

Case No.: <u>13-1328-E</u>L-EEC

Mercantile Customer:	Fifth Third Bank (Madisonville Operations Center)
Electric Utility:	Duke Energy
Program Title or Description:	HVAC

Rule 4901:1-39-05(F), Ohio Administrative Code (O.A.C.), permits a mercantile customer to file, either individually or jointly with an electric utility, an application to commit the customer's existing demand reduction, demand response, and energy efficiency programs for integration with the electric utility's programs. The following application form is to be used by mercantile customers, either individually or jointly with their electric utility, to apply for commitment of such programs in accordance with the Commission's pilot program established in Case No. <u>10-834-EL-POR</u>

Completed applications requesting the cash rebate reasonable arrangement option (Option 1) in lieu of an exemption from the electric utility's energy efficiency and demand reduction (EEDR) rider will be automatically approved on the sixty-first calendar day after filing, unless the Commission, or an attorney examiner, suspends or denies the application prior to that time. Completed applications requesting the exemption from the EEDR rider (Option 2) will also qualify for the 60-day automatic approval so long as the exemption period does not exceed 24 months. Rider exemptions for periods of more than 24 months will be reviewed by the Commission Staff and are only approved up the issuance of a Commission order.

Complete a separate application for each customer program. Projects undertaken by a customer as a single program at a single location or at various locations within the same service territory should be submitted together as a single program filing, when possible. Check all boxes that are applicable to your program. For each box checked, be sure to complete all subparts of the question, and provide all requested additional information. Submittal of incomplete applications may result in a suspension of the automatic approval process or denial of the application.

Any confidential or trade secret information may be submitted to Staff on disc or via email at <u>ee-pdr@puc.state.oh.us</u>.

Section 1: Mercantile Customer Information

Name: Fifth Third Bank Corporation

Principal address: 38 Fountain Square Plaza Cincinnati Ohio 45263

Address of facility for which this energy efficiency program applies:

5050 Kingsley Drive Cincinnati Ohio 45227

Name and telephone number for responses to questions:

Megan Fox 513-287-3367

Electricity use by the customer (check the box(es) that apply):

- ✓ The customer uses more than seven hundred thousand kilowatt hours per year at the above facility. (Refer to Appendix A for documentation.)
- □ The customer is part of a national account involving multiple facilities in one or more states. (Please attach documentation.)

Section 2: Application Information

- A) The customer is filing this application (choose which applies):
 - □ Individually, without electric utility participation.
 - ✓ Jointly with the electric utility.
- B) The electric utility is: **Duke Energy**
- C) The customer is offering to commit (check any that apply):
 - Energy savings from the customer's energy efficiency program. (Complete Sections 3, 5, 6, and 7.)
 - □ Capacity savings from the customer's demand response/demand reduction program. (Complete Sections 4, 5, 6, and 7.)
 - ✓ Both the energy savings and the capacity savings from the customer's energy efficiency program. (Complete all sections of the Application.)

Section 3: Energy Efficiency Programs

- A) The customer's energy efficiency program involves (check those that apply):
 - ✓ Early replacement of fully functioning equipment with new equipment. (Provide the date on which the customer replaced fully functioning equipment, and the date on which the customer would have replaced such equipment if it had not been replaced early. Please include a brief explanation for how the customer determined this future replacement date (or, if not known, please explain why this is not known)).

The following, more energy efficient equipment was installed starting in September 2012 and completed in November 2012

- Eight new 9.5 HP supply fan wall and nine 3 HP return fan wall components were installed on AHU1 and AHU2 along with new, more energy efficient VFDs
- □ Installation of new equipment to replace equipment that needed to be replaced The customer installed new equipment on the following date(s):
- Installation of new equipment for new construction or facility expansion.
 The customer installed new equipment on the following date(s):
- □ Behavioral or operational improvement.
- B) Energy savings achieved/to be achieved by the energy efficiency program:
 - If you checked the box indicating that the project involves the early replacement of fully functioning equipment replaced with new equipment, then calculate the annual savings [(kWh used by the original equipment) – (kWh used by new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: 128,409 kWh Refer to Appendix B for calculations and supporting document

2) If you checked the box indicating that the customer installed new equipment to replace equipment that needed to be replaced, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by the higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____kWh

Please describe any less efficient new equipment that was rejected in favor of the more efficient new equipment.

 If you checked the box indicating that the project involves equipment for new construction or facility expansion, then calculate the annual savings [(kWh used by less efficient new equipment) – (kWh used by higher efficiency new equipment) = (kWh per year saved)]. Please attach your calculations and record the results below:

Annual savings: _____kWh

Please describe the less efficient new equipment that was rejected in favor of the more efficient new equipment.

4) If you checked the box indicating that the project involves behavioral or operational improvements, provide a description of how the annual savings were determined.

Section 4: Demand Reduction/Demand Response Programs

A) The customer's program involves (check the one that applies):

✓ Coincident peak-demand savings from the customer's energy efficiency program.

- □ Actual peak-demand reduction. (Attach a description and documentation of the peak-demand reduction.)
- D Potential peak-demand reduction (check the one that applies):
 - □ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a tariff of a regional transmission organization (RTO) approved by the Federal Energy Regulatory Commission.
 - □ The customer's peak-demand reduction program meets the requirements to be counted as a capacity resource under a program that is equivalent to an RTO program, which has been approved by the Public Utilities Commission of Ohio.
- B) On what date did the customer initiate its demand reduction program?

The new equipment was installed in November 2012

C) What is the peak demand reduction achieved or capable of being achieved (show calculations through which this was determined):

4 kW

Refer to Appendix B for calculations and supporting documentation.

Section 5: Request for Cash Rebate Reasonable Arrangement (Option 1) or Exemption from Rider (Option 2)

Under this section, check the box that applies and fill in all blanks relating to that choice.

Note: If Option 2 is selected, the application will not qualify for the 60-day automatic approval. All applications, however, will be considered on a timely basis by the Commission.

A) The customer is applying for:

✓ Option 1: A cash rebate reasonable arrangement.

OR

□ Option 2: An exemption from the energy efficiency cost recovery mechanism implemented by the electric utility.

OR

- □ Commitment payment
- B) The value of the option that the customer is seeking is:
 - Option 1: A cash rebate reasonable arrangement, which is the lesser of (show both amounts):
 - ✓ A cash rebate of \$5100.00. Refer to Appendix C for documentation. (Rebate shall not exceed 50% project cost.
 - Option 2: An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider.
 - An exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for _____ months (not to exceed 24 months). (Attach calculations showing how this time period was determined.)

OR

A commitment payment valued at no more than
 \$_____. (Attach documentation and

calculations showing how this payment amount was determined.)

OR

Ongoing exemption from payment of the electric utility's energy efficiency/peak demand reduction rider for an initial period of 24 months because this program is part of the customer's ongoing efficiency program. (Attach documentation that establishes the ongoing nature of the program.) In order to continue the exemption beyond the initial 24 month period, the customer will need to provide a future application establishing additional energy savings and the continuance of the organization's energy efficiency program.)

Section 6: Cost Effectiveness

The program is cost effective because it has a benefit/cost ratio greater than 1 using the (choose which applies):

- Total Resource Cost (TRC) Test. The calculated TRC value is: ______
 (Continue to Subsection 1, then skip Subsection 2)
- ✓ Utility Cost Test (UCT). The calculated UCT value is 8.09 (Skip to Subsection 2.) Refer to Appendix D for calculations and supporting documents.

Subsection 1: TRC Test Used (please fill in all blanks).

The TRC value of the program is calculated by dividing the value of our avoided supply costs (generation capacity, energy, and any transmission or distribution) by the sum of our program overhead and installation costs and any incremental measure costs paid by either the customer or the electric utility.

The electric utility's avoided supply costs were _____.

Our program costs were _____.

The incremental measure costs were _____.

Subsection 2: UCT Used (please fill in all blanks).

We calculated the UCT value of our program by dividing the value of our avoided supply costs (capacity and energy) by the costs to our electric utility (including administrative costs and incentives paid or rider exemption costs) to obtain our commitment.

Our avoided supply costs were **\$68,096**.

The utility's program costs were **\$3,316**.

The utility's incentive costs/rebate costs were **\$5,100**.

Refer to Appendix D for calculations and supporting documents.

Section 7: Additional Information

Please attach the following supporting documentation to this application:

Narrative description of the program including, but not limited to, make, model, and year of any installed and replaced equipment.

A copy of the formal declaration or agreement that commits the program or measure to the electric utility, including:

- 1) any confidentiality requirements associated with the agreement;
- 2) a description of any consequences of noncompliance with the terms of the commitment;
- 3) a description of coordination requirements between the customer and the electric utility with regard to peak demand reduction;
- 4) permission by the customer to the electric utility and Commission staff and consultants to measure and verify energy savings and/or peak-demand reductions resulting from your program; and,
- 5) a commitment by the customer to provide an annual report on your energy savings and electric utility peak-demand reductions achieved.

Refer to Offer Letter following this application

A description of all methodologies, protocols, and practices used or proposed to be used in measuring and verifying program results. Additionally, identify and explain all deviations from any program measurement and verification guidelines that may be published by the Commission.

DUKE ENERGY Mercantile Self Durect Program 139 East Fourth Street Cincinnati, OH 45202

513 629 5572 fax

May 29, 2013

Ms. Janice Juergens Fifth Third Bank – Madisonville Operations Center 38 Fountain Square Plaza Mail Drop 10ATA1 Cincinnati Ohio 45263

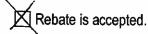
Subject: Your Custom Application for a Duke Energy Mercantile Self-Direct Rebate

Dear Name:

Thank you for your Duke Energy Mercantile Self Direct rebate application. As noted in the Energy Conservation Measure (ECM) chart on page two, a total rebate of \$5100.00 has been proposed for your HVAC project completed in the 2012 calendar year. All Self Direct Rebates are contingent upon approval by the Public Utilities Commission of Ohio (PUCO).

At your earliest convenience, please indicate if you accept this rebate by

- providing your signature on page two
- completing the PUCO-required affidavit on page three.


Please return the documents to my attention via fax at 513-629-5572 or e-mail to SelfDirect@Duke-Energy.com. Upon receipt, Duke Energy will submit the necessary documentation to PUCO. Following PUCO's approval, Duke Energy will remit payment.

At Duke Energy, we value your business and look forward to working with you on this and future energy efficiency projects. We hope you will consider our Smart \$aver® incentives, when applicable. Please contact me if you have any questions.

Sincerely,

Grady Reid, Jr Product Manager Mercantile Self Direct Rebates

cc: Mike Harp, Duke Energy Rob Jung, Ecova Shannon Savage Lingo, Building Intelligence Group Please indicate your response to this rebate offer within 30 days of receipt.

Rebate is declined.

By accepting this rebate, Fifth Third Bank affirms its intention to commit and integrate the energy efficiency projects listed on the following pages into Duke Energy's peak demand reduction, demand response and/or energy efficiency programs.

Additionally, Fifth Third Bank also agrees to serve as joint applicant in any future filings necessary to secure approval of this arrangement as required by PUCO and to comply with any information and reporting requirements imposed by rule or as part of that approval.

