

Application to Commit Energy
Efficiency/Peak Demand
Reduction Programs
(Mercantile Customers Only)

Case No.: <u>13-1280-E</u>L-EEC

Mercantile Customer: Valley Asphalt Corporation

Electric Utility: **Duke Energy**

Program Title or

Multiple VFD Projects

Description:

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs in accordance with the Commission's pilot program established in Case No. <u>10-834-EL-POR</u>

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the electric utility's energy efficiency and demand reduction (EEDR) rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the EEDR rider (Option 2) will also qualify for the 60-day automatic approval so long as the exemption period does not exceed 24 months. Rider exemptions for periods of more than 24 months will be reviewed by the Commission Staff and are only approved up the issuance of a Commission order.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

Any confidential or trade secret information may be submitted to Staff on disc or via email at ee-pdr@puc.state.oh.us.

Section 1: Mercantile Customer Information

Name: Valley Asphalt Corporation

Principal address: 11641 Mosteller Rd Cincinnati, Ohio 45241

Address of facility for which this energy efficiency program applies:

4850 Stubbs Mill Rd, Morrow OH 45152 7940 Main St, Newtown Ohio 45244 11641 Mosteller Rd, Cincinnati Ohio 45241

Name and telephone number for responses to questions:

Grady Reid Jr 513-287-1038

Electricity use by the customer (check the box(es) that apply):

- The customer uses more than seven hundred thousand kilowatt hours per year at the above facility. (**Refer to Appendix A for documentation**.)
- ☐ The customer is part of a national account involving multiple facilities in one or more states. (Please attach documentation.)

Section 2: Application Information

- A) The customer is filing this application (choose which applies):
 - □ Individually, without electric utility participation.
 - ✓ Jointly with the electric utility.
- B) The electric utility is: **Duke Energy**
- C) The customer is offering to commit (check any that apply):
 - □ Energy savings from the customer's energy efficiency program. (Complete Sections 3, 5, 6, and 7.)
 - □ Capacity savings from the customer's demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)
 - ✓ Both the energy savings and the capacity savings from the customer's energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

- A) The customer's energy efficiency program involves (check those that apply):
 - Early replacement of fully functioning equipment with new equipment. (Provide the date on which the customer replaced fully functioning equipment, and the date on which the customer would have replaced such equipment if it had not been replaced early. Please include a brief explanation for how the customer determined this future replacement date (or, if not known, please explain why this is not known)).

The following new equipment was installed starting July 2012 and was finished April 2013.

1 VFD on 200HP Asphalt Dryer - 4850 Stubbs Mill Rd

1 VFD on 200HP Asphalt Dryer - 7940 Main St

1 VFD on 200HP Asphalt Dryer -11641 Mosteller Rd

1 VFD on 100HP Burner Blower -11641 Mosteller Rd

- □ Installation of new equipment to replace equipment that needed to be replaced The customer installed new equipment on the following date(s):
- Installation of new equipment for new construction or facility expansion.
 The customer installed new equipment on the following date(s):
- □ Behavioral or operational improvement.
- B) Energy savings achieved/to be achieved by the energy efficiency program:
 - 1) If you checked the box indicating that the project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) (kWh used by new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: 186,591 kWh Refer to Appendix B for calculations and supporting document

2) If you checked the box indicating that the customer installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by the higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

	Annual savings:kWh
	Please describe any less efficient new equipment that was rejected in favor of the more efficient new equipment.
3)	If you checked the box indicating that the project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:
	Annual savings:kWh
	Please describe the less efficient new equipment that was rejected in favor of the more efficient new equipment.
4)	If you checked the box indicating that the project involves behavioral or operational improvements, provide a description of how the annual savings were determined.

Section 4: Demand Reduction/Demand Response Programs

- A) The customer's program involves (check the one that applies):
 - ✓ Coincident peak-demand savings from the customer's energy efficiency program.
 - Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
 - □ Potential peak-demand reduction (check the one that applies):
 - ☐ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
 - ☐ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
- B) On what date did the customer initiate its demand reduction program?

The new equipment was installed starting July 2012 and was finished April 2013.

C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

0 kW

Refer to Appendix B for calculations and supporting documentation.

Section 5: Request for Cash Rebate Reasonable Arrangement (Option 1) or Exemption from Rider (Option 2)

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note utomatic is by the app Con

-	n 2 is selected, the application will not qualify for the 60-day automatic applications, however, will be considered on a timely basis by the			
The custo	mer is applying for:			
✓ Opti	on 1: A cash rebate reasonable arrangement.			
OR				
-	on 2: An exemption from the energy efficiency cost recovery nanism implemented by the electric utility.			
OR				
□ Com	mitment payment			
The value	of the option that the customer is seeking is:			
Option 1: A cash rebate reasonable arrangement, which is the lesser of (show both amounts):				
	✓ A cash rebate of \$3155.00. Refer to Appendix C for documentation. (Rebate shall not exceed 50% project cost.			
Option 2:	An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider.			
	 An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for months (not to exceed 24 months). (Attach calculations showing how this time period was determined.) 			
	OR			
	□ A commitment payment valued at no more than \$ (Attach documentation and			

A)

B)

calculations showing how this payment amount was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of the customer's ongoing efficiency program. (Attach documentation that establishes the ongoing nature of the program.) In order to continue the exemption beyond the initial 24 month period, the customer will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):

Total Resource Cost (TRC) Test.	The calculated TRC value is:	
(Continue to Subsection 1, then skip	p Subsection 2)	

	documents.	
	Subsection 2.) Refer to Ap	ppendix D for calculations and supporting
✓	Utility Cost Test (UCT).	The calculated UCT value is 10.74 (Skip to

Subsection 1: TRC Test Used (please fill in all blanks).

The TRC value of the program is calculated by dividing the value of our avoided supply costs (generation capacity, energy, and any transmission or distribution) by the sum of our program overhead and installation costs and any incremental measure costs paid by either the customer or the electric utility.

The electric utility's avoided supply costs were _	·
Our program costs were	
The incremental measure costs were .	

Subsection 2: UCT Used (please fill in all blanks).

We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were \$85,738

The utility's program costs were \$4,827

The utility's incentive costs/rebate costs were \$3155.

Refer to Appendix D for calculations and supporting documents.

Section 7: Additional Information

Please attach the following supporting documentation to this application:

Narrative description of the program including, but not limited to, make, model, and year of any installed and replaced equipment.

A copy of the formal declaration or agreement that commits the program or measure to the electric utility, including:

- 1) any confidentiality requirements associated with the agreement;
- 2) a description of any consequences of noncompliance with the terms of the commitment;
- 3) a description of coordination requirements between the customer and the electric utility with regard to peak demand reduction;
- 4) permission by the customer to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
- 5) a commitment by the customer to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.

Refer to Offer Letter following this application

A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.

DUKE ENERGY
Mercantile Self Direct Program
139 East Fourth Street
Cincinnati, OH 45202
513 629 5572 fax

May 14, 2013

Mr. Fred Brammer Valley Asphalt 11641 Mosteller Road Cincinnati, Oh 45241

Subject: Your Application for a Duke Energy Mercantile Self-Direct Rebate

Dear Brammer:

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page two, a total rebate of \$3155.00 has been proposed for your VFD projects completed in the 2013 calendar year. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by

- providing your signature on page two
- completing the PUCO-required affidavit on page three.

Please return the documents to my attention via fax at 513-629-5572 or e-mail to SelfDirect@Duke-Energy.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

At Duke Energy, we value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Grady Reid, Jr Product Manager

Mercantile Self Direct Rebates

CC:

Deanna Bowden, Duke Energy Rob Jung, Ecova Doug Ison, F.D. Lawrence Electric Company

Please indicate your response to	o this rebate offer within 30 o	days of receipt.
Rebate is accepted.	Rebate is decli	ined.
By accepting this rebate, Valley efficiency projects listed on the demand response and/or energ	following pages into Duke Er	to commit and integrate the energy nergy's peak demand reduction,
Additionally, Valley Asphalt also secure approval of this arrange reporting requirements imposed	ment as required by PUCO ຄ	olicant in any future filings necessary to and to comply with any information and proval.
this rebate offer is true and accu	urate. Information in questio fications, equipment operatio	n submitted to Duke Energy pursuant to on would include, but not be limited to, onal details, project costs, project neasures installed.
If rebate is accepted, will you us reduction projects?	se the monies to fund future	energy efficiency and/or demand
YES NO		
If rebate is declined, please indi	icate reason (optional):	
Ared Brammer Customer Signature	FREO BRAMMER Printed Name	5 <u>-21-13</u> Date

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure (ECM)	Proposed Rebate Amount
ECM-1	Plant 14 Asphalt Dryer Rotary Kiln VFD (Qty 1)	\$891.00
ECM-2	Plant 23 Burner Blower VFD (Qty 1)	\$411.00
ECM-3	Plant 23 Asphalt Dryer Rotary Kiln VFD (Qty 1)	\$1176.00
ECM-4	Plant 5 Asphalt Dryer Rotary Kiln VFD (Qty 1)	\$677.00
Total		\$3155.00

Ohio | Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.:EL-EEC
State of Ohio:
Fred Brammer, Affiant, being duly sworn according to law, deposes and says that:
1. I am the duly authorized representative of:
[insert customer or EDU company name and any applicable name(s) doing business as]
2. I have personally examined all the information contained in the foregoing application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
I am aware of fines and penalties which may be imposed under Ohio Revised Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.
And Brommer Supt. Signature of Affiant & Title
Sworn and subscribed before me this 3 day of May, 3013 Month/Year
Signature of official administering oath RYPI Anita R. Davis, Contract Print Name and Title Coordinator
My commission expires ANITA R. DAVIS Notary Public, State of Ohio My Commission Expires December 2, 2016

08403616 01									
VALLEY ASPHALT CORP									
4850 STUBBSMILL RD									
MORROW, OH 45152									
Electric Meter	Electric Meter: 106882309 Rate DS01								
Date	Date Days Actual KWH								
4/3/2013	30	2,915							
3/4/2013	31	3,359							
2/1/2013	29	2,742							
1/3/2013	34	18,329							
11/30/2012	31	48,162							
10/30/2012	29	49,727							
10/1/2012	32	66,003							
8/30/2012	29	63,021							
8/1/2012	30	36,762							
7/2/2012	31	44,716							
6/1/2012	30	33,401							
5/2/2012	30	45,025							
Total		414,162							

24600675 01		
VALLEY ASPHALT	CORP	
11641 MOSTELLE	R RD	
CINCINNATI, OH	45241	
Bulked Metrs: 10	8000839 &	108004326 Rate DS01
Date	Days	Actual KWH
3/27/2013	29	54,560
2/26/2013	29	54,574
1/28/2013 32 12/27/2012 31 11/26/2012 33		57,655
		129,266
		150,101
10/24/2012	29	160,625
9/25/2012	32	138,441
8/24/2012	29	161,215
7/26/2012	30	136,767
6/26/2012	32	134,521
5/25/2012	29	116,557
4/26/2012	30	116,905
Total		1,411,187

7940 MAIN						
CINCINNATI, OH	45244					
Bulked Electric Meter: 94273581 & 106939983 Rate DS01						
Date	Days	Actual KWH				
3/19/2013	29	2,218				
2/18/2013	31	2,525				
1/18/2013	32	2,758				
12/17/2012	33	43,441				
11/14/2012	29	64,939				
10/16/2012	29	61,647				
9/17/2012	32	49,547				
8/16/2012	29	57,523				
7/18/2012	30	53,934				
6/18/2012	32	59,419				
5/17/2012	29	33,113				
4/18/2012	30	14,971				
Total		446,035				

	Baseline Used			Post Project Actual				Savings	
	Description	Annual kWh	Summer Coincident kW	Description	Annual kWh	Summer Coincident kW	Hours of Operation	Annual kWh	Summer Coinciden kW
ECM - 1	Valley Asphalt - Plant 14 Kiln No VFD	350,227	157	Installed new 200-hp VFD	301,380	134		48,847	23.0
ECM - 2	Valley Asphalt - Plant 23 Blower No VFD	176,684	79	Installed new 100-hp VFD	146,341	64		30,343	15.0
ECM - 3	Valley Asphalt - Plant 23 Kiln No VFD	321,173	157	Installed new 200-hp VFD	276,574	133		44,599	24.0
ECM - 4	Valley Asphalt - Plant 5 Kiln No VFD	332,952	157	Installed new 200-hp VFD	282,211	131		50,741	26.0
	TOTALS	1,181,036	550		1,006,506	462		174,530	88.0
Notes:	Energy consumption baseline, demand ba	seline and post	project energ	y consumption basis are outlined in the	following pages.				ļ
	After consideration of line losses, total er	l nergy savings a	 re 186,591 k\	 Wh and 0 summer coincident kW . The	se values may also ref	lect minor DS	More modelir	ng software	rounding

Mar 2013 V1			
		CM013-	Rev. 0
Salesforce Opportunity Name	0	Application # 1392199	
	alt Corporation - Mercantile Self Direct - Kiln and Blower Motor VFD	Valley Asphalt - Plant 23 Kiln VFD	State OH

Measure Description

The measure involved the installation of a new VFD on an existing 200-hp motor that drives a rotary kiln. The VFD allows the rotary kiln to revolve faster or slower based on the type of asphalt mix being produced.

