0.838	0.865	0.893	0.921	0.949	0.976	0.073	1.042	1.076	1.077	1.117	1.165
59	0.618	0.644	0.670	0.696	0.722	0.748	0.775	0.801	0.828	0.856	0.884	0.912	0.939	0.973	1.005	1.039	1.0//	1.112	1.100
60	0.584	0.610	0.636	0.662	0.688	0.714	0.741	0.767	0.794	0.822	0.850	0.878	0.905	0.939	0.971	1.005	1.043	1.083	1.131
61	0.549	0.575	0.601	0.627	0.653	0.679	0.706	0.732	0.759	0.787	0.815	0.843	0.870	0.904	0.936	0.970	1.008	1.048	1.096
62	0.515	0.541	0.567	0.593	0.619	0.645	0.672	0.698	0.725	0.753	0.781	0.809	0.836	0.870	0.902	0.936	0.974	1.014	1.062
63	0.483	0.509	0.535	0.561	0.587	0.613	0.640	0.666	0.693	0.721	0.749	0.777	0.804	0.838	0.870	0.904	0.942	0.982	0.000
64	0.450	0.476	0.502	0.528	0.554	0.580	0.607	0.633	0.660	0.688	0.715	0.744	0.771	0.805	0.837	0.840	0.909	0.949	0.966
65	0.419	0.445	0.471	0.497	0.523	0.349	0.376	0.602	0.629	0.657	0.005	0.713	0.740	0.774	0.000	0.010	0.070	0.010	01200
66	0.388	0 4 1 4	0.440	0.466	0.492	0.518	0.545	0.571	0.598	0.626	0.554	0.682	0.709	0.743	0.775	0.809	0.847	0.887	0.935
67	0.358	0.384	0.410	0.436	0.462	0.488	0.515	0.541	0.568	0.596	0.624	0.652	0.679	0.713	0.745	0.779	0.817	0.857	0.905
68	0.329	0.355	0.381	0.407	0.433	0.459	0.486	0.512	0.539	0.567	0.595	0.623	0.650	0.684	0.716	0.750	0.788	0.828	0.876
69	0.299	0.325	0.351	0.377	0.403	0.429	0.456	0.482	0.509	0.537	0.565	0.593	0.620	0.654	0.866	0.720	0.758	0.798	0.840
70	0.270	0.296	0.322	0.348	0.374	0.400	0.427	0.453	0.480	0.508	0.536	0.564	0.591	0.625	0.657	0.691	0.729	0.769	0.01
71	0.242	0.268	0 294	0 320	0.346	0.372	0.399	0.425	0.452	0.480	0.508	0.536	0.563	0.597	0.629	0.663	0.701	0.741	0.783
72	0.213	0.239	0.265	0.291	0.317	0.343	0.370	0.396	0.423	0.451	0.479	0.507	0.534	0.568	0.600	0.634	0.672	0.712	0.754
73	0.186	0.212	0.238	0.264	0.290	0.316	0.343	0.369	0.396	0.424	0.452	0.480	0.507	0.541	0.573	0.607	0.645	0.685	0.727
74	0.159	0.185	0.211	0.237	0.263	0.289	0.316	0.342	0.369	0.397	0.425	0.453	0.480	0.514	-3.546	0.580	0.618	0.658	0.70
75	0.132	0.158	0.184	0.210	0.236	0.262	0.289	0.315	0.342	0.370	0.398	0.426	0.453	0.487	0.519	0.553	0.591	0.631	0.67.
76	0.105	0.131	0.157	0.163	0.202	0.235	0.262	0.288	0.315	0.343	0.371	0.399	0.426	0.460	0.492	0.526	0.564	0.604	0.653
77	0.079	0.105	0.131	0.157	0.183	0.209	0.236	0.262	0.289	0.317	0.345	0.373	0.400	0.434	0.466	0.500	0.538	0.578	0.620
78	0.053	0.079	0.105	0.131	0.157	0.183	0.210	0.236	0.263	0.291	0.319	0.347	0.374	0.408	0.440	0.474	0.512	0.552	0.594
79	0.026	0.052	0.078	0.104	0.130	0.156	0.183	0.209	0.236	0.264	0.292	0.320	0.347	0.381	0.413	0.447	0.485	0.525	0.56
80	0.000	0.026	0.052	0.078	0.104	0.130	0.157	0.183	0.210	0.238	0.266	0.294	0.321	0.355	0.387	0.421	0.459	0.499	0.541
81		0.000	0.026	0.052	0.078	0.104	0.131	0.157	0.184	0.212	0.240	0.268	0.295	0.329	0.361	0.395	0.433.	0.473	0.515
82		0.000	0.000	0.026	0.052	0.078	0.105	0.131	0.158	0.186	0.214	0.242	0.269	0.303	0.335.	0.369	0.407	0.447	0.489
83				0.000	0.026	0.052	0.079	0.105	0.132	0.160	0.188	0.216	0.243	0.277	0.309	0.343	0.381	0.421	0.463
84					0.000	0.026	0.053	0.079	0.106	0.134	0.162	0.190	0.217	0.251	0.283	0.317	0.355	0.395	0.432
85						0.000	0.027	0.053	0.080	0.108	0.136	0.164	0.191	0.225	0.237	0.291	0.329	0.309	0.417
86								0.026	0.053	0.081	0.109	0.137	0.167	0.198	0.230	0.265	0.301	0.343	0.390
87								0.080	0.027	0.055	0.082	0.111	0.141	0.172	0.204	0.238	0.275	0.317	0.364
60										0.028	0.056	0.084-	0.114	0.145	0.177	0.211	0.248	0.290	0.333
89											0.028	0.056	0.086	0.117	0.149	0.183	0.220	0.262	0.309
90												0.028	0.058	0.089	0.121	0.155	0.192	0.234	0.281
91													0.030	0.061	0.093	0.127	0.164	0.206	0.253
92		~												0.031	0.063	0.097	0.134	0.176	0.223
93															0.032	0.066	0.103	0.145	0.192
94																0.034	0.071	0.113	0.160
95																	0.037	0.079	0.126
04																		0.042	0.089
95																			0.047
98																			
00																			

-	Ratio (Old)	Ratio (VFD)	Fraction	Saved	Dollar Saving
0.20	0.57	0.09	0.00	0	0
0.30	0.67	0.11	0.0*	6786	271
0.40	0.71	0.14	0.16	22103	884
. 0.50	0.72	0.2~	0.23	28985	1159
0.60	0.75	0.29	0.23	25641	1026
0.70	0.80	0.43	0.20	17934	717
0.80	0.88	0.62	0.09	5671	227
0.90	0.99	0.85	0.03	1018	41
1.00	1.20	1.16	0.01	97	4

	Compressed Gas Systems							
•	• Other energy conservation techniques (cont):							
	 Recover heat for personnel comfort from air compressor 							
	Heat recovered from air compressors*							
	Compressor Size, Hp Heat Available, Btu/min							
	40 1870							
	100	4660						
	125	5830						
	150	6990						
	200	9330						
	300 14,000							
	400 18,700							
	*From Sullair screw compressor data							
	Session 5.3.48							