Finally, Fifth Third Bank affirms that all application information submitted to Duke Energy pursuant to this rebate offer is true and accurate. Information in question would include, but not be limited to, project scope, equipment specifications, equipment operational details, project costs, project completion dates, and the quantity of energy conservation measures installed.

If rebate is accepted, will you use the monies to fund future energy efficiency and/or demand reduction projects?

If rebate is declined, please indicate reason (optional):

Customer Signature

Printed Name

Date

Proposed Rebate Amounts

Measure ID	Energy Conservation Measure (ECM)	Proposed Rebate Amount
ECM-1	Fan Wall Upgrades for AHU1 and AHU2	\$5100.00
Total		\$5100.00

Ohio Public Utilities Commission

Application to Commit Energy Efficiency/Peak Demand Reduction Programs (Mercantile Customers Only)

Case No.: _____ - EL-EEC

State of Ohio :

Unice Jurgers, Affiant, being duly sworn according to law, deposes and says

1. I am the duly authorized representative of:

Fifth Third Brenk

[insert customer or EDU company name and any applicable name(s) doing business as]

- I have personally examined all the information contained in the foregoing 2. application, including any exhibits and attachments. Based upon my examination and inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate and complete.
- I am aware of fines and penalties which may be imposed under Ohio Revised 3. Code Sections 2921.11, 2921.31, 4903.02, 4903.03, and 4903.99 for submitting false information.

Signature of Affiant & Title

Sworn and subscribed before me this 20th day of May Month/Year

Signature of official administering oath

Caharina Mc Leill, Notary Print Name and Title

My commission expires on Sept. 20,2017

CAHARINA MCNEIL Notary Public, State of Of My Commission Expires September 20, 2017

3|Page

64503529 01						
5TH THIRD BA	NK					
5001 KINGSLEY DRMISC: 5001-B						
CINCINNATI, OH 45227						
Date Days Actual KWH						
3/21/2013	29	132,314				
2/20/2013	29	139,787				
1/22/2013	34	119,983				
12/19/2012	33	110,480				
11/16/2012	29	104,781				
10/18/2012	29	129,595				
9/19/2012	30	165,848				
8/20/2012	31	185,042				
7/20/2012	30	190,078				
6/20/2012	30	197,281				
5/21/2012	31	163,190				
4/20/2012	30	135,882				
Total		1,774,261				

	Base	line Used		Post Project Act	tual			Sa	vings
	Description	Annual kWh	Summer Coincident kW	Description	Annual kWh	Summer Coincident kW	Hours of Operation	Annual kWh	Summer Coinciden kW
ECM - 1	Fan Wall Upgrade	13,478,546	2,655	Installed eight new 9.5Hp supply fan wall and nine 3 HP return fanwall compenents on AHU 1 and AHU 2 with new VFDs that were higher in efficency	13,358,653	2,651	8,760	119,893	4.0
Notes:	Energy consumption baseline	e, demand baseline	and post proj	ect energy consumption basis are outline	d in the followir	ng pages.			
	After consideration of line lo	osses, total energy s	avings are 1 2	28,409 kWh and 4 summer coincident k	W . These valu	ues may also	reflect minor	DSMore mo	odeling
	After consideration of line lo	osses, total energy s	avings are 12	28,409 kWh and 4 summer coincident k	W. These value	ues may also	reflect minor	DSMore mo	odeling

Mar 2013 V1							DETAILED	CALCULATIC	DNS															
									CMO13-									Rev	. 0					
Salesforce Opportunity Project Name	Name Fifth Third Bank Madi	0 sonville Operations Ce	nter - Mercantile Se	elf Direct Custom - Fan	Wall Upgra	de		Application	# 1404842 Fifth Thi		C -Fan Wall U	Jpgrade						State	OH					
Measure Description																								
	e replacement of the sup 9 HP fan components eac																							
	he smaller fan motors co																	.,						
Baseline The baseline canacity is	reasonable given the size	a of the cupply fan and	l return fan motors i	involved The applicatio	n indicates	there are mu	ltinle accour	ts for the si	ite that the	currently av	ailahle hillin	a history de	nes not acco	unt for so a co	mnarison ca	nnot he mar	ie directly. How	ever the Trade	1					
	on effort for the submitte																,							
Savings Calculation Me	thodology																		_					
The Trade Ally revised to inputs, and calibration s	he submitted single line of study provided for the sul	alculations based on s bmitted energy model	pot measurements t no further adjustme	to a detailed energy me ents are considered nec	odel of the f essary. As ti	facility using he eQUEST si	eQUEST. This mulation sol	s change in o tware does	not have be	methodolog uilt in fanwa	y resulted in Il fan curves,	the reduct the Trade	ion of saving Ally generat	ts from 188,16 ed the necessa	7 kWh to 11 ary coefficier	9,893 kWh. I its to define	Based on the pro the performance	ovided data, e using a custom						
Incremental Measure C																			-					
An American Institute o completed. As the appli	f Architects (AIA) docum cant indicated the origin	ent was provided that al equipment held a re	maining useful life o	of greater than 2 years,	ement proje the Increme	ect and assoc ental Measur	ated total o e Cost is equ	ost of \$336, ivalent to th	,950.00. Thi he Measure	Cost of \$33	1 materials, 1 6,950.00.	abor, and r	ental equipi	nent to provide	e temporary	cooling whil	e the work was	being						
IMC Calculation	IMC (\$)	Baseline Cost	t (\$) Measu	ire Cost (\$)															_					
	\$336,950.00	\$0.00	\$336	6,950.00	Attache	ed Files			X	1														
References to source d		as appropriate FTH THIRD BANK_Spec: allSavingsCalcs-MOCV2			Calco Cost	ulations Documentation	CMD13-14 FIFTH TH BANK Spec Specs an	0482 IIRD IS and	FanWallSav cs-MOCV	ringsCal	lysis													
Savings Calculations	(insert all appropriate	calculations or simula	tion results below)																1					
	Baseline	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL										
	EM1 ELECTRIC KWH	ITY 1	149638	1051791 10809	82 10124	413 11118	29 115823	7 133280	01 130105	52 111583	7 104994	5 101365	52 110036	9 13478544										
	MAX KW DAY/HR	3/9	2093.4 7/9	2084.7 187 22/9	5.3 201 21/16		1.9 2374 26/14	.6 2655. 14/16	.1 2579 9/14	.2 237 1/14	1 2318.0 3/16	5 1885 16/15	.4 1963 22/9	4 2655.1 7/14										
	FM1 NATURAL-	GAS			, .	, .	.,	, .			., .	., .	, -											
	THERM MAX THERM/HR	5333.	4765.	3187.	1129.	541.	348.	225.	238.	486.	1377.	1956.	4167.	23750.										
	DAY/HR	9.1 21/8	11.1 12/9	10.3 4/11	7.5 16/23	4.3 2/7	2.4 5/5	1.1 2/1	0.7 26/9	3.5 17/6	7.6 29/9	7.3 12/7	9.1 25/22	11.1 2/12										
	Proposed	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL										
	EM1 ELECTRIC	ITY	140968											-										
	MAX KW		2083.8	1044035 10713 2073.7 186	1.1 199	9.6 2201	.6 2375	.1 2651.	.4 2571	.5 2361.	.7 2309.3	7 1874	.9 1950	.2 2651.4										
	DAY/HR	3/9	7/9	22/9	21/16	24/16	26/14	14/16	9/14	1/14	3/16	16/15	22/9	7/14										
	FM1 NATURAL- THERM	GAS 5333.	4780.	3214.	1141.	544.	349.	225.	238.	488.	1391.	1978.	4186.	23867.										
	MAX THERM/HR DAY/HR	9.1 21/8	11.1 12/9	10.3 4/11	7.6 16/23	4.3 2/ 7	2.5 5/5	1.1 2/ 1	0.7 26/9	3.6 17/6	7.6 29/9	7.3	9.1 25/22	11.1 2/12										
	DAI/IR	21/ 0	12/ 5	4/11	10/25	2/ /	5/ 5	2/ 1	20/ 9	1770	25/5	12/ /	23/22											
															Calibratio									
		Electric Consumpt	tion (kWh)		Electric	: Demand (kV	V)	Gas cons	umption (N	IMBtu)	Total ener	rgy consum	nption (MM	3tu)	ERR-month (Average util	ity - Simulation)	/Average Utility	CVRMSE - E	lectrical con	sumption CVRMS	E - Electrical dema	d CVRMSE -	Gas consumption
	Jan	Simulation data	Average uti 149638	ility data 1270393		tion Average		Simulatio 53		utility data	Simulatio 4456		utility data		Electricity (I	Electricity (G	as consumption -53%	i i i	(util-sim)	(util-sim)^2		(util-sim)^2 40 1607	util-sim 597	
	Feb	1	051791	1132639	20	085 2,1	81	47	7 86	59	4065	5 473	33		-7%	-4%	-45%		80848	*****		96 9258	392	
	Mar Apr	1	080982 012413	1175303 1101520	20	875 2,1 011 2,0	58	31 11	13 27	75	4007 3567	403	33		-8% -8%	-14% -3%	-40% -59%		89107	*********		98 89043 57 3297	212 162	
	May Jun	1	111829 158237	1154646 1199822		211 2,2 375 2,4	55 90	5	i4 9 15 4	34 17	3848 3987		84 11		-4% -3%	-2% -5%	-43% -27%		42817 41585	*********		44 1950 16 13426	40 13	
	Jul Aug		332801 301052	1280225 1286140		655 2,4 579 2,4		2		14 12	4570				4% 1%	7% 5%	-49% -43%			*********		.68 28117 .19 14228	21	
	Sep Oct	1	115837 049945	1164838 1363945	23	371 2,5 319 2,7	92	4	19 4	18	3856	5 402	22		-4% -23%	-9% -14%	2% -21%			******		21 48678 183 146322	-1	
	Nov	1	013652	1100972	18	885 2,3	10	19	96 53	86	3654	429	93		-8%	-18%	-64%		87320	******		25 180472	341	
	Dec		100369	1205925	19	963 2,2	37	41			4171				-9%	-12%	-61%			*****		74 74977	640	
	Yearly total Average		478546 123212	14436368 1203031	22	202 23	41	237 19			48364 4030			% ERR-yearly	-6.6%	-5.9%	-51.0%	sum	957822	######### 122202	1	i67 55579 236	2472	
	Max			0.1898	265		01								4	Coefficient of	f variation of the nean bias error	e root mean squ	a cvrmse nmbe	10.16 7.24	cvrmse nmbe	10.07 6.47	cvrmse nmbe	
																						0% % total sav		for the total energy use
												Mean ER Mean ER From FEP CV(RMSE NMBE +/	Rmonth +/- Ryear +/- MP M&V Gu Evear) +/- f- 5% Σ (M-3		0 * (M-S) / N RRmonth / and ASHRAE (M-S) ² / 11))	12 Guideline 14 ^{0.5})/avg M	1 2002				Saving		30 <u>8</u> 00000	in the outer stars of
										eQuest B	EPS data - u	ied in colu	mns B, E, an	dH										
										EM1 KWH	ELECTR	ICITY			1012417	1111970	1158237 122	2801 120105	1115927	1049945	1013652 1100	169 13478544		
										MAX	ĸw	209	93 208	5 1875	2011	2211	2375	2655 2579	2 1115837	2319	1885 1	163 2655		
										FM1 NA	TL GAS													
										THERM		533 53			1129 113	541 54	348 35	225 238 23 24		1377 138		.67 23750 117 2375		

Appendix C -Cash Rebate Calculation

Fifth Third Bank HVAC

Measure	Quantity	Cash Rebate Rate	Cash Rebate
Fan Wall Upgrade - Installed eight new 9.5Hp supply fan wall and nine 3 HP return fanwall compenents on AHU 1 and AHU 2		50% of incentive that would be offered by the Smart \$aver Custom program	\$5,100
			\$5,100

Appendix D -UCT Value

Fifth Third Bank HVAC

Measure	Total Avoided Cost	Program Cost	Incentive	Quantity	Measure UCT
Wall Fan Upgrade	\$68,096	\$3,316	\$5,100	1	8.09
Totals	\$68,096	\$3,316	\$5,100	1	

Total Avoided Supply Costs	\$68,096	Aggregate Application UCT	8.09
Total Program Costs	\$3,316		
Total Incentive	\$5,100		

Ohio Mercantile Self Direct Program

Application Guide & Cover Sheet

Questions? Call 1-866-380-9580 or visit www.duke-energy.com.