Baseline

The customer estimates that the baseline equipment had a remaining useful life of more than two years, and as such the customer average baseline motor had only on/off type controls and ran at a constant load regardless of the product being produced. The customer estimates that the kiln operates for 2,045 hours/year.

Savings Calculation Methodology

The new VFD allows the 200-hp motor to reduce electric output and kiln speed based on product requirements. The post-installation duty cycle, which was calculated by the customer, seems reasonable. Energy savings are achieved because the new VSD allows the motor to spend a majority of its 2,045 hour annual operating time running at a reduced load relative to the baseline period.

Incremental Measure Cost (IMC)

Baseline choice was no action. Incremental costs are from invoices provided for the installed equipment

IMC	(\$) B	aseline Cost (\$)	Measure Cost (\$)
\$8,300	0.00	\$0.00	\$8,300.00

References to source documents/back up files as appropriate

CMO13-1392199 - Valley Asphalt Corporation - Part 2 Worksheet & Invoices & Specs- Plant 23 Kiln - ECM1

Savings Calculations

(insert all appropriate calculations or simulation results below)

The calculations below have been put together by the reviewer. The duty cycle for the VFD retrofitted motor was calculated by the customer.

Overall, savings decreased slightly compared to the submitted value.

BASELINE

	Demand Calcula	ations						Mor	thly Opera	ting Profile					
bhp	Motor Load (kW)	Motor Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	157.05	0	0	0	200	230	240	260	260	270	260	175	150
90%	134.28	95.00%	141.35												
80%	119.36	95.00%	125.64												
70%	104.44	95.00%	109.94												
60%	89.52	95.00%	94.23												
50%	74.60	95.00%	78.53												
40%	59.68	95.00%	62.82												
			Total Hours	2,045	<u> </u>										

Monthly Energy Consumption (kWh) 0 0 0 31,411 36,122 37,693 40,834 40,834 42,404 40,834 27,484 23,558 Monthly Average Demand (kW) 0.00 0.00 157.05 157.05 157.05 157.05 157.05 157.05 157.05 157.05 157.05

 Annual kWh
 321,172.6

 Average kW
 157.05

POST-INSTALLATION

	Deman	d Calculations			Monthly Operating Profile											
bhp	Motor Load (kW)	Motor Eff.	VFD Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	97.50%	161.08	0	0	0	60	60	60	60	60	60	60	60	50
90%	134.28	95.00%	97.50%	144.97	0	0	0	50	60	60	60	60	60	60	50	50
80%	119.36	95.00%	97.50%	128.86	0	0	0	40	60	60	60	60	60	60	40	20
70%	104.44	95.00%	97.50%	112.76	0	0	0	30	30	40	40	50	60	50	10	20
60%	89.52	95.00%	97.50%	96.65	0	0	0	20	20	20	40	30	30	30	15	10
50%	74.60	95.00%	97.50%	80.54												
40%	59.68	95.00%	97.50%	64.43												
			_	Total Hours	2,045			•							•	

Monthly Energy Consumption (kWh) 0 0 0 27,384 31,411 32,538 34,471 34,632 35,760 34,632 24,645 21,101 Monthly Average Demand (kW) 0.00 0.00 0.00 136.92 136.57 135.58 132.58 133.20 132.44 133.20 140.83 140.68

Annual kWh 276,573.7 Average kW 135.78

Annual Savings 44,599 kWh
Average kW Reduction 21.28 kW

Mar 2013 V1

Salesforce Opportunity Name Project Name

Valley Asphalt Corporation - Mercantile Self Direct - Kiln and Blower Motor VFD

Project Name

CM0131392199
Valley Asphalt - Plant 23 Kiln VFD

State OH

Measure Description

The measure involved the installation of a new VFD on an existing 100-hp motor that drives a burner blower. The VFD allows the blower to reduce output based on the type of asphalt mix being produced.

Baseline

The customer estimates that the baseline equipment had a remaining useful life of more than two years, and as such the customer average baseline has been used. The baseline motor had only on/off type controls and ran at a constant load regardless of the product being produced. The customer estimates that the blower operates for 2,250 hours/year.

Savings Calculation Methodology

The new VFD allows the 100-hp motor to reduce electric output and blower speed based on product requirements. The post-installation duty cycle, which was calculated by the customer, seems reasonable. Energy savings are achieved because the new VSD allows the motor to spend a majority of its 2,250 hour annual operating time running at a reduced load relative to the baseline period.

Incremental Measure Cost (IMC)

Baseline choice was no action. Incremental costs are from invoices provided for the installed equipment

IMC Calculation

IMC (\$)	Baseline Cost (\$)	Measure Cost (\$)
\$4,869.00	\$0.00	\$4,869.00

References to source documents/back up files as appropriate

CMO13-1392199 - Valley Asphalt Corporation - Part 2 Worksheet & Invoices & Specs- Plant 23 Blower - ECM2

Attached Files

I Equipment Specs
I Calculations
I Cost Documentation

CMO13-1392199 - Valley Asphalt
Corporation - Part

Savings Calculations

(insert all appropriate calculations or simulation results below)

The calculations below have been put together by the reviewer. The duty cycle for the VFD retrofitted motor was calculated by the customer.

Overall, savings decreased slightly compared to the submitted value.

BASELINE

	Demand Calcula	ations						Mor	thly Opera	ting Profile					
bhp	Motor Load (kW)	Motor Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
100	74.60	95.00%	78.53	0	0	0	200	290	300	300	300	300	300	175	85
90%	67.14	95.00%	70.67												
80%	59.68	95.00%	62.82												
70%	52.22	95.00%	54.97												
60%	44.76	95.00%	47.12												
50%	37.30	95.00%	39.26												
40%	29.84	95.00%	31.41												
			Total Hours	2,250											

,

176,684.2

78.53

23,558 23,558 Monthly Energy Consumption (kWh) 22,773 23,558 23,558 23,558 Monthly Average Demand (kW) 0.00 0.00 78.53 78.53 78.53 78.53 78.53 78.53 78.53 78.53

Annual kWh Average kW

POST-INSTALLATION

	Deman	Demand Calculations					Monthly Operating Profile											
bhp	Motor Load (kW)	Motor Eff.	VFD Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
100	74.60	95.00%	97.50%	80.54	0	0	0	50	60	60	60	60	60	60	40	40		
90%	67.14	95.00%	97.50%	72.49	0	0	0	50	60	60	60	60	60	60	40	10		
80%	59.68	95.00%	97.50%	64.43	0	0	0	40	60	60	60	60	60	60	35	15		
70%	52.22	95.00%	97.50%	56.38	0	0	0	30	60	60	60	60	60	60	30	10		
60%	44.76	95.00%	97.50%	48.32	0	0	0	30	50	60	60	60	60	60	30	10		
50%	37.30	95.00%	97.50%	40.27														
40%	29.84	95.00%	97.50%	32.22														

Total Hours 2,250

Monthly Energy Consumption (kWh) 0 0 0 13,370 18,846 19,330 19,330 19,330 19,330 19,330 11,517 5,960 Monthly Average Demand (kW) 0.00 0.00 0.00 66.85 64.99 64.43 64.43 64.43 64.43 64.43 65.81 70.12

Annual kWh 146,340.8 Average kW 65.55

Annual Savings 30,343 kWh
Average kW Reduction 12.98 kW

Mar 2013 V1

Salesforce Opportunity Name
Project Name

Valley Asphalt Corporation - Mercantile Self Direct - Kiln and Blower Motor VFD

Project Name

CM0131392199

Application # 1392199

Valley Asphalt - Plant 23 Kiln VFD

State OH

Measure Description

The measure involved the installation of a new VFD on an existing 200-hp motor that drives a rotary kiln. The VFD allows the rotary kiln to revolve faster or slower based on the type of asphalt mix being produced.

Baseline

The customer estimates that the baseline equipment had a remaining useful life of more than two years, and as such the customer average baseline has been used. The baseline motor had only on/off type controls and ran at a constant load regardless of the product being produced. The customer estimates that the kiln operates for 2,230 hours/year.

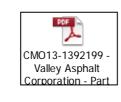
Savings Calculation Methodology

The new VFD allows the 200-hp motor to reduce electric output and kiln speed based on product requirements. The post-installation duty cycle, which was calculated by the customer, seems reasonable. Energy savings are achieved because the new VSD allows the motor to spend a majority of its 2,230 hour annual operating time running at a reduced load relative to the baseline period.

Incremental Measure Cost (IMC)

Baseline choice was no action. Incremental costs are from invoices provided for the installed equipment

IMC Calculation


IMC (\$)	Baseline Cost (\$)	Measure Cost (\$)
\$8,300.00	\$0.00	\$8,300.00

References to source documents/back up files as appropriate

CMO13-1392199 - Valley Asphalt Corporation - Part 2 Worksheet & Invoices & Specs- Plant 14 Kiln - ECM3

Attached Files

| Equipment Specs
| Calculations
| Cost Documentation

Savings Calculations

(insert all appropriate calculations or simulation results below)

The calculations below have been put together by the reviewer. The duty cycle for the VFD retrofitted motor was calculated by the customer.

Overall, savings decreased slightly compared to the submitted value.

BASELINE

	Demand Calculations							Mor	thly Opera	ting Profile					
bhp	Motor Load (kW)	Motor Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	157.05	0	0	200	230	240	250	260	260	270	270	250	0
90%	134.28	95.00%	141.35												
80%	119.36	95.00%	125.64												
70%	104.44	95.00%	109.94												
60%	89.52	95.00%	94.23												
50%	74.60	95.00%	78.53												
40%	59.68	95.00%	62.82												
			Total Hours	2,230											

Monthly Energy Consumption (kWh) 0 0 31,411 36,122 37,693 39,263 40,834 40,834 42,404 42,404 39,263 0 Monthly Average Demand (kW) 0.00 0.00 157.05 157.05 157.05 157.05 157.05 157.05 157.05 157.05 0.00

 Annual kWh
 350,227.4

 Average kW
 157.05

POST-INSTALLATION

	Deman	d Calculations							M	onthly Ope	erating Pro	file				
bhp	Motor Load (kW)	Motor Eff.	VFD Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	97.50%	161.08	0	0	60	60	60	60	60	60	60	60	60	0
90%	134.28	95.00%	97.50%	144.97	0	0	60	60	60	60	60	60	60	60	60	0
80%	119.36	95.00%	97.50%	128.86	0	0	50	60	60	60	60	60	60	60	60	0
70%	104.44	95.00%	97.50%	112.76	0	0	30	50	60	50	60	60	60	60	60	0
60%	89.52	95.00%	97.50%	96.65	0	0	0	0	0	20	20	20	30	30	10	0
50%	74.60	95.00%	97.50%	80.54												
40%	59.68	95.00%	97.50%	64.43												
		_	_	Total Hours	2,230											

Monthly Energy Consumption (kWh) 0 0 28,189 31,733 32,860 33,666 34,793 34,793 35,760 35,760 33,827 0
Monthly Average Demand (kW) 0.00 0.00 140.94 137.97 136.92 134.66 133.82 133.82 132.44 132.44 135.31 0.0

Annual kWh 301,380.0 Average kW 135.37

Annual Savings 48,847 kWh
Average kW Reduction 21.68 kW

Mar 2013 V1		
	CM013-	Rev. 0
Salesforce Opportunity Name 0	Application # 1392199	
Project Name Valley Asphalt Corporation - Mercantile Self Direct - Kiln and Blower Motor VFD	Valley Asphalt - Plant 23 Kiln VFD	State OH

Measure Description

The measure involved the installation of a new VFD on an existing 200-hp motor that drives a rotary kiln. The VFD allows the rotary kiln to revolve faster or slower based on the type of asphalt mix being produced.

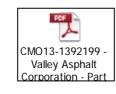
Baseline

The customer estimates that the baseline equipment had a remaining useful life of more than two years, and as such the customer average baseline motor had only on/off type controls and ran at a constant load regardless of the product being produced. The customer estimates that the kiln operates for 2,120 hours/year.

Savings Calculation Methodology

The new VFD allows the 200-hp motor to reduce electric output and kiln speed based on product requirements. The post-installation duty cycle, which was calculated by the customer, seems reasonable. Energy savings are achieved because the new VSD allows the motor to spend a majority of its 2,120 hour annual operating time running at a reduced load relative to the baseline period.