Email this form along with <u>completed Mercantile Self Direct Prescriptive or Custom applications</u>, proof of payment, energy savings calculations and spec sheets to <u>SelfDirect@Duke-Energy.com</u>. You may also fax to 1-513-629-5572.

Mercantile customers, defined as using at least 700,000 kWh annually are eligible for the Mercantile Self Direct program. Please indicate mercantile qualification:

a single Duke Energy Ohio account

multiple accounts in Ohio (energy usage with other utilities may be counted toward the total)

Please list Duke Energy account numbers below (attach listing of multiple accounts and/or billing history for other utilities as required):

Account Number	Annual Usage	Account Number	Annual Usage
MOC = 92902204 01	3,069,677 kWh	MOB, 64503529 01	1,642,848 kWh
MOC = 66903730 01	2,286,193 kWh	MOB, 14400759 05	3,201,830 kWh
MOC = 62902204 01	4,121,314 kWh		
MOC = 72902204 01	4,730,379 kWh		

Self Direct rebates are available for completed Custom projects that have not previously received a Duke Energy Smart \$aver® Custom Incentive. Self Direct rebates are applicable to Prescriptive measures that were installed more than 90 days prior to submission to Duke Energy and have not previously received a Duke Energy Prescriptive rebate.

Self Direct Program requirements dictate that certain projects that may be Prescriptive in nature under the Smart \$aver program must be evaluated using the Custom process. Use the table on page two as a guide to determine which Self Direct program fits your project(s). Apply for Self Direct projects using the appropriate application forms in conjunction with this cover sheet. Where Mercantile Self Direct Prescriptive applications are listed, please refer to the measure list on that applications. If your measure is not listed, you may be eligible for a Self Direct Custom rebate. Self Direct Custom applications, like Smart \$aver Custom applications, should include detailed analysis of pre-project and post-project energy usage and project costs. Please indicate which type of rebate applications are included in the table provided on page two.

Please check each box to indicate completion of the following program requirements:

All sections of appropriate application(s) are completed	Proof of payment.*	Manufacturer's Spec sheets	Energy model/calculations and detailed inputs for Custom applications
---	--------------------	----------------------------	--

* If a single payment record is intended to demonstrate the costs of both Prescriptive & Custom projects, please include an additional document with an estimated breakout of costs for each Prescriptive and Custom energy conservation measure.

Application Type	Replaced equipment at end of lifetime or because equipment failed**	Replaced fully operational equipment to improve efficiency***	New Construction
		MSD Prescriptive Lighting	MSD Prescriptive Lighting
Lighting	MSD Custom Part 1	MSD Custom Part 1 Custom Lighting Worksheet	MSD Custom Part 1 Custom Lighting Worksheet
	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Heating & Cooling
Heating & Cooling	MSD Custom General Worksheet	MSD Custom General Worksheet	MSD Custom Part 1
Window Films, Programmable Thermostats, & Guest Room Energy Management Systems	MSD Custom Part 1 MSD Custom General and/or EMS Worksheet(s)	SD Prescriptive Heating & Cooling	MSD Custom Part 1 MSD Custom General and/or EMS Worksheet(s)
Chillers & Thermal	MSD Custom Part 1	MSD Custom Part 1	MSD Prescriptive Chillers & Thermal Storage
Storage	MSD Custom General Worksheet	MSD Custom General Worksheet	MSD Custom Part 1 MSD Custom General Worksheet
MSD Custom Part 1		MSD Custom Part 1	MSD Prescriptive Motors, Pumps & Drives
Motors & Pumps	MSD Custom General Worksheet	MSD Custom General Worksheet	MSD Custom Part 1
VED	No. Andreside	MSD Prescriptive Motors, Pumps & Drives	MSD Custom Part 1
VFDs	Not Applicable	MSD Custom Part 1	MSD Custom VFD Worksheet
			MSD Prescriptive Food Service
Food Service	MSD Custom Part 1	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1
			MSD Prescriptive Process
Air Compressors	MSD Custom Part 1 MSD Custom Compressed Air Worksheet	MSD Custom Part 1 MSD Custom Compressed Air Worksheet	MSD Custom Part 1 MSD Custom Compressed Air Worksheet
		MSD Prescriptive Process	
Process	MSD Custom Part 1	MSD Custom Part 1 MSD Custom General Worksheet	MSD Custom Part 1
Energy Management Systems	MSD Custom Part 1 MSD Custom EMS Worksheet	MSD Custom Part 1 MSD Custom EMS Worksheet	MSD Custom Part 1 MSD Custom EMS Worksheet
Chiller Tune-ups		MSD Prescriptive Chiller Tune-ups	
Behavioral*** & No/Low Cost		MSD Custom Part 1	

** Under the Self Direct program, failed equipment and equipment at the end of its useful life are evaluated differently than early replacement of fully functioning equipment. All equipment replacements due to failure or old age will be evaluated via the Custom program.
*** Please ensure that you include the age of the replaced equipment for measures classified as "Early Replacement" in your application as well as the estimated date that you would have otherwise replaced the existing equipment if you had not chosen a more energy efficient option.
**** Behavioral energy efficiency and demand reduction projects must be both measurable and verifiable. Provide justification with your application.

Proposed energy efficiency measures may be eligible for Self-Direct Custom rebates if they clearly reduce electrical consumption and/or demand as compared to the appropriate baseline.

Before you complete this application, please note the following important criteria:

- Submitting this application does not guarantee a rebate will be approved.
- Rebates are based on electricity conservation only.
- Electric demand and/or energy reductions must be well documented with auditable calculations.
- Incomplete applications cannot be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, beginning on page 6.

Notes on the Application Process

If you have any questions concerning how to complete any portion of the application or what supplementary information is required, please contact your Duke Energy Ohio, Inc account manager or the Duke Energy Smart \$aver® team at 1-866-380-9580.

Every application must include calculations of the baseline electrical usage and the electrical usage of the proposed high-efficiency equipment/system. These calculations are performed and submitted by the Duke Energy Ohio customer, or your designated equipment vendor / engineer. Application Part 2 worksheets and page 6 of this application contain additional guidance on acceptable calculations. *Complex or unique projects may require the use, at the applicant's expense, of modeling software.* Please contact the Duke Energy Smart \$aver® with questions about these requirements.

If you do not receive an acknowledgement email within 1 day of submitting an application via online, email, or fax, or within 1 week of sending an application via mail, please call 1-866-380-9580. The acknowledgement email will provide with an estimated response time based on an initial assessment of your application. The application review may include some communication to resolve any questions about the project or to request additional information. Applications that are received complete without missing information have a faster review time.

There are three ways to submit your completed application form and excel worksheets.

- Email: Complete, sign, scan and send this application form and attachments to: <u>SelfDirect@duke-energy.com</u> (Note attachment size limit is applicable)
- Fax: 513-629-5572
- Mail: Duke Energy Mercantile Self Direct Custom Rebate PO Box 2445 Spokane, WA 99210-2445

1. Contact Information (Required)

Duke Energy Cu	stomer Contact	Information										
Company Name	Fifth Third Bank	ifth Third Bank, Madisonville Operations Center										
Address	5050 Kingsley D	Drive										
City	Cincinnati		State	ОН		Zip Code	45263					
Project Contact												
Title	Janice Juergens	s, Vice President										
Office Phone	513.534.5147	Mobile Phone			Fax							
E-mail Address	janice.juergens	@53.com										

Equipment Vend	or / Contractor /	Architect / Er	ngineer Co	ontact In	nformation		
Company Name	Building Intellige	Building Intelligence Group					
Address	5304 Barry Lan	304 Barry Lane					
City	St. Paul	State	MN	Zip Cod	le		
Project Contact	Shannon Savag	Shannon Savage Lingo					
Title	Project Enginee	r					
Office Phone	704.941.7077	Mobile Pho	ne (sam	e)	Fax		
E-mail Address	shannon@buildingintelligencegroup.com						
Primary Contact for	or Technical Ques	stions	Shannon	Savage	Lingo		

Payment Information							
Payee Legal Company Nam Federal income tax return):	n on Fif	Fifth Third Bank					
Mailing Address	511 Waln	ut St.					
City	Cincinnati	i .	State	OH	Zip Code	55110	
Type of organization (check	Non-Profit (dividual/Sole	Proprieto ion)	r 🛛 Ce	prporation	Partnership	
Payee Federal Tax ID # of L Company Name Above:	egal	31-0676865					
If the customer (Duke Energ		nolder) is not	the paym	ient reci	pient, indicate	e who is:	
If the vendor is to receive pa incentive directly to vendor of		tomer must s	ign belov	v. I here	by authorize	payment of	
Customer Signature	-	_	Date		_/ (mi	m/dd/yyyy)	

2. Project Information (Required)

- A. Please indicate project type:
 - New Construction
 - Expansion at an existing facility (existing Duke Energy account number)
 - Replacing equipment due to equipment failure
 - Replacing equipment that is estimated to have remaining useful life of 2 years or less
 - Replacing equipment that is estimated to have remaining useful life of more than 2 years
 - Behavioral, operational and/or procedural programs/projects
- B. Please describe your project, or attach a detailed project description that describes the project.

This application is for the Madisonville Operations Center, fan wall component upgrades for the field built air handler units, AHU1 and AHU2 at 5050 Kingsley Drive: Cincinnati, OH. The new (9.5HPx8 =76 HP) supply fanwall and (3.0HPx9 = 27HP) return fanwall components were installed in the existing AHUs along with new VFDs for both the supply and return fanwalls. The existing supply fans, return fans, and VFDs were removed. The fan efficiency for the fanwall selections installed are much higher than the efficiency of the previous return and supply fans, and were selected for efficiency, reliability, and redundancy.