Incremental Measure Cost (IMC)


Baseline choice was no action. Incremental costs are from invoices provided for the installed equipment

IMC (\$)	Baseline Cost (\$)	Measure Cost (\$)
\$8,300.00	\$0.00	\$8,300.00

References to source documents/back up files as appropriate

CMO13-1392199 - Valley Asphalt Corporation - Part 2 Worksheet & Invoices & Specs- Plant 5 Kiln - ECM4

Savings Calculations

(insert all appropriate calculations or simulation results below)

The calculations below have been put together by the reviewer. The duty cycle for the VFD retrofitted motor was calculated by the customer.

Overall, savings decreased slightly compared to the submitted value.

BASELINE

	Demand Calculations				Monthly Operating Profile										
bhp	Motor Load (kW)	Motor Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	157.05	0	0	0	180	240	250	280	280	280	280	230	100
90%	134.28	95.00%	141.35												
80%	119.36	95.00%	125.64												
70%	104.44	95.00%	109.94												
60%	89.52	95.00%	94.23												
50%	74.60	95.00%	78.53												
40%	59.68	95.00%	62.82												
			Total Hours	2,120											

Monthly Energy Consumption (kWh) 0 0 0 28,269 37,693 39,263 43,975 43,975 43,975 36,122 15,705 Monthly Average Demand (kW) 0.00 0.00 157.05 157.05 157.05 157.05 157.05 157.05

 Annual kWh
 332,951.6

 Average kW
 157.05

POST-INSTALLATION

Demand Calculations					Monthly Operating Profile											
bhp	Motor Load (kW)	Motor Eff.	VFD Eff.	Line Side kW	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
200	149.20	95.00%	97.50%	161.08	0	0	0	50	60	60	60	60	60	60	60	60
90%	134.28	95.00%	97.50%	144.97	0	0	0	40	60	60	60	60	60	60	60	20
80%	119.36	95.00%	97.50%	128.86	0	0	0	30	50	50	60	60	60	60	40	20
70%	104.44	95.00%	97.50%	112.76	0	0	0	30	40	50	60	60	50	50	40	0
60%	89.52	95.00%	97.50%	96.65	0	0	0	30	30	30	40	40	50	50	30	0
50%	74.60	95.00%	97.50%	80.54												
40%	59.68	95.00%	97.50%	64.43												
			_	Total Hours	2,120											

Monthly Energy Consumption (kWh) 0 0 0 24,001 32,216 33,343 36,726 36,726 36,565 36,565 30,927 15,141 Monthly Average Demand (kW) 0.00 0.00 0.00 133.34 134.23 133.37 131.16 131.16 130.59 130.59 134.47 151.41

Annual kWh 282,211.5 Average kW 134.48

Annual Savings 50,740 kWh
Average kW Reduction 22.57 kW

Appendix C -Cash Rebate Calculation

Valley Asphalt 3 Plants (No 5,14,23) 4 VFDs

Measure	Quantity	Cash Rebate Rate	Cash Rebate
		50% of incentive that would be offered by	
Valley Asphalt - Plant 14 Kiln VFD	1	the Smart \$aver Custom program	\$891
		50% of incentive that would be offered by	
Valley Asphalt - Plant 23 Blower VFD	1	the Smart \$aver Custom program	\$411
		50% of incentive that would be offered by	
Valley Asphalt - Plant 23 Kiln VFD	1	the Smart \$aver Custom program	\$1,176
		50% of incentive that would be offered by	
Valley Asphalt - Plant 5 Kiln VFD	1	the Smart \$aver Custom program	\$677
			\$3,155

Appendix D -UCT Value

Valley Asphalt 3 Plants (No 5,14,23) 4 VFDs

Measure	Total Avoided Cost	Program Cost	Incentive	Quantity	Measure UCT
Valley Asphalt - Plant 14 Kiln VFD	\$23,794	\$1,351	\$891	1	10.61
Valley Asphalt - Plant 23 Blower VFD	\$14,953	\$839	\$411	1	11.96
Valley Asphalt - Plant 23 Kiln VFD	\$22,124	\$1,233	\$1,176	1	9.18
Valley Asphalt - Plant 5 Kiln VFD	\$24,867	\$1,403	\$677	1	11.95
Totals	\$85,738	\$4,827	\$3,155	4	

Total Avoided Supply Costs	\$85,738	Aggregate Application UCT
Total Program Costs	\$4,827	
Total Incentive	\$3,155	

10.74

Ohio Mercantile Self Direct Program

program. Please indicate mercantile qualification:

Application Guide & Cover Sheet

All sections of

appropriate

completed

application(s) are

Questions? Call 1-866-380-9580 or visit www.duke-energy.com.

Email this form along with <u>completed Mercantile Self Direct Prescriptive or Custom applications</u>, proof of payment, energy savings calculations and spec sheets to <u>SelfDirect@Duke-Energy.com</u>. You may also fax to 1-513-629-5572.

Mercantile customers, defined as using at least 700,000 kWh annually are eligible for the Mercantile Self Direct

⊠ a single Duk □ multiple acc	e Energy Ohio account ounts in Ohio (energy usa	ge with other utilities may be	counted toward the total)
Please list Duke Energy other utilities as require		(attach listing of multiple acco	ounts and/or billing history for
Account Number	Annual Usage	Account Number	Annual Usage
08403616-01-0	416110		
27302143-01-9	447032		
24600675-01-6	1,396,076		
Energy Smart \$aver® (Custom Incentive. Self Dire days prior to submission t	ustom projects that have not pect rebates are applicable to be Duke Energy and have not	Prescriptive measures that were
Smart \$aver program n determine which Self D application forms in cor are listed, please refer for a Self Direct Custor include detailed analys	nust be evaluated using the irect program fits your propertion with this cover slute to the measure list on the rebate. Self Direct Custes of pre-project and post-	oject(s). Apply for Self Direct heet. Where Mercantile Self D t application. If your measure om applications, like Smart \$	scriptive in nature under the table on page two as a guide to projects using the appropriate Direct Prescriptive applications is not listed, you may be eligible aver Custom applications, should ject costs. Please indicate which

sheets

⊠ Manufacturer's Spec

Please check each box to indicate completion of the following program requirements:

Proof of payment.*

⊠ Energy

model/calculations and

detailed inputs for

Custom applications

^{*} If a single payment record is intended to demonstrate the costs of both Prescriptive & Custom projects, please include an additional document with an estimated breakout of costs for each Prescriptive and Custom energy conservation measure.

	Replaced equipment at end of lifetime or because equipment	Replaced fully operational equipment to improve efficiency***	New Construction		
Application Type	failed**	☐ MSD Prescriptive Lighting	MSD Prescriptive Lighting		
Lighting	☐ MSD Custom Part 1 ☐ Custom Lighting Worksheet	☐ MSD Custom Part 1 ☐ Custom Lighting Worksheet	☐ MSD Custom Part 1 ☐ Custom Lighting Worksheet		
			☐ MSD Prescriptive Heating & Cooling		
Heating & Cooling	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet		
Window Films, Programmable Thermostats, & Guest Room Energy Management Systems	☐ MSD Custom Part 1 ☐ MSD Custom General and/or EMS Worksheet(s)	☐ MSD Prescriptive Heating & Cooling	☐ MSD Custom Part 1 ☐ MSD Custom General and/or EMS Worksheet(s)		
Chillers & Thermal	☐ MSD Custom Part 1	☐ MSD Custom Part 1	MSD Prescriptive Chillers & Thermal Storage		
Storage	MSD Custom General Worksheet	MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet		
	□ MSD Custom Part 1	☐ MSD Custom Part 1	☐ MSD Prescriptive Motors, Pumps & Drives		
Motors & Pumps	MSD Custom General Worksheet	MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet		
		☐ MSD Prescriptive Motors, Pumps & Drives	☐ MSD Custom Part 1		
VFDs	Not Applicable	☑ MSD Custom Part 1☑ MSD Custom VFD Worksheet	MSD Custom VFD Worksheet		
	El MOD Conton Dort 1	☐ MSD Custom Part 1	☐ MSD Prescriptive Food Service		
Food Service	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet	MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet		
		El von outer Detd	MSD Prescriptive Process		
Air Compressors	☐ MSD Custom Part 1 ☐ MSD Custom Compressed Air Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom Compressed Air Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom Compressed Air Worksheet		
		☐ MSD Prescriptive Process	☐ MSD Custom Part 1		
Process	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet	☐ MSD Custom General Worksheet		
Energy Management Systems	☐ MSD Custom Part 1 ☐ MSD Custom EMS Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom EMS Worksheet	☐ MSD Custom Part 1 ☐ MSD Custom EMS Worksheet		
Chiller Tune-ups		MSD Prescriptive Chiller Tune-ups			
Behaviorai*** & No/Low Cost		☐ MSD Custom Part 1 ☐ MSD Custom General Worksheet			

^{***} Under the Self Direct program, failed equipment and equipment at the end of its useful life are evaluated differently than early replacement of fully functioning equipment. All equipment replacements due to failure or old age will be evaluated via the Custom program.

*** Please ensure that you include the age of the replaced equipment for measures classified as "Early Replacement" in your application as well as the estimated date that you would have otherwise replaced the existing equipment if you had not chosen a more energy efficient option.

**** Behavioral energy efficiency and demand reduction projects must be both measurable and verifiable. Provide justification with your application.

Proposed energy efficiency measures may be eligible for Self-Direct Custom rebates if they clearly reduce electrical consumption and/or demand as compared to the appropriate baseline.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee a rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications cannot be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, beginning on page 6.

Notes on the Application Process

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact your Duke Energy Ohio, Inc account manager or the Duke Energy Smart \$aver® team at 1-866-380-9580.

Every application must include calculations of the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment/system. These calculations are performed and submitted by the Duke Energy Ohio customer, or your designated equipment vendor / engineer. Application Part 2 worksheets and page 6 of this application contain additional guidance on acceptable calculations. Complex or unique projects may require the use, at the applicant's expense, of modeling software. Please contact the Duke Energy Smart \$aver® with questions about these requirements.

If you do not receive an acknowledgement email within 1 day of submitting an application via online, email, or fax, or within 1 week of sending an application via mail, please call 1-866-380-9580. The acknowledgement email will provide with an estimated response time based on an initial assessment of your application. The application review may include some communication to resolve any questions about the project or to request additional information. Applications that are received complete without missing information have a faster review time.

There are three ways to submit your completed application form and excel worksheets.

Email: Complete, sign, scan and send this application form and attachments to:

<u>SelfDirect@duke-energy.com</u> (Note attachment size limit is applicable)

Fax: 513-629-5572

Mail: Duke Energy Mercantile Self Direct Custom Rebate

PO Box 2445

Spokane, WA 99210-2445

Rev 11/12

1. Contact Information (Required)

Duke Energy Cu	stomer Contact I	nformation						
Company Name	Valley Asphalt Corporation ATT. Fred Brammer							
Address	11641 Mosteller	Road					1	
City	Cincinnati		State	Ohio		Zip Code	45241	
Project Contact	FRED BRAM	mer						
Title	Superintendant							
Office Phone	513-771-8400	Mobile Phone	Mobile Phone 513-535-6127		Fax	513-32	6-3665	
E-mail Address	fred.brammer@jrjnet.com							
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

Equipment Vendor / Contractor / Architect / Engineer Contact Information										
Company Name	F.D. Lawrence Electric Co.									
Address	3450 Beekman St	3450 Beekman Street								
City	Cincinnati	State	Ohio	Zip Code		45223-2743				
Project Contact	Doug Ison									
Title	Sales Representa	tive								
Office Phone	513-542-1100	Mobile Phor	e 513-	513-807-9474		513	3-542-2422			
E-mail Address										
Primary Contact for Technical Questions Dave Rogers										

Payment Information									
Payee Legal Company Name Federal income tax return):	Valley Asphalt Corporation								
Mailing Address	11641 Mosteller Ro	ad							
City	Cincinnati	Sta	tate	Ohio	Zip Code	45241			
Type of organization (check one) Individual/Sole Proprietor Corporation Partnership Unit of Government Non-Profit (non-corporation)									
Payee Federal Tax ID # of Legal									
Company Name Above: If the customer (Duke Energy account holder) is not the payment recipient, indicate who is: Vendor									
If the vendor is to receive payment, customer must sign below. I hereby authorize payment of incentive directly to vendor or other:									
Customer Signature Date/_/(mm/dd/yyyy)									

2. Project Information (Required)

A.	Please indicate project type: New Construction Expansion at an existing facility (existing Duke Energy account number) Replacing equipment due to equipment failure Replacing equipment that is estimated to have remaining useful life of 2 years or less Replacing equipment that is estimated to have remaining useful life of more than 2 years Replacing equipment that is estimated to have remaining useful life of more than 2 years Replacing equipment and/or procedural programs/projects
up rui	Please describe your project, or attach a detailed project description that describes the project. Installed VFD's on rotary Kilms to reduce Demand, Stress on Equipment and to be able to speed or slow down revolutions on Rotary Kilms depending on the type of asphalt mix design we were ming. Also installed 1ea. on burner blower to lower demand and to better control burner dissions.
C.	When did you start and complete implementation? Start date 07 / 2012 (mm/yyyy) End date 04 / 2013 (mm/yyyy)
D.	Are you also applying for Self-Direct Prescriptive rebates and, if so, which one(s) ¹ ?
	Please indicate which worksheet(s) you are submitting for this application (check all that apply): Lighting Variable Frequency Drive (VFD) Compressed Air Energy Management System (EMS) Energy Management System (EMS) General (for projects not easily submitted using one of the above worksheets)
F	List all assumptions about the baseline and proposed equipment energy use and operation schedule, or attach a document listing that information. Attach specification sheets for all proposed new equipment. ok

¹ If your project involves some equipment that is eligible for prescriptive rebates and some equipment that is likely eligible for custom rebates, and if it is feasible to separate the equipment for the energy analysis, then the equipment will be evaluated separately. If it is not feasible to separate the equipment for analysis, then the equipment will be evaluated together in the custom application.

Required: Attach a supplier or contractor invoice or other equivalent information documenting the Implementation Cost for each project listed in your application. (Note: self-install costs cannot be included in the Implementation Cost)

3. Signature (Required – must be signed by Duke Energy customer)

Customer Consent to Release of Personal Information

I realize that under the rules and regulations of the public utilities commission, I may refuse to allow Duke Energy Ohio, Inc to release the information set forth above. By my signature, I freely give Duke Energy Ohio, Inc permission to release the information designated above.

Application Signature

I certify that I meet the eligibility requirements of the Duke Energy Ohio, Inc Mercantile Self Direct Custom Rebates Program and that all information provided within this application is correct to the best of my knowledge. I agree to the terms and conditions set forth for this program. I certify that the numbers, energy savings, and responses shown on this form are correct. Further, I certify that the taxpayer identification number is current and correct. I am not subject to backup withholding because: (a) I am exempt from backup withholding; or (b) I have not been notified by the IRS that I am subject to backup withholding as a result of a failure to report all interest or dividends; or (c) the IRS has notified me that I am no longer subject to backup withholding. I am a U.S. citizen (includes a U.S. resident alien).

Duke Energy Ohlo, Inc Customer Signature

Print Name Thathy Ut. Can

Date 4-4-wi)

Checklist for completing the Application

INCOMPLETE APPLICATIONS WILL RESULT IN DELAYS IN DUKE ENERGY PROCESSING YOUR APPLICATION AND NOTIFYING YOU CONCERNING AY REBATES. Before submitting the application and the required supplementary information, use the following checklist to ensure that your application is complete and the information in the application is accurate. (Note: this checklist is <u>for your use only</u> – do not submit this checklist with your application)

(Note: this checking	5t 10 101 you
Section No. & Title	Have You: Completed the contact information for the Duke Energy customer? Completed the contact information for the equipment vendor / project
Contact Information	Completed the contact information for the Build Energy Completed the contact information for the equipment vendor / project engineer that can answer questions about the technical aspects of the project, if that is a different person than above? Answered the questions A-E, including providing a description of your
2. Project	Answered the questions A-L, moldaring pro-
Information	project. ⊠ Completed and attached the lighting, compressed air, VFD, EMS and/or General worksheet(s)?
3. Signature	
	1 == · · · · · · · · · · · · · · · · · ·
Supplementary information (Required)	Attached a supplier or contractor's invoice or other equivalent information documenting the Implementation Cost for projects listed in your application? (Note: self-install costs cannot be included in the Implementation Cost)
	Implementation Cost) [Mathematical Cost) [Mathema
L	the stien or what

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact:

- your Duke Energy account manager or,
- the Duke Energy Smart \$aver® team at 1-866-380-9580.

Preferred Customized Calculation Tools

Please refer to the list below of the preferred software tools to use when calculating the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment or system. Click on each software tool to learn more.

Software Tool	Category
eQuest	Nonresidential retrofits and new construction
<u>EnergyPlus</u>	Nonresidential retrofits and new construction; Whole building simulation
Carrier® HAP	HVAC
Trane® Trace TM	HVAC
DOE OIT Pumping System Assessment Tool (PSAT)	Pumps
MotorMaster+	Motors
AirMaster	Air compressor systems
Emerson TM Product Selection &	Refrigeration compressor retrofits using BIN analysis. ² For projects of approximately 250,000 kWh or less.
Energy Analysis DOE2.2R	Refrigeration measures
SkyCalc TM	Skylighting
BinMaker®	Weather data analysis tool
AFT Fathom	Fluid flow analysis for industrial systems

Instructions/Terms/Conditions

Note: Please keep for your records- do not submit with the application

- 1. Energy service companies or contractors may assist in preparing the application, but an authorized representative of the customer must sign this application to be eligible to participate in the Mercantile Self Direct Program. Completion of this application does not guarantee the approval of a Self Direct Custom Rebate.
- 2. Once all documentation requested in this application is received by Duke Energy Ohio, Inc, and any follow-up information requested by Duke Energy is received, the rebate amount for each Energy Conservation Measure (ECM) will be communicated to the customer. The rebate amount will be based on ECM energy savings and ECM incremental installation cost.
- 3. All rebates require approval by the Public Utilities Commission of Ohio. Duke Energy Ohio, Inc will submit an application for rebate on the customer's behalf upon customer attestation to program terms, conditions and requirements as outlined in the rebate offer letter and upon customer completion of attestation documents required by the Public Utilities Commission of Ohio.
- 4. Duke Energy Ohio, Inc will issue a Self Direct Custom Rebate check, based on the approved rebate amount for each ECM, upon receiving approval from the Public Utilities Commission of Ohio. Duke Energy Ohio, Inc does not guarantee PUCO approval.
- 5. With the application, the customer must provide a list of all sites where the ECMs were installed. Duke Energy Ohio, Inc requests that sites of similar size, hours of operation and energy consuming characteristics be grouped together in one application for the determination of the rebate amount. The application should identify the site where each unique ECM was installed.
- 6. Based on the information submitted with the application and the information gathered both before and after the initial installation of the ECM, Duke Energy Ohio, Inc will calculate the rebate amount for each ECM.
- 7. Duke Energy Ohio, Inc may conduct random site inspections of a sample of the locations where the ECMs are installed to verify installation and operability of the ECMs and to obtain information needed to calculate the Approved Rebate Amount.
- 8. Customers are encouraged to retain copies of all forms, invoices and supporting documentation for their records.
- 9. Approved rebates are valid for 6 months from the date communicated to the customer by Duke Energy Ohio, Inc, subject to the expiration of measure eligibility based on project completion dates and application submission deadlines as defined by PUCO. Customers are encouraged to execute their rebate offer contracts and PUCO-required affidavits promptly to ensure eligibility is not forfeited.

- 10. Duke Energy Ohio, Inc reserves the right to recover all unrecoverable costs associated with the project approval if the customer decides not to execute the rebate contract, after the project is approved by Duke Energy Ohio, Inc.
- 11. Projects financially supported by other funding sources will be evaluated on a case-by-case basis for potential partial funding from Duke Energy Ohio, Inc.
- 12. Participants must be Duke Energy Ohio, Inc nonresidential, mercantile customers with the project sites in the Duke Energy Ohio, Inc service territory.
- 13. Customers or trade allies may not use any Duke Energy logo without prior written permission.
- 14. Only trade allies registered with Duke Energy are eligible to participate.

Same and the second

100

The office of

. . .

- 15. All equipment must be new. Used or rebuilt equipment is not eligible for rebates. All old existing equipment must be removed on retrofit projects.
- 16. Disclaimers: Duke Energy Ohio, Inc
 - a. does not endorse any particular manufacturer, product or system design within the
 - b. will not be responsible for any tax liability imposed on the customer as a result of the payment of rebates:
 - c. does not expressly or implicitly warrant the performance of installed equipment. (Contact your contractor for details regarding equipment warranties.);
 - d. is not responsible for the proper disposal/recycling of any waste generated or obsolete or old equipment as a result of this project;
 - e. is not liable for any damage caused by the installation of the equipment nor for any damage caused by the malfunction of the installed equipment; and
 - reserves the right to change or discontinue this program at any time. The acceptance of program applications is determined solely by Duke Energy Ohio, Inc.

Page 1 of 3

Rev 7/11

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee an rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the information in Application Part 1):

Name

Fred Brammer

Company

Valley Asphalt Corp.

Equipment Vendor / Project Engineer Contact Information

Name

Doug Ison

Company

F.D.Lawrence Electric

Location of Proposed VFD Project

Site Name

Valley Asphalt Plant#5

Electric Account Number(s)

08403616-01-0

Site Address

4850 Stubbs Mill Road Morrow, Ohio 45152

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive rebate applications can be found at:

http://www.duke-energy.com/ohio-large-business/smart-saver/mercantile-self-direct.asp

Prescriptive rebate amounts are pre-approved.

Rev 7/11

VFD WORKSHEET - COSTONI VFD ATTEION			App No.
Use one worksheet for each type of motor or fan th Driven Equipment Name Quantity Brake HP (BHP) at Full Load (see note 1) Nameplate HP	Asphalt Dryer (rotary kilm) 1 200.0 200.0	Type Process	Rev.

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

urrent E	guip	BHP of	tion without Motor	Moto	r	Motor														
% of Fu		Driven Equipment	output HP as % of	Efficier @ Mo	tor	Electrical Power	Annual hours that			Mont	hiv ho	ours th	at ead	h mo	tor rui	15 (see	note 3)			Yearly
Driver		@ Actual	Nameplate	Output	HP	Draw	motor runs		Feb			May		Jul	Aug	Sep	Oct	NOV		Total (hr)
-		Load (BHP)	HP	(%)		(kw)	(see note 2)	Jan	reo	Midi	220		250	290	300	300	280	230	100	2,215
Equipme	%	200.0	100%	95	%	157.05			<u> </u>		2.20	2.13								
100	_	0.0	0%		%	#DIV/01			<u> </u>	<u> </u> '		┝─┤								
	%_	0.0	0%		%	#DIV/01	l	L		<u> </u>		├ ──								0
	%		0%	+	%	#DIV/01	T	<u> </u>	<u> </u>			400	470	454	444	420	464	490	644	6,545
	%	0.0			%		8,760			<u> </u>	500			1.——		720	744	720	744	8,760
Not Run	ning	0.0	0/0	144		Totals	8,760	744	672	744	720	744	/20	1,44	144	1,20	1			

Proposed Equipment Operation with VFD - Input values for ONE driven equipment and its motor.

Efficiency of VFD

	1	BHP of	Motor	Moto		Motor Electrical	Ammunal													
% of Fu		Driven	output HP as % of	Efficier @ Mot	,	Power	Annual hours that							l a.		S (con)	note 3)	<u> </u>		Yearly
oad BHF. Driver		Equipment @ Actual	Motor	Output		Draw	motor runs			Monti Mar		urs th	at eac Jun	n moi	Aug	Sep	Oct	Nov	Dec	Total (hr
Equipme		Load (BHP)	Nameplate	(%)		(kw)	(see note 2)	Jan	Feb	Mar	Apr	IVILLY	-							
100	%	200.0	100%			157.05					30	40	50	50	60	60	50	40		320
90	%	180.0	90%	_	_	142.85					20	30	50	40	60	50	40	30		290
80	%	160.0	80%			128.34 113.52					20	25	45	40	50	40	40	30 20		13
70	%	140.0	70%		_	98.37						10	20	20	20	20	25	20		
60	%	120.0			_	82.89								<u> </u>	<u> </u>		├──			
50	%	100.0			%	#DIV/01					L				 	ļ				
40	%		200		1 %							 -	 			 	-	┼──		
30	%		 		1 %				<u> </u>	<u> </u>	ļ	 	 	├	╁		 	 		
20	%		 		%	#DIV/01		<u> </u>	<u> </u>		CE O	639	555	594	554	550	589	600	744	
10	<u>%</u>				%	0.0		_	672	744	650		555		+	-	+	600	744	7,63
Not Rur	ınını	B 0.0	-		1	Totals	8,760	744	672	744	650	055	1333							

	·	_
Detailed Project Description Attached?	Yes	(Required)

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

Page 3 of 3

Rev 7/11

App No.	0
Rev.	

Operating Hours (see note 4)

ı	Operating Ho	UIS (see note 4)						Weeks of	
j		141	eekday	Satu	rday	Sun	day	Use III rear	Total Annual
1			End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
	24 x 7	Start Hour		5:00AM	4:00PM	n/a	n/a	30	2,350
		5:00AM	5:00PM	DIOOMINI	14,00, 111	1.7	1 		

Energy Savings				
	Existing (no VFD)	Proposed (VFD)	Savings	Describe how energy numbers were calculated
Annual Electric Energy	416,110 kWh	385,000 kWh	31,110 kWh	
Electric Demand (kilowatts)	460 kW	415 kW	45 kW	J
Calculations attached	Yes	Yes		Duke Energy Electric Bill

Simple Payback

Simple Payback	\$0.10	
Average electric rate (\$/kWh) on the applicable accounts (see note 6)	\$3,111	
Estimated annual electric savings	\$2,000.00	1
Other annual savings in addition to electric savings, such as operations, maintenance, other fuels	\$8,300.00	
Incremental cost to implement the project (equipment & installation) (see note 7)	Yes	
Copy of vendor proposal is attached (see note 8) Claude Floatic Rayback in years (see note 9) 2.667952427 Total Payback in years		1.623948347
Simple Electric Payback in years (see note 9) 2.667952427	_	

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when Asphalt Production is Seasonal because of Temperature. usage is not expected and why:

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor invoice is attached

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, the rebate structure is affected.