- C. When did you start and complete implementation? Start date 09/2012 (mm/yyyy) End date 11/2012 (mm/yyyy)
- D. Are you also applying for Self-Direct Prescriptive rebates and, if so, which one(s) $^{1}\!?$ NO
- E. Please indicate which worksheet(s) you are submitting for this application (check all that <u>apply</u>):
 - Lighting
 - Variable Frequency Drive (VFD)
 - Compressed Air
 - Energy Management System (EMS)
 - General (for projects not easily submitted using one of the above worksheets)
- F. List all assumptions about the baseline and proposed equipment energy use and operation schedule, or attach a document listing that information. Attach specification sheets for all proposed new equipment.

Amperage draws were taken before and after the project was completed (during similar conditions): Existing: 68 amps; New: 34.3 amps. These measurements were taken during the fall (low heating/cooling load). The AHU's were at lower airflow than would be witnessed during

¹ If your project involves some equipment that is eligible for prescriptive rebates and some equipment that is likely eligible for custom rebates, and if it is feasible to separate the equipment for the energy analysis, then the equipment will be evaluated separately. If it is not feasible to separate the equipment for analysis, then the equipment will be evaluated together in the custom application.

the summer or winter months at times of high heating or cooling load. As the energy reduction will be greater on a percentage basis at times of higher airflow when compared to low, the energy savings demonstrated here are considered to be conservative. These amperage measurements were converted to kWh using the electrical characteristics (3 phase, 460 V power feed, .80 PF) and the runtime characteristics detailed in this application.

Required: Attach a supplier or contractor invoice or other equivalent information documenting the Implementation Cost for each project listed in your application. (Note: self-install costs cannot be included in the Implementation Cost)

3. Signature (Required – must be signed by Duke Energy customer)

Customer Consent to Release of Personal Information

I, (insert name) Uncluding, do hereby consent to Duke Energy disclosing my Duke Energy Ohio, Inc Account Number and Federal Tax ID Number to its subcontractors solely for the purpose of administering Duke Energy Ohio's Mercantile Self-Direct Program. I understand that such subcontractors are contractually bound to otherwise maintain my Duke Energy Ohio, Inc Account Number and Federal Tax ID Number in the strictest of confidence.

I realize that under the rules and regulations of the public utilities commission, I may refuse to allow Duke Energy Ohio, Inc to release the information set forth above. By my signature, I freely give Duke Energy Ohio, Inc permission to release the information designated above.

Application Signature

I certify that I meet the eligibility requirements of the Duke Energy Ohio, Inc Mercantile Self Direct Custom Rebates Program and that all information provided within this application is correct to the best of my knowledge. I agree to the terms and conditions set forth for this program. I certify that the numbers, energy savings, and responses shown on this form are correct. Further, I certify that the taxpayer identification number is current and correct. I am not subject to backup withholding because: (a) I am exempt from backup withholding; or (b) I have not been notified by the IRS that I am subject to backup withholding as a result of a failure to report all interest or dividends; or (c) the IRS has notified me that I am no longer subject to backup withholding. I am a U.S. citizen (includes a U.S. resident alien).

Duke Energy Ohio, Ind Customer Signature

Print Name Janice Juergens

Date	April 15, 2013	

May 13, 2012

Scope of Proposal

Fifth Third Bank Madisonville Operations Center c/o Viox Services 5050 Kingsley Ave. Cincinnati, Ohio 45227

Attn: Trent Fleming Mark Coleman

Ref: MOC AHU-1 & AHU-2 Upgrade

Mr. Fleming,

PH+B is please to provide the following proposal for the upgrade of the built-up custom AHU-1 and AHU-2 at the Madisonville Operations Center. The scope of this estimate is based upon site visits and our record drawings of the various projects we have completed in the building.

AHU-1 Upgrade to Fanwall Technology: \$168,475 AHU-2 Upgrade to Fanwall Technology: \$168,475

Mechanical Scope:

- 1. Each existing vane axial fan (total of 4, (1) supply fan and (1) return fan per AHU) will be demolished including galvanized sheetmetal ductwork connections in the mechanical rooms.
- 2. New Hunt Air Fanwall Technology Supply and Return Air systems will be installed.
 - a. These system consists of fan arrays containing multiple plenum fans. Multiple, smaller fans provide increased redundancy and common replacement parts.
 - b. These systems have been selected to provide maximum capacity given the HP constraints of the current electrical service. The supply fans will operate at the same static pressure as the existing fans (which will require less HP consumption to do so).

System Clarifications:

 Once Fifth Third has chosen the direction for its campus controls, we will coordinate with an appropriate controls subcontractor. To allow for adequate planning and coordination for the Columbus Day weekend installation, the drop dead date for a decision on the control scheme is July 16th.

General Clarifications:

- 1. PH+B has included overtime/shift time in each price above.
 - a. PH+B proposal assumes (1) prolonged shutdown (3-4 days) per AHU to be coordinated over holiday weekends (possibly Columbus day weekend and Thanksgiving weekend) to reduce the impact on the bank's operations. PH+B will

complete as much work upstream of the shutdowns as possible to reduce overtime premiums. Schedule will be coordinated with Fifth Third upon project approval.

- 2. Longest lead item has a lead time of 12-14 weeks. As such, the drop dead date for project approval to allow for a Columbus Day weekend installation is July 2nd.
- 3. Pricing of AHUs assuming (1) mobilization & procurement phase. System will be installed in sequential order as coordinated with the bank.
- 4. This proposal assumes that PH+B will be the engineer of record for the design and installation of the above mentioned systems.
- 5. No asbestos, lead based paint, or other type of abatement activities have been included in our pricing.

We appreciate the opportunity to continue the upgrade of the MOC Facility. Please contact us if you have any questions or comments.

Sincerely,

.Sa

Joel Schriner

CONTINUATION SHEET

AIA DOCUMENT G703

PAGE OF PAGES

AIA Document G702, APPLICATION AND CERTIFICATION FOR PAYMENT, containing

Contractor's signed certification is attached.

In tabulations below, amounts are stated to the nearest dollar.

Use Column I on Contracts where variable retainage for line items may apply.

SCRIPTION OF WORK	SCHEDULED VALUE	WORK CO FROM PREVIOUS APPLICATION (D + E)	MPLETED THIS PERIOD	MATERIALS PRESENTLY STORED	TOTAL COMPLETED AND STORED	% (G÷C)	BALANCE TO FINISH (C - G)	RETAINAGE 0 RATE)
sts (nermit consumables etc.)		APPLICATION	THIS PERIOD	STORED		$(G \div C)$		0
sts (nermit consumables etc.)	6 000 00				THE STORED			RAIE)
ts (nermit consumables etc.)	6 000 00			(NOT IN	TO DATE		(0 0)	iuiil)
ts (nermit consumables etc.)	6 000 00			D OR E)	(D+E+F)			
ts (nermit consumables etc.)	6,000.00	6,000.00			6,000.00	100%		- '
sis (permit, consumables, etc.)	10,690.00	10,690.00			10,690.00	100%		-
emobilization	4,500.00	4,500.00			4,500.00	100%		
	7,657.00	7,657.00			7,657.00	100%		
bor	48,693.00	48,693.00			48,693.00	100%		
aterial	19,585	19,585.00			19,585.00	100%		
< Comparison of the second sec	26,600.00	26,600.00			26,600.00	100%		
ing/Rigging	9,393.00	9,393.00			9,393.00	100%		
	163,108	163,107.95			163,107.95	100%		
	4,224.00	4,224.00			4,224.00	100%		
D's	12,000.00	12,000.00			12,000.00	100%		
	10,000.00	10,000.00			10,000.00	100%		
nent (temp cooling units)	8,000.00	8,000.00			8,000.00	100%		-
5	6,500.00	6,500.00			6,500.00	100%		
								1
RAND TOTALS	336,950	336,950	-		336,950	100%	-	-
:D'	s state of the second s	g/Rigging 9,393.00 163,108 4,224.00 s 12,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00	g/Rigging 9,393.00 9,393.00 163,108 163,107.95 4,224.00 4,224.00 s 12,000.00 10,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00 6,500.00	g/Rigging 9,393.00 9,393.00 163,108 163,107.95 4,224.00 4,224.00 s 12,000.00 12,000.00 10,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00 6,500.00	y/Rigging 9,393.00 9,393.00 163,108 163,107.95 4,224.00 4,224.00 s 12,000.00 12,000.00 10,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00 6,500.00	g/Rigging 9,393.00 9,393.00 9,393.00 9,393.00 9,393.00 9,393.00 9,393.00 9,393.00 163,107.95 163,107.95 163,107.95 163,107.95 163,107.95 14,224.00 4,224.00 4,224.00 12,000.00 12,000.00 12,000.00 12,000.00 10,000.00 10,000.00 10,000.00 10,000.00 10,000.00 6,500.00	y/Rigging 9,393.00 9,393.00 9,393.00 100% 163,108 163,107.95 163,107.95 100% 4,224.00 4,224.00 4,224.00 100% s 12,000.00 12,000.00 12,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00 6,500.00 100%	y/Rigging 9,393.00 9,393.00 9,393.00 100% 163,108 163,107.95 100% 100% 4,224.00 4,224.00 4,224.00 100% s 12,000.00 12,000.00 10,000.00 10,000.00 tt (temp cooling units) 8,000.00 6,500.00 6,500.00 100%

Users may obtain validation of this document by requesting of the license a completed AIA Document D401 - Certification of Document's Authenticity

APPLICATION NO: Image: Comparison of the state of the st

PHB #: 212524 5/3rd AHU Replacement FANWALL BRE

C ANK

Supply Fan

FANWALL TECHNOLOGY® 2.0

Same as AHU-2

- ^{80.00}

AHU-1 SUPPLY MECHANICAL

Project Na Quote Nu Job Number

Configuration

Function

ame	5/3 B/
ımber	
ber	-000

					Date	August	13, 2012
ame		7.00	22" 105%	2x4 Arra	y, O Redunda	int Cells, O Em	pty Cells
Power Is 000 W	in H20)	5.00				$ \rightarrow $	

	7.00					-france				
	A A A			+<					72.00	
~	6,00				\searrow_1				64.00	
H20	5.00				-/ f	<u> </u>			56.00	
(JI,	4.00								48,00	(BHP)
sure	4.00				1			l l	40.00	
⁵ res	3.00 -		*						32.00	Power
Static Pressure (in H20)	2.00 -		ļ					••••••••••	- 24.00	-
Sta								\setminus	16.00	
	1.00								- 8.00	
	0.00		<u> </u>						0.00	
		Ö 20,	000	40,000	60,0	00	80,000	100,	000	

Airflow (CFM)

Power rating (BHP) does not include transmission losses. Performance ratings include the effects of the Coplanar Silencer.