Walley Commencer

Please check that the electric rate is accurate based on history.

ATTH: FRED BRAMER

Altivar® 61 Drives Electrical Specifications

Input Voltage	200 -15% to 240 +10%, 380 -15% to 480 +10%
Displacement Power Factor	98% through speed range
input Frequency	50 Hz -5% to 60 Hz +5%
Drive Input Section	Six pulse bridge rectifier
Drive Output Section	Three Phase, IGBT Inverter with Pulse Width Modulated (PWM) output Maximum voltage equal to input voltage
Galvanic isolation	Galvanic isolation between power and control (inputs, outputs and power supplies)
Frequency:Range of Power Conve	ter 0.5 to 500 Hz
Torque/overlorque	110% of nominal motor torque for 60 s, minimum
Current (transient)	110% of controller rated current for 60 8 minimum
Switching Frequency	Selectable from 1 to 16 kHz, 12 kHz nominal rating for 1-60 hp @ 200/240 V, 1-100 hp @ Selectable: 2.5 to 8 kHz, 2.5 kHz nominal rating for 75-125 hp @ 200/240 V125-900 hp @
Space Reference inputs	Al: 0 to +10 V impedance = 30 kOhms Used for Speed potentiometer, 1-10 kOhms Alz: Factory setting = 4 to 20mA, software configurable for current, (0-20mA, X-Y) or volu
Analog Reference Resolution	0.1 for 100 Hz (11 bits)
(O Samoling Time	2 ma 1/, 0.5 ms on analog inputs & outputs, & logic inputs, 7 ms, 4/, 0.5 ms on relay out
Power Removal/Run Permissive In	
Efficiency	98% at full load typical
Acceleration and Deceleration Ran	nps 0.1 to 999.9 seconds (definition in 0.1 s increments)
Skip Frequencies	Three configurable skip frequency/jump frequency bands
 London S. Brown and Base to the Army of the Control of the Army of the Control of t	Energy economizer (flux optimization) motor algorithm to maximize energy savings.
Motor Control Profiles	(Automatically optimizes voltage based on load.) or select from 2 point or 5 point volts/ne
	or SLFV (sensorless flux vector)
Speed Range	to:100, open loop
Motor Protection	Class 10 electronic overload protection or PTC probe
	Simply Start menu: PID set-up menu, network set-up menu; Logic I/O & Analog VO mapp
Graptilo Display Terminal	status, Monitoring and self diagnostics with fault messages and status such as: Power o
	elepsed time, motar fun time line voltage, motor current, ready to rum numning, motor sp
Compliance	RoHS and WEEE (Waste Electrical & Electronic Equipment compliant
Codes and Standards	CUL, CSA, NOM 157, DNV, CE, C-Tick, GOST, UL 1995 Plenum mied, SEMFF47 certified for voltage dip ride-through

Altivar® 61 Drives Environmental Specifications

Temperature Humidity	Operation: 14 to £122 F (-10 to £50 C) Storage: 13 to £158 F (-25 to ±70 C) 95% with no condensation or dripping water, conforming to IEC 600068-2-3.
Altinuda	3,300 ft. (1,000 m) without derating, 3,300, 9850 ft (1,000,3,000 m) derate output current each additional 330 ft; (100 m), 8580 ft (2000m) maximum for corner grounded distribute
Enclosure Rating	1-60 hp @ 200/240 V, 1-100 hp @ 380/480 V: IP 41 on top IP21 on all other surfaces, Type 1 with optional conduit kit. 75-125 hp @ 200/240 V, 125-500 hp @ 380/480 V: IP 41 on top, IP30 sides & front IP00 on bottom, Type 1 w/ optional conduit kit. 600 -900 hp @ 380/480 V. IP 41 on top, IP30 sides and front, IP00 on bottom
Pollution Degree	61-20 hp @ 200/240 V 1-25 hp @ 380/480 V Pollution degree 2 per IEC/EN 81800-5-1 Option S337 provides protection per IEC 60721-3-3 Class 3C2 25-60 hp @ 200/240 V 30-100 hp @ 380/480 V Pollution degree 3 per IEC/EN 61800-5 Option S337 provides protection per IEC 60721-3-3 Class 3C2 60-125 hp @ 200/240 V 125-900 hp @ 380/480 V Pollution degree 3 per IEC/EN 61800-1

新的 3004.000°C

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

The main solutions for reducing current harmonics are as follows:

DC chokes, see below

■ Line chokes, see page 2/228

■ 16% and 10% passive filters, see page 2/231
■ Use of passive filters with a DC choke, see pages 2/231 to 2/235

These 4 solutions can be used on the same installation.

It is always easier and less expensive to handle current harmonics at installation level as a whole rather than at the level of each Individual unit, particularly when using passive lilters and active compensators.

DC chokes are used to reduce current harmonics in order to comply with standard IEC 61000-3-12 for drives on which the line current is greater than 16 A and less

than 75 A.
Using the DC choke with the drive compiles with standard IEC 61000-3-12 provided that the RSCE > 120 (1) at the point of connection to the public network. 120 represents the minimum value of RSCE (1) for which the values in table 4 of standard

It is the responsibility of the installer or the user to ensure that the device is connected correctly to a connection point with an RSCE > 120.

The DC choke is connected to the drive power terminals.

It is supplied as standard with ATV 61HD55M3X, HD90M3X and ATV 61HD90N4...HC63N4 drives and is integrated into ATV 61WeeeN4 and ATV 61W###N4C drives.

Reduction of current harmonics.

Reduction of THD to 5% or to 10% in association with passive filters, see pages 2/231 to 2/235.

15 25 16 2

Maintaining the motor torque in relation to the line choke.

(1) Short-circuit ratio

!	
•	DC choke
:	Choke
	L1 - 2 M1 M1 M1 M1 M1 M1 M1

ost-it* Fax Note 7671	Date 1/24/08 pages 5
To Fred Brammar	From Sarab Vimba /
Co/Dept.	Co. SayoreD
Phone # .	Phone #
Fax # 513. 326. 3662	Fax # 919, 217, 6508

11,11,11,11

Rev 7/11

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee an rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the Information in Application Part 1):

Name

Fred Brammer

Company

Vallet Asphalt Corp.

Equipment Vendor / Project Engineer Contact Information

Name

Doug Ison

Company

F.D. Lawrence Electric

Location of Proposed VFD Project

Site Name

Valley Asphalt Plant#14

Electric Account Number(s)

Site Address

27302143-01-9

7940 Main Street Newtown, Ohio 45244

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive rebate applications can be found at:

http://www.duke-energy.com/ohio-large-business/smart-saver/mercantile-self-direct.asg

Prescriptive rebate amounts are pre-approved.

Rev 7

, ot 3	
	Duke Energy
	ENOVAVA
/11	File 91

VFD WORKSHEET - COSTOM VID 14			App No.
Use one worksheet for each type of motor or fan t Driven Equipment Name Quantity Brake HP (BHP) at Full Load (see note 1) Nameplate HP	1	Type Process	Rev.

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

	7		tion without	İ	-	1																
	- 1	BHP of	Motor	Moto		Motor	ļ															
% of Fu	n l		output HP	Efficier	ıcy	Electrical	Annual													Yearl		
		Equipment		@ Moi	@ Motor		iotor	Power	hours that	Manthu nour Itial Edul Hoto, I I I I I I I I I I I I I I I I I I I												
		@ Actual	Nameplate	Output	HP	Draw	motor runs			MACE	Anr	May	lun	Jul	Aug	Sep	Oct	Nov	Dec			
Driven		Load (BHP)	*	(%)		(kw)	(see note 2)	Jan	Feb		315		325	325	400	375	350	250		2,8		
Equipme		200.0	100%	95	%	157.05	2,650			200	272	320	323									
100	%		0%		%	#DIV/01																
	%	0.0		-	%	#DIV/01		l				├	├									
	%	0.0	0%		%	#DIV/01					L			419	344	345	394	470	744	5,9		
	%	0.0		+	%	+		744	672	544	405		395		744			720	744	8,7		
Not Runi	ning	0.0	0%	INA	L	Totals	8,760	744	672	744	720	744	720	/44	/44	1,20						

Proposed Equipment Operation with VFD - Input values for ONE driven equipment and its motor.

95 % Efficiency of VFD

		внРот	Motor	Moto		Motor														
% of Fu oad BHF	- 1	Driven Equipment	output HP as % of	Efficier @ Mot	tor	Electrical Power	Annual hours that												Yearly	
Driven	- 1	@ Actual	Motor	Output			motor runs	Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total (hr) 60
Equipme	ent	Load (BHP)	Nameplate	(%)		(kw)	(see note 2)	Jali	102			10	15	15	20			—		210
100	%	200.0	100%							40	30	60	20	20	10	20	10			350
90	%	180.0	90%		_	142.85				40	40	50	40	50	60	40	30			180
80	%	160.0	80%			128.34				10	30	40	30	20	20	20	10			
70	%	140.0	70%	6 92	_	+	<u> </u>													
60	%	120.0	60%	6	%		ļ					\vdash								<u> </u>
50	%	100.0	50%	6	%		<u> </u>			 		 								
40	%	+		6	%	#DIV/01	<u> </u>	<u> </u>				├─								
30	%	 		6	1%	#DIV/01	<u> </u>	├—	<u> </u>	 		┼──	 		T^-			l		ļ
20	1 %	 		%	%	#DIV/01		 	 		\vdash	+-	+					Ι	L	L
10			100	%	%	#DIV/0!		 	 	-	620	584	615	639	634	640	694	720	744	7,96
		 		% NA	%	0.00	8,760	-	_	654	620	+	+			+	694	720	744	7,96
Not Run	mini	B 0.0	 		1	Totals	8,760	744	672	654	620	584	013	035		1				_

Detailed Project Description Attached?

(Required) Yes

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

Page 3 of 3

Rev 7/11

App No.	0
Rev.	0

Operating Hours (see note 4)

ſ								Weeks of	
		w	eekday	Satur	rday	Sun	day	Oze III 1 ear	Total Annual
ı	24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
Ì		5:00AM	6:00PM	6:00AM	5:00PM	n/a	n/a	38	2,800

Energy Savings

ruetgy paviligs				The state of the s
	Existing (no VFD)	Proposed (VFD)	Savings	
				Describe how energy numbers were calculated
Annual Electric Energy	447,032 kWh	400,000 kWh	47,032 kWh	
Electric Demand (kilowatts)	476 kW	366 kW	110 kW	
Calculations attached	Yes	Yes		Duke Energy Electric Bills

Simple Payback

Olitipie i dipadii				
Average electric rate (\$/kWh) on the applicable	accounts (see note 6)		\$0.10	
Estimated annual electric savings			\$4,703	
Other annual savings in addition to electric saving	ngs, such as operations, mair	tenance, other fuels	\$2,500.00	
incremental cost to implement the project (equi	pment & installation) (see note	7)	\$8,300.00	
Copy of vendor proposal is attached (see note 8)			Yes	
Simple Electric Payback in years (see note 9)	1,764755911	Total Payback in years	;	1.15226566

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when usage is not expected and why:

Asphalt Production is seasonal because of temperature.

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor invoice is attached

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, the rebate structure is affected.

Please check that the electric rate is accurate based on history.

ATTHE FRED BRAMER Altivar® 61 Drives Electrical Specifications

Input Voltage	200-15% to 240 +10%, 380 -15% to 480 +10%
Displacement Power Factor	98% through speed range
Input Frequency	50 Hz -5% to 60 Hz +5%
Drive Input Section	Six pulse bridge rectifier
Drive Output Section	Three Phase, IGBY Inverter with Pulse Width Modulated (PWM) output Maximum yoltage equal to input voltage
Galvanic Isolation	Galvanic isolation between power and control (inputs, outputs and power supplies)
Frequency:Range of Power Converter	0.5 to 500 Hz
Torque/overtorque	110% of nominal motor torque for 60 s, minimum
Current (transfent)	110% of controller rated corrent for 60 s minimum
Switching Frequency	Selectable from 1 to 16 kHz, 12 kHz nominal rating for 1-60 hp @ 200/240 V, 1-100 hp @ Selectable; 2.5 to 8 kHz, 2.5 kHz nominal rating for 75-125 hp @ 200/240 V125-900 hp @ Selectable; 2.5 to 8 kHz, 2.5 kHz nominal rating for 75-125 hp @ 200/240 V125-900 hp @ 200
Spoed (Reference Inputs	Al: 0.to ±10 V. Impedance = 30 kOhme Used for Speed potentiometer, 1-10 kOhme Als: Factory setting = 4 to 20mA software configurable for current, (0-20mA X-Y) or volt
Analog Reference Resolution	0.1 for 100 Hz (11 bits)
VO Sampling Time	2 ma // 0.5 me on analog nouse & outputs, & logic inputs, // me, // 0.5 me on relay out
Power Removal/Run Permissive Input	24Vdc input, for use to prohibit unitended equipment operation
Efficiency	98% at full load typical
Acceleration and Deceleration Ramps	0.1 to 999.9 seconds (definition in 0.1 s increments)
Skip Frequencies	Three configurable skip frequency/pimp frequency bands
The first source and the second state of the second	Energy granamizer (flux entimization) motor algorithm to maximize energy savings.
Motor Control Profiles	(Automatically optimizes voltage based on load.) or select from a point of a point voltante
	or SLFV (sensorless flux vector)
Speed Range	to:100; open loop
Motor Protection	Class 10 electronic overload protection or PTC probe
Graphio Display:Terminal	Simply Start menu: PID set up menu, network set up menu; Logic I/O & Analog I/O mapo status, Monitoring and self-diagnostics with fault messages and status such as: Power of elepsed time motor functions, line voltage, motor current, ready to run, running, motor spi
Compliance	RoHS and WEEE (Waste Electrical & Electronic Equipment compliant
Codes and Standards	EUL CSA NOM 117, DNV, CE C-Tick, GOST; UL 1995 Plenum rated, SEMLF47 certified for voltage dip ride-through

Altivar® 61 Drives Environmental Specifications

Temperatura	Operation: 14 to + 122°F (-10 to +50°C) Storage: 13 to +158°F (-25 to +70°C)
Humidity	95% with no condensation or dripping water, conforming to IEC 600068-2-3.
Allinude	3,300 ft; (1,000 m) without deraling; 3,300, 9850 ft (1,000 3,000 m) derate output current each additional 330 ft; (100 m); 6560 ft (2000m) maximum for corner grounded distributio
Enclosure Rating	1-60 hp @ 200/240 V, 1-100 hp @ 380/480 V: IP 41 on top IP21 on all other surfaces, Type 1 with optional conduit kit. 75-125 hp @ 200/240 V, 125-500 hp @ 380/480 V: IP 41 on top, IP30 sides & front IP00 on bottom, Type 1 w/ optional conduit kit. 600 -900 hp @ 380/480 V. IP 41 on top, IP30 sides and front, IP00 on bottom
Pollution Degree	17-20 hp @ 200/240, V, 17-25 hp @ 380/480 V. Rollution degree 2 per IEC/EN 61800-5-1, Option S337 provides protection par IEC 60721-3-3 Class 3C2 25-60 hp @ 200/240 V, 30 100 hp @ 380/480 V. Poliution degree 3 per IEC/EN 61800-5 Option S337 provides protection per IEC 60721-3-3 Class 3C2 60-125hp @ 200/240 V, 125-900 hp @ 380/480 V. Poliution degree 3 per IEC/EN 61800-1

學的 30 特别的人

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

The main solutions for reducing current harmonics are as follows:

- DC chokes, see below
- Line chokes, see page 2/228
 16% and 10% passive filters, see page 2/231
- Use of passive filters with a DC choke, see pages 2/231 to 2/235

These 4 solutions can be used on the same installation. It is always easier and less expensive to handle current harmonics at installation

level as a whole rather than at the level of each Individual unit, particularly when using passive lilters and active compensators.

DC chokes are used to reduce current harmonics in order to comply with standard IEC 81000-3-12 for drives on which the line current is greater than 16 A and less

Using the DC choke with the drive compiles with elandard IEC 61000-3-12 provided that the RSCE > 120 (1) at the point of connection to the public network. 120 represents the minimum value of RSCE (1) for which the values in table 4 of standard IEC 81000-3-12 are not exceeded.

It is the responsibility of the instalter or the user to ensure that the device is connected correctly to a connection point with an ASCE > 120. The DC choke is connected to the drive power terminals.

It is supplied as standard with ATV 61HD55M3X, HD90M3X and ATV 61HD90N4...HC63N4 drives and is integrated into ATV 81WaseN4 and ATV 61WasaN4C drives.

Applications

Reduction of current harmonics.

Reduction of THD to 5% or to 10% in association with passive fillers, see pages 2/231 to 2/235.

the state of the

Maintaining the motor torque in relation to the line choke.

(1) Short-circult ratio

DC choke	
<u> </u>	
	M
12	欄【\wi\
	爛了、"~丿
L3 —	
Altivar A1	363

Post-it® Fax Note 7671	Date 1/24/08 # of 5
To Fred Brammar	From Janob Kimbal
Co./Dept.	Co. SauveD
Phone # .	Phone #
Fax # 513. 326. 3662	Fax # 914, 217, 6508

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee an rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the information in Application Part 1):

Name

Fred Brammer

Company

Valley Asphalt Corp.

Equipment Vendor / Project Engineer Contact Information

Name

Doug Ison

Company

F.D. Lawrence Electric

Location of Proposed VFD Project

Site Name

Plant #23

Electric Account Number(s) Site Address

24600675-01-6 11641 Mosteller Road

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive rebate applications can be found at: http://www.duke-energy.com/ohlo-large-business/smart-saver/mercantile-self-direct.asg

Prescriptive rebate amounts are pre-approved.

VPD WORKSTEET			App No.
Use one worksheet for each type of motor or fan th Driven Equipment Name Quantity Brake HP (BHP) at Full Load (see note 1) Nameplate HP	(Asphalt Dryer) Rotary KiLm 200.0 200.0	Type Process	Rev.

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

		BHP of	Motor	Moto Efficier	r	Motor Electrical	Annual													
% of Full Load BHP of Driven			output HP as % of	@ Mol	or	Power	hours that	Monthly hours that each motor										Yearly Total (hr)		
		@ Actual	Nameplate	Output HP			motor runs	Jan	Feb			May		Jui	Aug	Sep	Uct	NOV		
Equipme	1	Load (BHP)	HР	(%)		(kw)	(see note 2)	Jan	1,60	11101	200	305	380	430	440	420	375	175	75	2,8
	%	200.0	100%	95	%	157.05	2,800		<u> </u>		200	***								
100		0.0	0%		%	#DIV/01			<u> </u>											
	%		0%		%	#DIV/0I			<u></u>				├	 						
	%	0.0			%	#DIV/01								244	304	300	369	545	669	5,9
	%	0.0	0%		%		5,960	744	672	744	520		340						_	8,7
Not Run	ning	0.0	0%	NA NA	76	Totals	8,760	744	672	744	720	744	720	744	744	720	<u> </u>	120	1.7.	<u></u>

Proposed Equipment Operation with VFD - Input values for ONE driven equipment and its motor.

95 % Efficiency of VFD

	\neg	BHP of	Motor	Moto		Motor														
% of Fu	II	Driven	output HP	Efficier	,															Yearly
Load BHP of Equipment as % of					1 1		hours that	Monthly hours that each motor runs (see note)												
Driven		@ Actual	Motor	Output		_	motor runs	Jan		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total (hr
Equipme	nt	Load (BHP)		(%)		(kw)	(see note 2)	J an				-							10	230
100	%	200.0	100%		%	#DIV/01	230				20	30	30	30	50	30	20	10	10	315
90	%	180.0	90%		_	141.35					40	40	50	45	60	30	30	10	10	220
80	%	160.0	80%			128.34					10	30	20	40	30	40	30	10	10	130
70	%	140.0	70%		_	113.52					10	10	20	10	15	25	20	10	10	130
60	%	120.0	60%	91	%	98.37											<u> </u>	<u> </u>	 	
50	%	100.0	50%	6	%	#DIV/0!									Ī	<u> </u>	ļ	↓	<u> </u>	
40	%	80.0	40%	6	%			 	├			\vdash			Γ	<u> </u>		<u> </u>	└ ─	<u> </u>
30	%	60.0	30%	6	%					 	 	1		Ţ			<u> </u>	<u> </u>	 	
20	%	40.0	209	6	%			┼		├─	┼─-	†				l	<u> </u>	<u> </u>	<u> </u>	
10	%	20.0	109	6	%			1744	672	744	640	634	600	619	589	595	644	680	704	
Not Run			09	6 NA	%	Totals			+	744	640	+		619	589	595	644	680	704	7,86

(Required) Yes

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

Page 3 of 3

Rev 7/11

App No.	0
Rev.	

Operating Hours (see note 4)

Operating Ho	UTS (see note 4)					 Weeks of		l
24 x 7	Start Hour	eekday End Hour 7:00PM	Satur Start Hour 6:00AM	End Hour 5:00PM	Sun Start Hour n/a	 105e III Teai	Total Annual Hours of Use 2,600	

Energy Savings	Existing (no VFD)	Proposed (VFD)	Savings	Describe how energy numbers were calculated
Annual Electric Energy	1,396,076 kWh		86,076 kWh	4
Electric Demand (kilowatts)			52 kW	Duke Energy Electric Bill
Calculations attached	Yes	Yes		

Simple Payback	\$0.10	
Average electric rate (\$/kWh) on the applicable accounts (see note 6)	\$8,608	
Estimated annual electric savings	\$1,000.00	ĭ
Other annual savings in addition to electric savings, such as operations, maintenance, other fuels	\$8,300.00	
Incremental cost to implement the project (equipment & installation) (see note 7)	Yes	
Copy of vendor proposal is attached (see note 8) O.964264139 Total Payback in years		0.863899413
Simple Electric Payback in years (see note 9) 0.964264139		

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when Asphalt Production is Seasonal Work due to Temperatures. usage is not expected and why:

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

в Copy of vendor involce is attached and an area with the many

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, the rebate structure is affected.

Please check that the electric rate is accurate based on history.

ATTH: FRED BRAMER

Altivar® 61 Drives Electrical Specifications

Input Voltage	200 -15% to 240 +10%, 380 -15% to 480 +10%
Displacement Power Factor	98% through speed range
Input Frequency	50 Hz -5% to 60 Hz +5%
Drive Input Section	Six pulse bridge rectifier
Drive Output Section	Three Phase, IGBT inverter with Pulse Width Modulated (PWM) output Maximum voltage equal to input voltage
Galvanic Isolation	Galvanic isolation between power and control (inputs, outputs and power supplies)
Frequency Range of Power Converter	0.5 to 500 Hz
Torque/overtorque	110% of nominal motor torque for 60 s, minimum
Current (transient)	110% of controller rated current for 60 8 minimum
•	Selectable from 1 to 16 kHz, 12 kHz nominal rating for 1-60 hp @ 200/240 V, 1-100 hp @
Switching Frequency	Selectable: 2.5 to 8 kHz, 2.5 kHz nominal rating for 75-125 hp @ 200/240 V125-900 hp @
Speed:Relevence Inpute	Alcoto +10 V. Impedance = 30 kChms Used for Speed potentiometer; 1-10 kChms Alcotory setting = 4 to 20mA, software configurable for current, (0-20mA, X-Y) or volu
Analog Reference Resolution	0.1 for 100 Hz (11 bits)
VO Sampling Time	2 ma 1/- 0.5 me on analog inputa & outputs, & logic inputs, 7 me: +/- 0.5 me on relay out
Power Removal/Run Permissive Input	24Vdc input, for use to prohibit unitended equipment operation
Efficiency	96% at full load typical
Acceleration and Deceleration Ramps	0.1 to 999.9 seconds (definition in 0.1 s increments)
Skip Frequencies	Three configurable skip frequency/jump frequency bands
AND THE STREET OF THE PERSON STREET AND A PROPERTY OF AN ARCHITECTURE AND ARCHITECTURE OF THE STREET	Energy economizer (flux optimization) motor algorithm to maximize energy savings.
Motor Control Profiles	(Automatically optimizes voltage based on load.) or select from 2 point or 5 point voltane
	or SLFV (sensorless flux vector)
Speed Range	1 to 100, open loop
Motor Protection	Class 10 electronic overload protection or PTC probe
	Simply Start menu: PID sot:up menu network set-up menu, Logic I/O & Analog I/O mapr
Graphic Display Terminal	statue, Monitoring and self-diagnostics with fault messages and statue such as Power o
	elepsed time molar run time line voltage motor current, ready to run; running, motor spi
Compliance	RoHS and WEEE (Waste Electrical & Electronic Equipment compliant
Codes and Standards	UL CSA NOM 157 DNV, CE, C-Tick, GOST, UL 1995 Planum rated, SEMLF47 certified for voltage dip ride-through

Altivar® 61 Drives Environmental Specifications

Temperature Humidity Alinuda	Operation:+14 to + 122°F (-10 to +50°C) Storage: 13 to +158°F (-25 to +70°C) 95% with no condensation or dripping water, conforming to IEC 600068-2-3. 3.300 (f; (1.000 m) without detailing; 3.300; 9850 ft (1.000 3,000 m) details output current sech additional 330 ft (100 m), 6580 ft (2000m) maximum for corner grounded distributions.
Enclosure Rating	1-60 hp @ 200/240 V, 1-100 hp @ 380/480 V: IP 41 on top IP21 on all other surfaces, Type 1 with optional conduit kit. 75-125 hp @ 200/240 V; 125-500 hp @ 380/480 V: IP 41 on top, IP30 sides & front IP00 on bottom, Type 1 w/ optional conduit kit. 600 -900 hp @ 380/480 V. IP 41 on top, IP30 sides and front, IP00 on bottom
Pollution Degree	f-20 hp @ 200/240, V : 1:25 hp @ 360/480 V : Pollution degree 2 per JEC/EN 61800-5-1; Option S337 provides protection per JEC 60721-3-3 Class 3C2 25-60 hp @ 200/240 V 30 100 hp @ 380/480 V : Pollution degree 3 per JEC/EN 61800-5- Option S337 provides protection per JEC 60721-3-3 Class 3C2 60-125hp @ 200/240 V : 125-900 hp @ 380/480 V : Pollution degree 3 per JEC/EN 61800-1

The VFD Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee an rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Custom Application Part 1 document.

at at a second and	
Please enter your information and data into the cells that are shaded.	
Cells in white are locked and cannot be written over.	