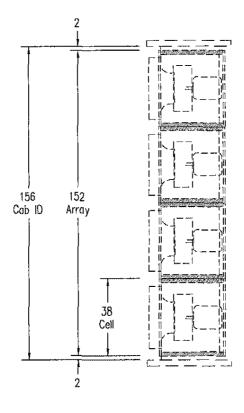
Unit Tag

Notes

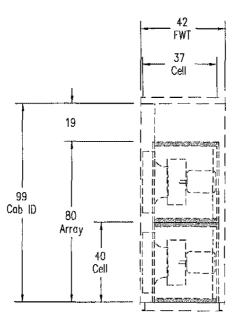
Huntair Inc. certifies that the fan model shown herein is licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Program. The AMCA Certified Ratings Seal Applies to Air Performance only. Performance certified for installation type A -Free inlet, Free outlet. Cell velocity = 853 fpm.

				Ор	erati	ng Points	5					
Label	Use	CFM	SP	Ce On	II Qua Off	ntities Failed	RPM	Hz	BHP Each	BHP Total	Vel	Watts
1	1	58000	5.50	8			2102	71.9	9.33	74.67	853	n/a

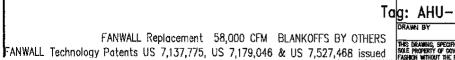
	Bare Fan S	ound Po	wer wit	h Coplar	nar Silen	cer (dB	re: 10E	-12 wat	ts)		
Label		63	125	250	500	1k	2k	4k	8k	LwA	Lw
	Inlet	100	96	94	95	88	86	85	78	96	103
1	Outlet	88	86	97	84	82	81	77	69	91	98


FANWALL TECHNOLOGY® Patent Numbers US 7,137,775, US 7,179,046 and US 7,527,468 issued and others pending

T GHOUOT	
Construction	Mechanical Fra
Selection Mode	Lowest Sound F
Array	2 Rows x 4 Cols
Cell Size	40.000 H x 38.0
Fan Wall Depth	37.000
Altitude / Temp	0 Feet / 70 F
Redundant / Emp	oty Cells 0/0


Fan Wheel		
Diameter	22	
Width	105%	
Balancing	1 Plane	

Motor	
Manufacturer	Baldor
HP Each / Total	9.5 / 76.0
Poles / RPM	4-Pole / 1755 RPM
Frame	213T / TEAO
Voltage / Phase	460V / 3 Phase
Total FLA	92.0


Options	
Coplanar Silencer	Melamine
Back Draft Dampers	YES
Inlet Airflow Straightener	NO
Fan Safety Guard	NO
Powder Coat	NO

Plan View

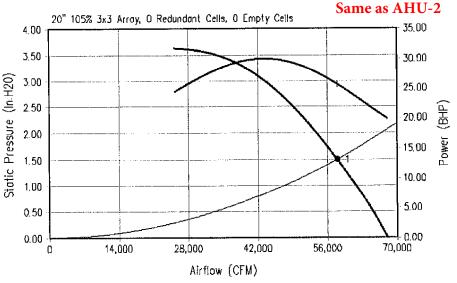
Side View

R A T 0 NK

FANWALL TECHNOLOGY® 2.0

Project Nar Quote Num Job Number

ne	5/3 BA
nber	
F	-000


Unit Tag	AHU-1 RETURN
Date	August 13, 2012

Configuration Return Fan Function Mechanical Frame Construction Selection Mode Lowest Sound Power Array 3 Rows x 3 Cols 40.000 H x 36.000 W Cell Size Fan Wall Depth 32.500 0 Feet / 70 F Altitude / Temp 0/0 Redundant / Empty Cells

Fan Wheel		
Diameter	20	
Width	105%	
Balancing	1 Plane	

Motor	
Manufacturer	Baldor
HP Each / Total	3.0/27.0
Poles / RPM	4-Pole / 1760 RPM
Frame	182T / TEAO
Voltage / Phase	460V / 3 Phase
Total FLA	36.0

Options	
Coplanar Silencer	Melamine
Back Draft Dampers	YES
Inlet Airflow Straightener	NO
Fan Safety Guard	NO
Powder Coat	NO

Power rating (BHP) does not include transmission losses. Performance ratings include the effects of the Coplanar Silencer.

Notes

Huntair Inc. certifies that the fan model shown herein is licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Program. The AMCA Certified Ratings Seal Applies to Air Performance only. Performance certified for installation type A -Free inlet, Free outlet, Cell velocity = 806 fpm.

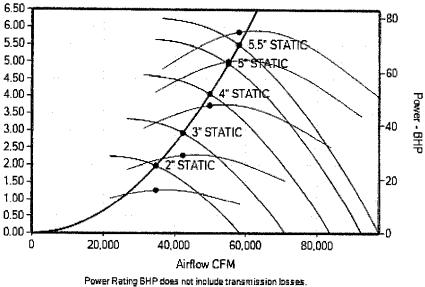
				Op	eratii	ng Point	S					
Label	Use	CFM	SP	Ce On	ell Qua	ntities Failed	RPM	Hz	BHP Each	BHP Total	Vel	Watts
1	1	58000	1.50	9			1777	60.6	2.85	25.67	806	n/a

	Bare Fan Se	ound Pe	ower wit	h Coplar	nar Silen	cer (dB	re: 10E	-12 wat	ts)		
Label		63	125	250	500	1k	2k	4k	8k	LwA	Lw
	Inlet	94	91	88	88	84	84	80	72	90	97
1	Outlet	82	83	92	78	77	76	72	62	86	93

FANWALL TECHNOLOGY® Patent Numbers US 7,137,775, US 7,179,046 and US 7,527,468 issued and others pending

Project Name	FIFTH THIRD SUPPLY] [
Quote Number				
Job Number	-001	Box	A	

Design Name	Design_1	
Date	5/7/2013	


Supply Fan Performance Curve

		Configuration	a 19 1	····		·•••
Function	Supply Fan		Height	Width	Depth	Overall Depth
Cell Construction	PentaCube	Cell Size	40 in	38 in	32.5 in	40.75 in
Selection Mode	Best	Elev. / Temp.		39 ft / 70.0 °		
Array	2 Rows x 4 Cols	Redundant / E	mpty Cells	·	0/0	

Fan	Wheel	
Diameter	22	
Width	105 %	
Balancing Planes	1	

Mc	otor	⊇ £
Manufacturer	Baldor	-
HP Each / Total	9.5 / 76	2
Poles / RPM	4-Pole / 1,755	
Frame / Casing	213T / TEAO	
Volts / Phase / Hz	460/3/60	
Total FLA	92.0 Amps	Į

Options						
Coplanar Insulation	Melamine					
Back Draft Dampers	YES					
Inlet Air Straight.	NO - Curved Cone					
Fan Safety Guard	NO					
Powder Coat	NO					
Insulation Retainer	NO					

Performance ratings include the effects of the Coplanar Silencer.

Notes:

1. Cell velocity is greater than 750 fpm.

2. To view patents and other pending U.S. or Canadian applications visit www.ces-group.com/patents

			Оре	eratin	g Co	nditions	5			,		
Operating Condition	Annual	nnual ACFM		Cell	Qua	ntities	RPM	Hz	Fanwh	eel BHP	Vel	Watts
	Usage	ACIN	(in.H20)	On	Off	Failed	KFPI	n 2	Each	Total	(ft/min)	Walls
5.5" STATIC	20 %	58,000	5.50	8			2,103	71.89	9.33	74.67	853	34,446
5" STATIC	20 %	55,100	4.96	8			1,998	68.29	8	64.01	810	/
4" STATIC	20 %	49,880	4.07	8			1,809	61.83	5.94	47.5	734	
3" STATIC	20 %	42,340	2.93	8			1,535	52.48	3.63	29.04	623	
2" STATIC	20 %	34,800	1.98	8			1,262	43.13	2.02	16.13	512	

	Bare Fan S	ound Po	wer with	Coplana	r Silence	er (dB re	: 10E-12	2 watts)			· · ·
Operating Condition		63	125	250	500	1K	2K	4K	8K	LwA	Lw
5.5" STATIC	Inlet	100	96	94	95	88	86	85	78	96	103
	Outlet	88	86	97	84	82	81	77	69	91	98
5" STATIC	Inlet	100	96	94	94	88	86	85	78	96	103
5 SIATE	Outlet	87	86	97	83	81	81	76	68	91	98
4" STATIC	Inlet	97	94	92	90	84	83	80	75	92	101
- JIANE	Outlet	85	85	94	80	79	78	73	64	88	95
3" STATIC	Inlet	93	91	88	85	81	79	75	71	88	97
5 SIAILE	Outlet	81	84	91	74	75	73	68	57	85	92
2" STATIC	Inlet	88	86	82	79	76	75	68	67	83	92
	Outlet	77	83	85	69	71	67	62	49	79	88

Project Name	FIFTH THIRD RETURN		
Quote Number			
Job Number	-001	Box	Α

-
Design_1
5/7/2013

Return Fan Performance Curve

			Configuration				
Function	Return Fan			Height	Width	Depth	Overall Depth
Cell Construction	PentaCube		Cell Size	41 in	37 in	28 in	36.25 in
Selection Mode	Best		Elev. / Temp.		39 ft / 70.0 °l	=	
Array	3 Rows x 3 Cols		Redundant / E	mpty Cells		0/0	
Fan W	/heel		4.50				
Diameter	20			:			1 20
Width	105 %		4.00 -		and the second		-30
Balancing Planes	1		3.50 -	· ·	\prec		
		ន	3.50	· · · · · ·			-25
Mot		in.H20	3.00 -				
Manufacturer	Baldor	-특					ਂ ∖-20 ਲੂ
HP Each / Total	3 / 27	16	2.50 -				
Poles / RPM	4-Pole / 1,760	ន្ត					15
Frame / Casing	182T / TEAO	Pressure	2.00 -		$\overline{}$	\sim	20 Power - BHP
Volts / Phase / Hz	460/3/60	. <u>9</u>	1.50 -			\sim	E" STATIC
Total FLA	36.0 Amps	Static	1.00				1.5" STALIG
······································		0,	1.00 -		<u></u>	T'STATIC	\mathbf{N}
Opti	ons						-5
Coplanar Insulation	Melamine		0.50 -		0.5° STA	ייין אוניין	<u>\</u>
Back Draft Dampers	YES		0.00	And the owner water of the owner			N.
Inlet Air Straight.	NO - Curved Cone		0.00 - 1	20,000	40,000		,000
Fan Safety Guard	NO		v	~~,나나나		64	,000
Powder Coat	NO				Airflow CFM		
Insulation Retainer	NO				es not include transmis use the effects of the C		

Power Ratin ng BHP does not include transmission losses. Performance ratings include the effects of the Coplanar Silencer.