Name	ontact Information (Match the information in Application Part 1): Fred Brammer
Company	Valley Corporation
, ,	
, ,	ect Engineer Contact Information
, ,	ect Engineer Contact Information Doug Ison F.D. Lawrence Electric

Location	of	Proposed	VFD	Proj	ect
		•			

Site Name

Plant#23

Electric Account Number(s)

Site Address

24600675-01-6 11641 Mosteller Road, Cincinnati, Ohio 45241

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive rebate applications can be found at:

http://www.duke-energy.com/ohlo-large-business/smart-saver/mercantile-self-direct.asp

1. 6. 2. 4. 4. 6

Prescriptive rebate amounts are pre-approved. 400 41

Use one worksheet for each type of m	ntor or fan t	hat is being evaluated for a VFD		App No.
Use one worksheet for each type of m		nat 13 being evaluated for a vi	Type Fan	Rev.
Driven Equipment	Name	Burner Blower	Type ran	<u></u>
Quantity		1		
Brake HP (BHP) at Fuli Load	(see note 1)	100.0		
Nameplate HP		100.0		

Current Equipment Operation without VFD - Input values for ONE driven equipment and its motor.

% of Full		BHP of Driven	Motor output HP	9	ncy	Motor Electrical														
	oad BHP of Equipment as % of @ Moto Driven @ Actual Nameplate Output H			Power Draw	hours that motor runs									ns (see		Nov	Dec	Yearly Total (hr)		
Equipme		Load (BHP)	HP	(%)		(kw)	(see note 2)	Jan	Feb	Mar	Apr	May		_		Sep		-		2,800
100	%	100.0	100%		_	78.53	2,800				200	305	380	430	440	420	375	175	75	2,800
100	%	0.0	0%		%														┟╼╌╵	- 0
	%	0.0	0%		%	#DIV/01									'				 	<u> </u>
	%	0.0	0%		%	#DIV/0!								24.4	204	300	369	545	669	5,960
Not Run	ning	0.0	0%	NA	%	0.00	5,960	744	672	744	520	439	340	314	304		-		744	
				· · · · · · · · · · · · · · · · · · ·		Totals	8,760	744	672	744	720	744	720	744	744	720	744	720	744	0,700

Proposed Equipment Operation with VFD input values for ONE driven equipment and its motor.

r toposca zdarpineni o perzineni			
Efficiency of VED	95	%	i
Efficiency of VFD		-/-	

		BHP of	Motor	Mot	or	Motor														
% of F	ull	Driven	output HP	Efficie	ncy	Electrical	Annual													
Load BH	P of	Equipment	as % of	@ Mo		Power	hours that				1.1.1.1.	41		h ma	tor ru	ns (see	note 3)			Yearly
Drive	n	@ Actual	Motor	Outpu		1	motor runs		- 1. I					Jul	Aug		Oct	Nov	Dec	Total (hr)
Equipm	ent	Load (BHP)	Nameplate	(%)	<u>) </u>	(kw)	(see note 2)	Jan	Feb	Mar	Apr	May	Jun	Jui	Aug	Jup		-1101		0
100	%	100.0	100%	1177	%	#DIV/0!							- 20	- 20	ro	30	20	10	10	230
90	%	90.0	90%	95	%	70.67					20	30	30	30	50					
80	%	80.0	80%	93	%	64.17					40	40	50.	45	60	30	30	10	10	
70	%	70.0	70%			56.76		1	7 - 1		10	30	20	40	-30	40	30	10	10	220
60	%	60.0	60%		_	49.19			3.5		10	10	20	10	15	25	20	10	10	130
	-		50%		_	#DIV/01					-								<u> </u>	0
50	%	50.0		· · · · · · · · · · · · · · · · · · ·	+								7.7	T						0
40	%	40.0	40%		%		٠.		-			-				-			_	0
30	%	30.0	30%		%	#DIV/0!											<u> </u>		<u> </u>	0
20	%	20.0	20%	S	%	#DIV/01						<u> </u>	ļ.,	ļ			-	├─-		
10	%	10.0	10%	5	%	#DIV/01	T .				L—						<u> </u>	 	<u> </u>	7.055
Not Run	1		0%	NA.	%	0.00	8,760	744	672	744	640	634	600	619	589	595	644	680	704	
140¢ Kuli	mug	0.0			 	Totals	8,760	744	672	744	640	634	600	619	589	595	644	680	704	7,865_

Yes (Required) **Detailed Project Description Attached?**

1 Brake HP (BHP) at Full Load

The "full load" operating condition is the condition at which the driven equipment operates for the base condition (i.e., without the VFD)

2 Annual hours that motor runs

If the % operating loads do not vary between months, then enter the total annual hours that the motor will run at full load, partial load and hours not operating.

a Monthly hours that each motor runs If the % operating loads vary between months (due to weather conditions or seasonal load), fill in the expected hours that the motor will run each month at full load, partial load and hours not operating.

App No. 0

	App No.	U	1
	Rev.	0	J
rating Hours (see rate 4)	 -		_

Operating :	TOUTS (see note 4)		1				Weeks of	
	l w	/eekday	Satu	ırday	Sun	day	Use in Year	Total Annual
24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
	5:00AM	7:00PM	5:00AM	4:00PM	n/a	n/a	36	2,800

	Existing (no VFD)	Proposed (VFD)	Savings	
	,			Describe how energy numbers were calculated
Annual Electric Energy	1,396,076 kWh	1,320,000 kWh	76,076 kWh	
Electric Demand (kilowatts)	612 kW	560 kW	52 kW	
Calculations attached	Yes	Yes		Duke Energy Electric Bills

Simple Payback		
Average electric rate (\$/kWh) on the applicable accounts (see note 6)	\$0.10	
Estimated annual electric savings	\$7,608	
Other annual savings in addition to electric savings, such as operations, maintenance, other fuels	\$2,000.00	
incremental cost to implement the project (equipment & installation) (see note 7)	\$4,869.00	
Copy of vendor proposal is attached (see note 8)	Yes	
Simple Electric Payback in years (see note 9) 0.640017877 Total Payback	In years	0.506786294

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when usage is not expected and why:

Asphalt Production is seasonal due temperatures.

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs.

Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor involce is attached and the leaving and

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple payback on the project is less than 1 year, the rebate structure is affected.

Please check that the electric rate is accurate based on history.

ATTH: FRED BRAMER

Altivar® 61 Drives Electrical Specifications

Input Voltage 200 -15% to 240 ±10%, 380 -15% to 480 ±10% Displacement Power Factor 98% through speed range input Frequency 50 Hz -5% to 60 Hz ±5%	-
A 1 th a	
1991年1999年中国的基本的基本的基本的基本的基本的基本的基本的基本的基本的基本的基本的基本的基本的	
Orive Input Section Six pulse bridge rectifier	
Drive Output Section Three Phase, IGB1 Inverter with Pulse Width Modulated (PWM) output Maximum voltage equal to input voltage	
Galvanic Isolation Galvanic isolation between power and control (inputs, outputs and power supplies)	
riedueitcy Hange of Power Convetter 0.6 to 500 Hz	:33
Torque/overtorque 110% of nominal motor torque for 80 s, minimum	ad
Current (transient) 110% of controller rated corrent for 60 s. minimum	33
Switching Frequency Selectable from 1 to 16 kHz, 12 kHz nominal rating for 1-60 hp @ 200/240 V, 1-100 hp	.:: .::6
3616014016, 2.5 to 8 KHz, 2.5 KHz nominal rating for 75-125 bg 60 200/240 \/125-000 hr) (
Speed Reference Innue Al 0.10 +10 V Impedance 30 kOhms Used for Societ potentiomater 1-10 kOhms	20.3
and the state of t	əlt
The state of the s	_
上一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	្សថ្ង
TENNION CONTROL OF THE PROPERTY OF THE PROPERT	
	(A)
The Mary Control of the Control of t	
TO THE CONTROL OF THE	
Motor Control Profiles Energy economizer (flux optimization) motor algorithm to maximize energy savings.	
(Automatically optimizes voltage based on load.) or select from 2 point or 5 point volts/h or SLFV (sensorless flux vector)	0
Speed Range	111
Motor Protection Class 10 electronic overload protection or PTC probe	. 7
Simply Start ment. PID act up ment. Patture traction most like the prosecution of the pro	.≤
Programme and Date -	
control modern and a service of the	ži.
ANAS and WEEE (Waste Electronic Equipment compliant	
Codes and Standards UL CSA NOM 117, DNV, GE, C-Tick, GOST	ii I
UL 1995 Plenum rated, SEMFF47 certified for voltage dip ride-through	

Altivar® 61 Drives Environmental Specifications

	- 2 Divisormental opecifications
Temperature Humidity Althude	Operation: 14 to + 122 F (+10 to +50 C) Storage 13 to +158 F (+25 to +70 C) 95% with no condensation or dripping water, conforming to IEC 600068-2-3. 3,300 ff (1,000 in) without detailing 3,300, 9950 ft (1,000 3,000 in) details output current sech additional 330 ff; (100 in) 6560 ft (2000m) maximum for corner grounded distributions.
Enclosure Rating	1-60 hp @ 200/240 V, 1-100 hp @ 380/480 V: IP 41 on top IP21 on all other surfaces, Type 1 with optional conduit kit. 75-125 hp @ 200/240 V, 125-500 hp @ 380/480 V: IP 41 on top, IP30 sides & front IP00 on bottom, Type 1 w/ optional conduit kit. 600 -900 hp @ 380/480 V. IP 41 on top, IP30 sides and front, IP00 on bottom
Pollution Degree	nf20.hp:@.200/240.lV. 1;25.hp:@.380/480.V: Pollution degree 2 per IEC/EN 61800-5-1; Option S337, provides protection per IEC 60721-3-3 Class 3C2 25-60.hp:@.200/240.V:30-100.hp:@.380/480V: Pollution degree 3 per IEC/EN 61800-5- Option S337 provides protection per IEC 60721-3-3 Class 3C2 60-125hp:@.200/240.V: 125.900.hp:@.380/480V: Pollution degree 3 per IEC/EN 61800-1

file://C:\Documents%20and%20Settings\drodgers\Local%20Settings\Temporary%20Internet%20Files\O... 1/28/2008

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

The main solutions for reducing current harmonics are as follows:

DC chokes, see below

■ Line chokes, see page 2/228 ■ 16% and 10% passive filters, see page 2/231

Use of passive filters with a DC choke, see pages 2/231 to 2/235

These 4 solutions can be used on the same installation.

It is always easier and less expensive to handle current harmonics at installation level as a whole rather than at the level of each individual unit, particularly when using passive filters and active compensators.

DC chokes are used to reduce current harmonics in order to comply with standard IEC 61000-3-12 for drives on which the line current is greater than 16 A and less than 75 A.

Using the DC choke with the drive compiles with standard IEC 61000-3-12 provided that the RSCE > 120 (1) at the point of connection to the public network. 120 represents the minimum value of RSCE (1) for which the values in table 4 of standard IEC standard. IEC 61000-3-12 are not exceeded.

It is the responsibility of the installer or the user to ensure that the device is connected correctly to a connection point with an RSCE > 120. The DC choke is connected to the drive power terminals.

It is supplied as standard with ATV 61HD55M3X, HD90M3X and ATV 61HD90N4...HC63N4 drives and is integrated into ATV 61WeenN4 and ATV 61WessN4C drives.

Applications

Reduction of current harmonics.
Reduction of THD to 5% or to 10% in association with passive fillers, see pages 2/231 to 2/235.

Maintaining the motor lorque in relation to the line choke.

(1) Short-circuit ratio

DC Choxe
L1 - 4 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2
Butter and the state of the sta

ost-it* Fax Note 7671	Dale 1/24/08 # of pages 5
To Fred Brammer	From Sarab Vimball
Co./Dapt.	Co. SalareD
Plione # .	Phone #
Fax # 513. 326. 3662	Fax # 919. 217. 6508

Form W-9 (Rev. November 2005

(Rev. November 2005)
Department of the Treasury
Internal Revenue Service

Request for Taxpayer Identification Number and Certification

Give form to the requester. Do not send to the IRS.

	W	reame (as shown on your income tax return)			
	g	Valley Asphalt Corporation			
	å	Business name, if different from above			
	6	•			
Print or type	uctions	Check appropriate box: Individual/ Sole proprietor Corporation Partnership Other I	·		Exempt from backup withholding
Ě.	둸	Address (number, street, and apt. or suite no.)	Requester	's name and a	address (optional)
ď.	<u> </u>	11641 Mosteller Road			addition (optional)
1	Ě	City, state, and ZIP code			
:	ğ	Cincinnati, OH 45241			
•	0	List account number(s) here (optional)			
ć	ge e	(1)			
P	art	Taxpayer Identification Number (TIN)			
		idspayor identification (alligher (1114)			
alie	onu s	your TIN in the appropriate box. The TIN provided must match the name given on Line 1 to withholding. For individuals, this is your social security number (SSN). However, for a rescole proprietor, or disregarded entity, see the Part I instructions on page 3. For other entitimployer identification number (EIN). If you do not have a number, see <i>How to get a TIN</i> or	sident	Social secu	rity number
Νo	te. I	If the account is in more than one name, see the chart on page 4 for guidelines on whose	, bago o.	Employer id	lentification number
nur	nbe	er to enter,		3 1 +0	I
P	art	II Certification		12 11 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Und	der	penalties of perjury, I certify that:		···	
		number shown on this form is my correct taxpayer identification number (or I am waiting			
۷.	Rev	m not subject to backup withholding because: (a) I am exempt from backup withholding, c venue Service (IRS) that I am subject to backup withholding as a result of a failure to repo ified me that I am no longer subject to backup withholding, and			
3.	Lan	m a U.S. person (including a U.S. resident alien).			
Cer with For arra	rtific nhole moe inge	cation instructions. You must cross out item 2 above if you have been notified by the IRS ding because you have failed to report all interest and dividends on your tax return. For restagge interest paid, acquisition or abandonment of secured property, cancellation of debigation and generally, payments other than interest and dividends, you are not require your correct TIN. (See the instructions on page 4.)	al estate ti	ansactions,	item 2 does not apply.

Purpose of Form

Signature of

U.S. person >

Sign

Here

A person who is required to file an information return with the IRS, must obtain your correct taxpayer identification number (TIN) to report, for example, income paid to you, real estate transactions, mortgage interest you paid, acquisition or abandonment of secured property, cancellation of debt, or contributions you made to an IRA.

U.S. person. Use Form W-9 only if you are a U.S. person (including a resident alien), to provide your correct TIN to the person requesting it (the requester) and, when applicable, to:

- 1. Certify that the TIN you are giving is correct (or you are waiting for a number to be issued).
 - 2. Certify that you are not subject to backup withholding, or
- 3. Claim exemption from backup withholding if you are a U.S. exempt payee.

In 3 above, if applicable, you are also certifying that as a U.S. person, your allocable share of any partnership income from a U.S. trade or business is not subject to the withholding tax on foreign partners' share of effectively connected income.

Note. If a requester gives you a form other than Form W-9 to request your TIN, you must use the requester's form if it is substantially similar to this Form W-9.

For federal tax purposes, you are considered a person if you are:

- An individual who is a citizen or resident of the United States,
- A partnership, corporation, company, or association created or organized in the United States or under the laws of the United States, or
- Any estate (other than a foreign estate) or trust. See Regulations sections 301,7701-6(a) and 7(a) for additional information

Special rules for partnerships. Partnerships that conduct a trade or business in the United States are generally required to pay a withholding tax on any foreign partners' share of income from such business. Further, in certain cases where a Form W-9 has not been received, a partnership is required to presume that a partner is a foreign person, and pay the withholding tax. Therefore, if you are a U.S. person that is a partner in a partnership conducting a trade or business in the United States, provide Form W-9 to the partnership to establish your U.S. status and avoid withholding on your share of partnership income.

The person who gives Form W-9 to the partnership for purposes of establishing its U.S. status and avoiding withholding on its allocable share of net income from the partnership conducting a trade or business in the United States is in the following cases:

The U.S. owner of a disregarded entity and not the entity,

THE F.D. LAWRENCE ELECTRIC CO.

Distributors of ELECTRICAL MATERIALS

3450 BEEKMAN STREET CINCINNATI, OHIO

VALLEY ASPHALT

11641 MOSTELLER RD

CINCINNATI, OH 45241

452232743

513-542-1100 FAX 542-2422

INVOICE Type Number Level Date 6-1-12 S100056421 Gustomer PO/JOB# 0205

Ship/Date Inside/Salesperson JOE KELLEY 6-1-12 Acct# Outside Salesperson DOUG EISEN OUR TRUCK

Ship To Information Below:

VALLEY ASPHALT 4850 STUBBS MILL ROAD MORROW, OH 45152

UK T	RTANT!! Remit check to The F.D. Lawrence	Ordered	Backord	Shipped	Non	Unit Price	UM	Dis	Net Amnt
₽!	Product Description/Customer Designation	1	Diversion	1	533	8300.00	EA	1.0	8300.00
13	SQD ATV61HC22N4	1		···············					
+		111							
							· .		
+				i					
╁		 			Ţ				
+		- 			1				
		 							
		 							
+-								<u> </u>	
-									
			-				İ	<u> </u>	
+			 					\perp	
-		 						<u> </u>	
╁					•				
+		- · · · ·	77.4		1.				
+		75 / 15 / 195	H. D. DE	-2 -	· ·				
- -		1 4 12 19 19	12 1 1				·		
+		1	 				l	<u> </u>	
4		<u></u>							
+		 		 		1			
		- 	· · · - · · · · · · · · · · · · · · · ·		T				
┸		 		 			T	1	
\bot					1		T		<u> </u>
_L			.l		<u>'</u>		Net	ALCOHOL:	8300.
acc	count is current	, .					Tax	维泰拉	8300
acc is ir	count is current nvoice is paid by:	Àp.	,				Tax Total	強人	

These goods were produced in compliance with all applicable requirements of section 6, 7, and 12 of the Fair Labor Standards Act as amended and of regulation and orders of the United States Department of Labor issued under Section 14 thereof.

Returned merchandise or claims are subject to the conditions shown on sales tickets.

Merchandise shall not be returned without prior approvall
A charge of 1.5% monthly of 18% per annum will be added to all past due balances.

THE F.D. LAWRENCE ELECTRIC CO.

Distributors of ELECTRICAL MATERIALS

3450 BEEKMAN STREET CINCINNATI, OHIO

452232743

513-542-1100 FAX 542-2422

Type Number Level Date S100066104 Customer PO/JOB# 0214 Ship Date Inside Salesperson JOE KELLEY 6-13-12 Acctif Outside Salesperson DOUG EISEN Ship.Via OUR TRUCK

Ship To Information Below:

VALLEY ASPHALT 7940 MAIN ST NEWTON, OH 45244

VALLEY ASPHALT 11641 MOSTELLER RD CINCINNATI, OH 45241

IMP	DRTANT!! Remit check to The F.D. Lawrenc	e Electric Co	Dept.003	Shinned	Non	Unit Price	UM	Dis	Net Amnt
ine	Product Description/Customer Designation	Ordered	Ваского	1	533	8300.00	EA	1.0	8300.00
AHE .	SQD ATV61HC22N4	1		-			ſ		
	SQD At 101.		<u> </u>		 		Γ		
		<u> </u>		 	 				
		<u> </u>	 	 	+		Γ	1	
		1 2 2	<u> </u>	 		·			
				ļ.———	 -	 	 		Ĺ
				ļ	 	 	 		
			<u> </u>	ļ			 		
				<u> </u>			 	1	
				<u> </u>		- 	 		
	<u> </u>			<u> </u>		<u> </u>	 		
				L		 	+		
							+		
							 -	-├	
							┿	_	
-									
			+					_}	
				<u> </u>		T			
				+					-
			<u> </u>				_L		
		4112 -55	4. (\$4 1) 14 - (4 1) 14		-+	_	_l		
		1	1, 11, 11, 11, 11, 11, 11, 11, 11, 11,				Τ		
								1	
						_ 	Net		8300
	- the support						Tax		\$20 \$20
If you	ir account is current his invoice is paid by:						1000	ile se	

These goods were produced in compliance with all applicable requirements of section 6, 7, and 12 of the Fair Labor Standards Act as amended and of regulation and orders of the United States Department of Labor issued under Section 14 thereof.

Returned merchandise or claims are subject to the conditions shown on sales tickets.

Merchandise shall not be returned without prior approvall
A charge of 1.5% monthly of 18% per annum will be added to all past due balances.

THE F.D. LAWRENCE ELECTRIC CO. Distributors of ELECTRICAL MATERIALS

3450 BEEKMAN STREET CINCINNATI, OHIO

452232743

513-542-1100 FAX 542-2422

VALLEY ASPHALT 11641 MOSTELLER RD CINCINNATI, OH 45241

	200 miles (100 miles (
	INVOICE
	Type Number Level Date
	S100018714 7-1-12
	Customer PO/JOB#
	0223
hip Date	Inside Salesperson
-1-12	JOE KELLEY
cct#	Outside Salesperson
A Company (A construction of)	DOUG EISEN
hip Via	
YIR TRLIC	K

Ship To Information Below:

VALLEY ASPHALT 11641 MOSTELLER CINCINNATI, OH 45241

*IMP(ORTANT!! Remit check to The F.D. Lawrence	e Electric C	Backord	Shipped	Non	Unit Price	UM _	Dis	Net Amnt
Line	Product Description/Customer Designation	Oraciva	Вяскога	1	533	8300.00	EA	1.0	8300.00
	SQD ATV61HC22N4		<u> </u>		1 550				
		ļ <u> </u>	 		├──				
		ļ	 		 				
		<u> </u>	<u> </u>	 	 				
		ļ	ļ <u> </u>		 				
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	 	 			
				 	 				
			ļ	<u> </u>					
		<u> </u>	<u> </u>	 -	 	 			
				 					
				 		<u> </u>	 		
		<u> </u>	ļ		 	ļ	 		
			<u> </u>	 	 		├	-	
			ļ				 	 	T
					<u> </u>		 	 	ļ
			<u> </u>			 	 	-	
					 		 		
						<u> </u>	┼┈──	\vdash	
			<u></u>		- 		 	 	
					 -		-├	 	
			<u> </u>				 	┧─┈	
					_	_]	 		
							+	 -	
							8/3/8/3/2/2017	1 80.525860	8300.
T.C							(Net	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3 6500
If your account is current									8300.
and th	is invoice is paid by:						Total	有意识的	<u> </u>

These goods were produced in compliance with all applicable requirements of section 6, 7, and 12 of the Fair Labor Standards Act as amended and of regulation and orders of the United States Department of Labor issued under Section 14 thereof.
Returned merchandise or claims are subject to the conditions shown on sales tickets.

Merchandise shall not be returned without prior approval!
A charge of 1.5% monthly of 18% per annum will be added to all past due balances.

THE F.D. LAWRENCE ELECTRIC CO. Distributors of **ELECTRICAL MATERIALS**

INVOICE Type Number Level Date S100079962 1-6-13 Customer PO/JOB# 0223

4869.00

3450 BEEKMAN STREET CINCINNATI, OHIO

VALLEY ASPHALT 11641 MOSTELLER RD

CINCINNATI, OH 45241

452232743

513-542-1100 FAX 542-2422

Ship Date 4 Inside Salesperson 4 2 1-6-13 JOE KELLEY Acci# Outside Salesperson DOUG EISEN Ship:Via OUR TRUCK

Ship To Information Below:

VALLEY ASPHALT 11641 MOSTELLER RD CINCINNATI, OH 45241

*IMPORTANT!! Remit check to The F.D. Lawrence Electric Co. Dept.00341 Cincinnati, OH 452630341 Product Description/Customer Designation Ordered Backord Shipped Non Unit Price UM Dis Net Amnt SQD ATV61HD75N4 4869.00 EA 1.0 4869.00 If your account is current 4869.00 and this invoice is paid by: Tax Out of

These goods were produced in compliance with all applicable requirements of section 6, 7, and 12 of the Fair Labor Standards Act as amended and of regulation and orders of the United States Department of Labor issued under Section 14 thereof.

Returned merchandise or claims are subject to the conditions shown on sales tickets.

Merchandise shall not be returned without prior approval!

A charge of 1.5% monthly of 18% per annum will be added to all past due balances.