Notes:

1. Cell velocity is greater than 750 fpm.

2. To view patents and other pending U.S. or Canadian applications visit www.ces-group.com/patents

			Оре	eratin	g Co	ndition	5					
Operating Condition	Annual	ACFM	SP	Cell	Qua	ntities	RPM	Hz	Fanwh	eel BHP	Vel	Matte
operating condition	Usage	ACIN	(in.H20)	On	Off	Failed	KPPI		Each	Total	(ft/min)	Watts
1.5" STATIC	34 %	58,000	1.50	9			1,771	60.37	2,81	25.28	760	34,446
1" STATIC	33 %	46,400	0.96	9			1,417	48.31	1.44	12.95	608	
0.5" STATIC	33 %	34,800	0.54	9			1,063	36.23	.61	5.46	456	

	Bare Fan S	ound Po	wer with	Coplana	nr Silence	er (dB re	: 10E-1	2 watts)			
Operating Condition		63	125	250	500	1K	2K	4K	8K	LwA	Lw
1.5" STATIC	Inlet	94	91	88	88	84	84	80	72	90	97
	Outlet	82	83	92	78	77	76	72	62	86	93
1" STATIC	Inlet	88	86	83	80	78	78	71	65	84	91
I STATIC	Outlet	77	81	87	71	72	69	64	51	81	89
0.5" STATIC	Inlet	83	80	74	73	72	71	61	58	77	85
	Outlet	73	79	78	65	67	62	54	41	73	82

Mercantile Self Direct	Page 1 of 3	
Nonresidential Custom Rebate Application GENERAL CUSTOM APPLICATIONS WORKSHEET - CUSTOM GENERAL APPLICATION PART 2	Rev 11/12	Duke
	Rev 11/12	

The General Worksheet is part 2 of the application. Do not submit this file without submitting a completed Part1 Custom Application document file, which can be found at www.duke-energy.com. This worksheet is for all projects that are not easily submitted through one of the other worksheets

Before you complete this application, please note the following important criteria:

- · Submitting this application does not guarantee an rebate will be approved.
- Rebates already decided to proceed.
- \cdot Electric demand and/or energy reductions must be well documented with auditable calculations.

· Incomplete applications will not be reviewed; all fields are required.

Refer to the complete list of Instructions and Disclaimers, found in the Mercantile Self Direct Custom Application Part 1 document.

Please enter your information and data into the cells that are shaded. Cells in white are locked and cannot be written over.

Duke Energy Customer Contact Information (Match the information in Application Part 1):

Name	Janice Juergens						
Company	Fifth Third Madisonville, Operations Center; Cincinnati, OH						
Equipment Vendor / Project Engineer Contact Information							

Name	Shannon Lingo (Shannon@buildingintelligencegroup.com)
Company	Building Intelligence Group
Company	building intelligence droup

Before proceeding with the custom application, please verify that your project is not on the Self-Direct Prescriptive application.

The prescriptive rebate applications can be found at:

 $\underline{http://www.duke-energy.com/ohio-large-business/smart-saver/mercantile-self-direct.asp}$

Prescriptive rebate amounts are pre-approved.

Nonreside	e Self Direct ential Custom Rebate A CUSTOM APPLICATIO	Application NS WORKSHE	ET - CUSTOM GENERAL APPLICATION PART 2		Page 2 of 3 Rev 11/12		PEne	ke rgy:
	es (Required)					App No.		
Provide a	list of sites addressed	by this custor	m rehate application			Rev.		
Site ID	Duke Energy Electric Number(s) (see note 2)		Facility Address	List of Proposed Projects at each site	Annual Hours of Operation	Gross Square Footage	Conditioned Square Footage	Facility Age (years)
225	12345678 01		Example: 123 Main Street, Anywhere USA 12345	Project Name(s)	5,840	42,000	38,000	12
	66	290220401 590373001 590220401 290220401	5050 Kingsley Drive: Cincinnati, OH	New Fan Wall Components for Supply and Return Fans, AHU1 and AHU2	8,760	461,285	461,285	??
	1 **						L	nknown age
								uge

1 Site ID

Can be a store number, building name or other way to identify the location. If there is only one site involved in this application, then a Site ID is not necessary.

2 Account Numbers

Must match the facility of the proposed project(s). If there are multiple meters at a site, only include the meters that pertain to the project(s).

Wiered and a	Direct											
Nonresidenti	al Custom Reb	ate Application										
GENERAL CU	STOM APPLICA	ATIONS WORKSHEET	- CUSTOM GEI	NERAL APPLICATION P	PART 2	Rev 11/12						
For each pro	ject, answer th	e following questior	is (use one wor	ksheet per project)]	App No.	0				
Project Nam	e:	Fifth Third, MOC Fa	n Wall				Rev.	0				
How would	ou classify thi	is project? (Place an										
Lighting		Heating/Cooling	Х	Air Compressor		Energy Managem	nent System	Х				
VFD		Motors/Pumps		Process Equipment		Other, describe below:						
				•								
Brief Project	Description											
Describ	e the Baseline	(see note 3) Equipmen	t/System	Describe the Proposed High Efficiency Project								
AHU-1 and A	HU-2 - the ex	isting 75HP supply f	an had been	New (9.5 HP by 8) Supply fanwall components (for a total of 76 HP per AHU)								
equipped wi	th a VFD contr	olling to 1.5" static	pressure. The									
return fan ba	aseline include	es a VFD on single re	turn fan;	VFDs per AHU to replace existing supply fan VFDs. Return fans were also								
systems are	24x7.			converted to 9x3HP fan wall components (27HP) and equipped with new return								
If Existing Equ	ipment is the B	aseline, how many ye	ars of useful life	remain or how many ye	ears until schedu	uled replacement?		2				
Detailed Pro	ject Descriptio	on Attached?	Yes	(Required)								

Page 3 of 3

Operating Hours (see note 4)

Mercantile Self Direct

							Weeks of	
	v	Veekday	S	aturday	Su	nday	Use in Year	Total Annual
24 x 7	Start Hour	End Hour	Start Hour	End Hour	Start Hour	End Hour	(see note 5)	Hours of Use
Yes							52	8,760

Energy Savings

	Baseline (see Note 3)	Proposed	Savings	
		-	-	Describe how energy numbers were calculated
Annual Electric Energy	13,478,544 kWh	#############	119,891 kWh	
Electric Demand	2,655 kW	2,651 kW	4 kW	
Calculations attached	Yes	Yes	(Required)	savings due to fan wall efficiency improvements month to month. EPO data was pulle

Simple Payback

Average electric rate (\$/kWh) on the applicab	\$0.10	I											
Estimated annual electric savings	\$11,893												
Other annual savings in addition to electric sa													
Incremental cost to implement the project (ec	ncremental cost to implement the project (equipment & installation) (see note 7)												
Copy of vendor proposal is attached (see note 8)			Yes										
Simple Electric Payback in years (see note 9)	Total Payback in years		28.33092546										

3 Baseline

Retrofit projects: the existing equipment is the baseline.

New construction projects: the baseline is the standard option in today's market, taking into account any applicable organizational, local, state or federal codes or standards currently in effect.

4 Operating Hours

Describe when the equipment is typically used. If the project is proposed for more than one site, provide any variations in operating hours between the sites on a separate sheet.

5 Weeks of Use in Year

If the equipment is not in use 52 weeks during the year (for example, during holiday or summer break), provide an explanation of when usage is not expected and why:

6 Average electric rate (\$/kWh)

If you do not know your average electric rate, use \$0.10/kWh.

7 Incremental cost to implement the project

Costs exclude self installation costs. Retrofit projects, incremental cost is the total cost of the proposed project. New construction or where the existing equipment must be replaced anyway, then incremental cost is the premium of the proposed high efficiency project over baseline.

8 Copy of vendor invoice is attached

Vendor invoices detailing costs of the project are always required.

New construction projects or where the existing equipment must be replaced anyway, vendor proposal of baseline must also be attached.

9 Simple Electric Payback

If the simple electric payback is less than 1 year, the rebate structure is affected. Double check average electric rate for correct payback.

D!!!			C																								
Bulla	ng inte	iligence	e Group			vall Mercantile S															\$/kWh		Electricity \$/MMBtu			a sqft	461,28
				TASK	MISC	SPACE	SPACE	HEAT		VENT	REFRIG		/ DOMEST Ho		TOTAL		Electric tota	Savings MME 9	%Savings	Savings kWh	Costs	Cost savings	Cost savings %	Impl cost	Payback		
		Peak	LIGHTS	LIGHTS	EQUIP	HEATING	COOLING	REJECT	& AUX	FANS	DISPLAY	SUPPLE	WTR	USAGE										_			
D 11		kW																						-			
Baseline	5150	TRICIT													0.5001336							2055		-			
EM1		TRICIT	Y 9891.3		16340.6	2626.2	9476.6	6 101.6	1241.2	5869		0 0	455.3	0	0.5801326 46001.9	050/	13478557				1337073	2655.2		-			
	MBTU	_	9891.3	0	16340.6	2626.3	9476.6	b 101.6	1241.3	5869		0 (455.3	0	46001.9	95%	13478557				2.90			-			
FM1	NATU	RAL-GA	S																		2.90			-			
FIVI1	MBTU	KAL-GA	3	0	222.8	2131.5	(20.6	0		0 0		0	2375	5%					20554						
	IVIBIU	_	======			=======		-		v		0 0)		=======	5%					0.04						
		-																			0.04						
	MBTU	-	9891.3	0	16563.4	4757.8	9476.6	5 101.6	1262	5869		0 0	455.3	0	48376.9						1357626				31358.3		
	WIDTO	-	22%							13%		% 0%		0.00%	0.10						2.94				51558.5		
		-	0%		9%					0%		% 0%		0.00%	0.005						2.54			-			
		-	20%							12%		% 0%												-			
		-	2070	0/0	5470	10/0	207	0/1	570	12/0	0		1/0	070	0.105												
Total Op:	L (1+2)	-	1	1				1					1								1	2651.4		_			
EM1		RICIT	Y			1																2651		_			
	MBTU	_	. 9891.3	0	16340.6	2660.9	9442.1	1 99.1	1238.6	5464.8		0 0	455.3	0	45592.7	95%	13358661	409.2	1%		1325179	11894		_			
	1	_		1								1		0					_/0		2.87						
FM1	NATUR	AL-GA	S																				1 1	_			
	MBTU		0	0	222.8	2143.2	(o c	20.6	0		0 0	0 0	0	2386.7	5%		-11.70	0%		20655	-103	0%				
		=		======			======					======	=======								0.04			1			
		-																									
	MBTU	-	9891.3	0	16563.4	4804	9442.1	1 99.1	1259.3	5464.8		0 0	455.3	0	47979.3			397.60	1%		1345834	11792	1%		30960.6	1%	397.
		-	22%	0%			21%			12%		% 0%		0%	0.099						2.92						
		-	0%	0%	9%	90%	0%	6 0%	1%	0%	0	% 0%	6 0%	0%	0.005									_			
		_	20%	0%	34%	10%	20%	6 0%	3%	11%	0	% 0%	5 1%	0%	0.104									_			
			100%			101%	100%	6 98%	100%	93%																	
Total Op2	2 ()		C	1																		2565.3					
EM1	ELEC	TRICIT	Y																			(
	MBTU	_	9664.4	0	16340.6	2451.5	7727.2	2 117.1	1230.4	4582.8		0 0	455.3	0	42569.1	96%	12472746	0	0%		1237296	(0%				
		_																			2.68						
FM1	NATU	RAL-GA	S																					_			
	MBTU		C	0	222.8		(0	20.6	0		0 0	0 0	0	1862.2	4%		0.00	0%		16116	(0%				
		=						======				======									0.03						
		_																									
	MBTU	_	9664.4	. 0	16563.4				1251	4582.8		0 0	455.3	0	44431.3			0.00	0%		1253412	(0%				
		_	21%							10%		% 0%									2.72			_			
		_	0%		9%					0%		% 0%		0%										_			
		_	20%	0%	34%	8%	16%	6 0%	3%	9%	0	% 0%	5 1%	0%	0.096									-			
Tatal C.		-						+	<u>↓</u>			-	-		+			├				2490	. 	+			
Total Op		DICIT	Y					+	<u>↓</u>			-	-		+			├				2490			L		
EM1	ELECT MBTU	RICIT	Y 4943.5	0.0	3090.6	3740.2	3071.8	8 56.1	394.9	2500.3		0 0.0	0.0	56.5	17854.0	98%	5231222	0	0%		518937			-			
	IVIDIO	-	4943.5	0.0	3090.6	5740.2	50/1.8	50.1	594.9	2500.3	U	0 0.0	0.0	50.5	1/654.0	98%	5231222		0%		1.12		070	-			
FM1	NATUR	AL-GA	S									1	+		+ +						1.12		<u> </u>				
	MBTU	AL-GA	0.0	0.0	0.0	75.1	0.0	0.0	0.0	0.0	0	0 0.0	283.5	0.0	358.6	2%		0.00	0%		3103	(0%	+			
	NIDIO	_	======	=======	=======								283.5	=======	=======	∠70		0.00	0%		0.01		0/0				
		-																			0.01		+	-			
	MBTU	-	4943.5	0.0	3090.6	3815.3	3071.8	8 56.1	394.9	2500.3	n	0 0.0	283.5	56.5	18212.6			0.00	0%		522041	(0%	-			
		-	11%							5%		% 0%		0%				0.00	070		1.13			-			
		-	0%							0%		% 0%		0%							1.15						
		-	10%		6%					5%				0%									1 1	_			
		-	20/1	070	070	5,0	57	0/1	1/0	570			1/0	570	5.005						1		1 1				
CM1: Fa	nWalls plus	new VFDs f	0 1			1																2651.9					
M1	ELECT	_	Y			1																2652					
	MBTU		. 9891.3	0.0	16340.6	2655.0	9446.8	8 99.5	1239.1	5566.1	0	0 0.0	455.3	0.0	45693.7	95%	13388254	308.2	1%		1328115	8958					
				1	1																2.88						
M1	NATUR	AL-GA			1	1		1	1		i	1			1					i	1						

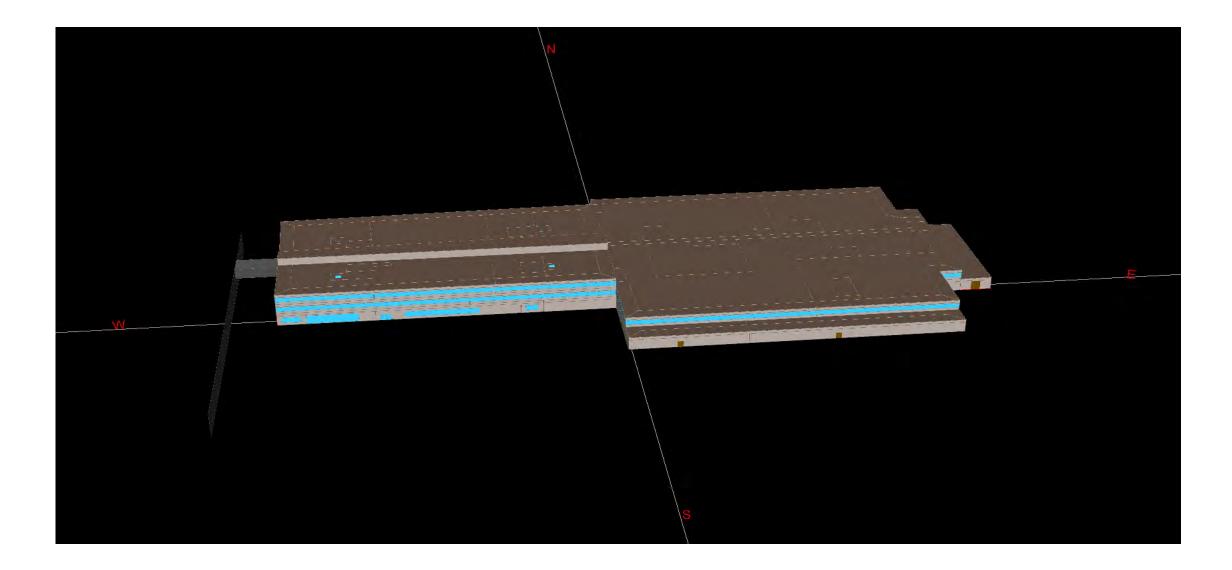
	MBTU		0.0	0.0	222.8	2141.0	0.0	0.0	20.6	0.0	0.0	0.0	0.0	0.0	2384.4	5%	-9.40	0%	20635 -	81 0%			
	IVIDIO		======	=======							======	=======			2384.4	578	-9.40		0.04	31 0/8			+
		-					1							++									+
	MBTU	·	9891.3	0.0	16563.4	4796.0	9446.8	99.5	1259.8	5566.1	0.0	0.0	455.3	0.0	48078.1		298.80	1%	1348750 88	77 1%			
		·	22%	0%	36%	6%	21%		3%		0%		1%						2.92				
		·	0%	0%	9%	90%			1%		0%		0%								-	-	+ +
		1	20%	0%	34%	10%			3%		0%		1%	+ +							_	-	+ +
		1					1						-										-
ECM2: - Fai	nwalls plus	new VFDs f	1				1												26	55		-	
EM1	ELECT	RICIT	Y				1				 I								26	55	_	-	
	MBTU		9891.3	0.0	16340.6	2639.1	9473.0	101.2	1240.8	5775.2	0.0	0.0	455.3	0.0	45916.6	95% 13453564	85.3	0%	1334594 24	79 0%	_		
							1		-				-						2.89		_		
FM1	NATUR	AL-GA	S				1																
	MBTU		0.0	0.0	222.8	2134.8	0.0	0.0	20.6	0.0	0.0	0.0	0.0	0.0	2378.3	5%	-3.30	0%	20582 -	29 0%			
		=	=====	======	======= ==	======	======	=======================================	======	======	======	======	=====	=======	=======				0.04				
							1				I												
	MBTU	_	9891.3	0.0	16563.4	4773.9	9473.0		1261.4		0.0		455.3				82.10	0%		51 0%	_	7	17
			22%	0%	36%	6%	21%		3%		0%		1%						2.94				
			0%	0%	9%	90%	0%		1%		0%		0%						11327.	41	_		<u> </u>
			20%	0%	34%	10%	20%	0%	3%	12%	0%	5 0%	1%	5 0%	0.105						_		<u> </u>
		_					l	L			 			\downarrow						<u> </u>			<u> </u>
ECM3: - NA		_	0				l	L				+		↓					2593				1
EM1		TRICIT	Y				⊢	↓			·	+		<u> </u>						0	_		<u> </u>
	MBTU	- /	9891.3	0.0	16340.6	2417.8	9540.0	104.1	1183.7	5831.0	0.0	0.0	455.3	0.0	45763.7	95% 13408764	0	0%		0 0%		!	Ļ!
							ı — — — — — — — — — — — — — — — — — — —	↓											2.88		_	!	Ļ!
FM1		RAL-GA	S				<u> </u>	(Ļ!
	MBTU	- /	0.0		222.8	2000.8	0.0		20.6				0.0			5%	0.00	0%	19422	0 0%			Ļ!
		-									======	======							0.04				I
		-						<u> </u>						<u> </u>									I
	MBTU	- /	9891.3	0.0		4418.5	9540.0		1204.3		0.0		455.3				0.00	0%	1349572	0 0%		_ _	<u> </u>
		- /	22% 0%	0%	36%	5% 84%	21%		3%		0%		1%		0.099				2.93				<u> </u>
		- /	20%	0% 0%	9% 34%		0% 20%		1% 2%		0%		0%										<u> </u>
		-	20%	0%	34%	9%	20%	0%	2%	12%	0%	0%	1%	0%	0.104						-		
ECM4: - NA		-	0					i−−−−				+		++					2712				
		TRICIT	Y								i			++					2/1.	0	-		
	MBTU	-	9664.4	0.0	16340.6	2428.6	9473.4	106.2	1284.3	5822.3	0.0	0.0	455.3	0.0	45575.0	95% 13353475	0	0%	1324665	0 0%	-		
	IVIDIO	-	5004.4	0.0	10340.0	2420.0	5475.4	100.2	1204.5	3022.3	0.0	0.0	433.5	0.0	43373.0	55% 15555475	0		2.87	0 0%	-		
FM1	NATU	RAL-GA	S											++							-		
	MBTU	INAL-OA	0.0	0.0	222.8	2040.2	0.0	0.0	20.6	0.0	0.0	0.0	0.0	0.0	2283.7	5%	0.00	0%	19763	0 0%			+
	WIDTO	-	======	=======						=======	=======	=========		+ +	=======	570	0.00		0.04	0 0/0	-		+
		-					1							++									+
	MBTU		9664.4	0.0	16563.4	4468.8	9473.4	106.2	1304.9	5822.3	0.0	0.0	455.3	0.0	47858.7		0.00	0%	1344428	0 0%	-		1
	-		21%	0%	36%	5%	21%		3%		0%		1%						2.91		-		1
		1	0%	0%	9%	86%			1%		0%		0%		0.005						-		1
		1	20%	0%	34%	9%			3%		0%		1%								-		1
			,,-																				1
ECM5: - NA	à.		0				t												2680	1.4		-	1
		TRICIT	Y										-							0			
	MBTU		9891.3	0.0	16340.6	2200.4	9458.1	106.5	1285.9	5812.4	0.0	0.0	455.3	0.0	45550.5	95% 13346297	0	0%	1323953	0 0%			
																			2.87				
FM1	NATU	RAL-GA	AS								·												
	MBTU		0.0	0.0	222.8	2004.4	0.0		20.6		0.0	0.0	0.0	0.0	2247.8	5%	0.00	0%	19453	0 0%			
		=	======	======		======	======	=======================================	======	======	======	======		=======	=======				0.04				
	MBTU	_	9891.3	0.0	16563.4	4204.7	9458.1	106.5	1306.5		0.0		455.3				0.00	0%	1343405	0 0%	_		<u> </u>
			22%	0%	36%	5%	21%		3%		0%		1%	+ +					2.91		_		<u> </u>
		_	0%	0%	9%	84%	0%		1%		0%		0%								_		<u> </u>
		_	20%	0%	34%	9%	20%	0%	3%	12%	0%	5 0%	1%	5 0%	0.104						_		1
		_					⊢					+		───									<u> </u>
ECM6: NA	linfil		0				1 I	í l		1		1 1		1				1	2708	251	1 1	0.3878	3 0.34902
		TRICIT	Y				$ \longrightarrow $	+			·	+			·					0			+ ,

	MBTU		9891.3	0.0	16340.6	2455.5	9523.0	107.4	1267.4	5834.6	0.0	0.0	455.3	0.0	45875.1	95% 13441404	0	0%	1333387	0	0%			
		_																	2.89					
	NATU	RAL-GA	S																					
	MBTU	_		0.0	222.8	2000.3	0.0	0.0					0.0			5%	0.00	0%	19418	0	0%			
		_ =		= ==				=====				=========							0.04					
	MBTU	-	9891.3	0.0	16563.4	4455.8	9523.0	107.4	1288.1	5834.6	0.0	0.0	455.3	0.0	48118.9		0.00	0%	1352805	0	0%			
	IVIBIU	-		0.0	36%	4455.8	21%	0%	3%		0.0		455.5	0.0	0.099		0.00	0%	2.93	0	0%			
		-		0%	9%	84%		0%	1%		0%		0%		0.005				2.95					
		-		0%	34%	9%		0%	3%		0%		1%		0.104									
		-	20/0	0,0	51/0	570	2070	0,0	570	12/0	0,0		1/0	0/0	0.101									
ECM7: - NA	crac eff	-	0																	2490				
EM1	ELECT	RICI	TY																	0				
	MBTU		9891.3	0.0	16340.6	2200.4	9458.1	106.5	1285.9	5812.4	0.0	0.0	455.3	0.0	45550.5	95% 13346297	0	0%	1323953	0	0%			
																			2.87					
		AL-G	AS																					
	MBTU	_		0.0	222.8	2004.4	0.0	0.0	20.6	0.0	0.0		0.0	0.0		5%	0.00	0%	19453	0	0%			
 		_		= ==								==========							0.04			_		
	MOTIL	-	0001.2		10502.4	42017	0450.4	100 -	1200 5	5012 4			455.0		47700.0		0.00	01/	1242-05		00/	_		
	MBTU	-			16563.4	4204.7	9458.1	106.5	1306.5	5812.4	0.0		455.3	0.0	47798.3 0.099		0.00	0%	1343405 2.91	0	0%	_		
		-		0% 0%	36% 9%	5% 84%	21% 0%	0% 0%	3% 1%	13% 0%	0%		1% 0%		0.099				2.91			-		
		-		0%	34%	9%		0%	3%		0%		1%		0.003									
			20/0	575	5470	570	2070	070	570	12/0	0/8	0,0	1/0	576	0.104									
ECM8: - NA	1	-																		2490				
		RICI	TY																	0			<u> </u>	
	MBTU		3646.5	0.0	3090.6	2808.6	2353.5	38.8	363.1	1867.0	0.0	0.0	0.0	56.5	14224.7	98% 4167837.1	0	0%	413449	0	0%			
																			0.90					
	NATUR	AL-G	AS																					
	MBTU	_		0.0	0.0	0.0		0.0			0.0		283.5	0.0		2%	0.00	0%	2453	0	0%			
		-		= ==				=====			======	=========							0.01					
		_			2000 6	2005 5	2252.5			1007			205 -		44500.0							_		
	MBTU	-		0.0	3090.6	2808.6	2353.5	38.8	363.1		0.0		283.5	56.5 0%			0.00	0%	415903 0.90	0	0%	_		
		-		0% 0%	7% 0%	6% 0%		0% 0%	1% 0%	4% 0%	0%		0% 12%		0.031				0.90			_		
		-		0%	6%	0% 6%		0%	0%		0%		12%		0.001							-		
			0,0	570	0/0	070	578	578	170	+70	0/8		170	576	0.051									
ECM9: - NA	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	-																		2490			1 1	
	1	RICI	ТҮ																	0				
	MBTU			0.0	3090.6	2808.6	2353.5	38.8	363.1	1867.0	0.0	0.0	0.0	56.5	14224.7	98% 4167837.1	0	0%	413449	0	0%			
									-										0.90					
		AL-G	AS																					
	MBTU	_		0.0	0.0	0.0		0.0					283.5	0.0		2%	0.00	0%	2453	0	0%			
		-		= ==				=====			======	========							0.01			_		
		-	2010 1		2000 6	2005 5	2252.5	26.5		1007 -			205 -		44500.0									
	MBTU	-		0.0	3090.6	2808.6	2353.5	38.8	363.1		0.0		283.5	56.5 0%	14508.2 0.031		0.00	0%	415903 0.90	0	0%	_		
├ ──┤		-		0%	7% 0%	6% 0%		0% 0%	1% 0%	4% 0%	0%		0% 12%	0%	0.031				0.90			_		
		-		0%	6%	6%		0%	1%		0%		12%											
		-	070	570	070	0/0	570	0/0	1/0	470	0/8	0/0	1/0	0/0	0.051									
ECM10: - N	A																			2490				
	T	RICI	TY															1		0			<u> </u>	
	MBTU		3646.5	0.0	3090.6	2808.6	2353.5	38.8	363.1	1867.0	0.0	0.0	0.0	56.5	14224.7	98% 4167837.1	0	0%	413449	0	0%			
																			0.90					
	NATUR	AL-G	AS																					
	MBTU	_		0.0	0.0	0.0		0.0	0.0		0.0		283.5	0.0		2%	0.00	0%	2453	0	0%			
		_		= ==				=====		======		=======		======					0.01			_		
		-																				_		
	MBTU	_		0.0	3090.6	2808.6	2353.5	38.8	363.1	1867.0	0.0		283.5	56.5	14508.2		0.00	0%	415903	0	0%			
		-		0%	7%	6%	5%	0%	1%		0%		0%		0.031				0.90			_		
		-		0%	0%	0% 6%		0%	0%		0%		12%	0%	0.001							_		
L	1		8%	0%	6%	6%	5%	0%	1%	4%	0%	0%	1%	0%	0.031	I				1				

A 5	W+8			W+2	W+5 Baseline I	W+1 M	T+8 2655	X+8	
Description	Total savings (\$/year)	Estimated Cost (\$)	Payback (years)	Electricity Savings (\$)	Gas savings (\$	5) Max kW	Ene	rgy Savings Cost	savings% Notes
ECM1: FanWalls plus new VFDs for Supply 57 Fans, instead of 75HP fan with single VFD on	\$8,877		0.0	8958	3 -8	1	2652	1%	1%
ECM2: - Fanwalls plus new VFDs for return ⁷⁰ instead of single fan on VFD for AHU1/2	\$2,451		0.0	2479) -2	9	2655	0%	0%
83 ECM3: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
96 ECM4: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
09 ECM5: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
22 ECM6: NA	\$0		#DIV/0!	C)	0	0	0%	0%
35 ECM7: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
48 ECM8: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
61 ECM9: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
74 ECM10: - NA	\$0		#DIV/0!	C)	0	0	0%	0%
18 Total Op1 (1+2)	\$11,792		0.0	11894	-10	1	2651	1%	1%
31 Total Op2 ()	\$0			C)	0	0	0%	0%
44 Total Op3 () - NA	\$0			C)	0	0	0%	0%
				•					
Electricity			Gas						
\$/kWh	0.099200		\$/MMBtu	8.6541	L	Area sqft		461285	

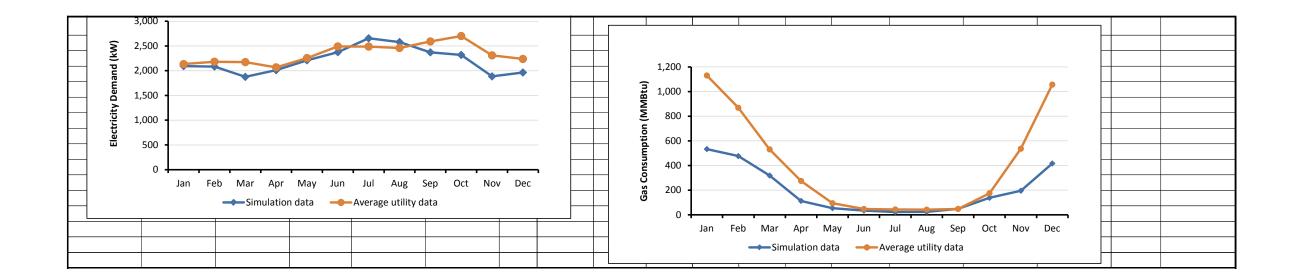
	Annual Electric Use (kWh)	Annual Electric Use (kBtu)	Annual Electric Cost (\$)
Baseline Case (based on eQuest model)	13,478,557	45,988,835	1,337,073
Proposed Design (OP1)	13,358,661	45,579,752	1,325,179
Savings	119896	409084	11894
% Improvement	1%	1%	1%

				Annual Gas Use (MMBtu)	Annual Gas Use (kBtu)	Annual Gas Cost (\$)
--	--	--	--	---------------------------	--------------------------	-------------------------


	Annual Electric Use (kWh/ft2)	Annual Electric Use (kBtu/ft2)	Annual Electric Cost (\$/ft2)
Baseline Case (based on eQuest model)	29	100	2.9
Proposed Design (OP1)	29	99	2.9
Savings	0	1	0.0
% Improvement	1%	1%	1%

l l			
Baseline Case (based on eQuest model)	2,375	2,375,000	20,554
Proposed Design (OP1)	2,387	2,386,700	20,655
Savings	-12	-11,700	-101
% Improvement	0%	0%	0%

	Total Energy Use (MMBtu)	Total Energy Use (kBtu)	Total Energy Cost (\$)
Baseline Case (based on eQuest model)	48,377	48,376,900	1,357,626
Proposed Design (OP1)	47,979	47,979,300	1,345,834
Savings	398	397,600	11792
% Improvement	1%	1%	1%


20,554	Baseline Case (based on eQuest model)	0.01	5.15	0.04
20,655	Proposed Design (OP1)	0.01	5.17	0.04
-101	Savings	0.00	-0.03	0.00
0%	% Improvement	0%	0%	0%

	Total Energy Use (MMBtu/ft2)	Total Energy Use (kBtu/ft2)	Total Energy Cost (\$/ft2)
Baseline Case (based on eQuest model)	0.10	104.87	2.94
Proposed Design (OP1)	0.10	104.01	2.92
Savings	0.00	0.86	0.03
% Improvement	1%	1%	1%

Baseline			I	1	I	1	1					1					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL				
EM1 ELEC	ITY																
KWH	1149638	1051791	1080982	1012413	1111829	1158237	1332801	1301052	1115837	1049945	1013652	1100369	13478544	4294824		4454663	0.964119
MAX KW	2093.4	2084.7	1875.3	2010.6	2210.9	2374.6	2655.1	2579.2	2371	2318.6	1885.4	1963.4	2655.1	4903919			
DAY/HR	3/9	7/9	22/9	21/16	24/16	26/14	14/16	9/14	1/14	3/16	16/15	22/9	7/14	4279803		 	
FM1 NATU	GAS																
THERM	5333.	4765.	3187.	1129.	541.	348.	225.	238.	486.	1377.	1956.	4167.	23750.				
MAX THER	9.1	11.1	10.3	7.5	4.3	2.4	1.1	0.7	3.5	7.6	7.3	9.1	11.1				
DAY/HR	21/8	12/9	4/11	16/23	2/7	5/5	2/1	26/9	17/6	29/9	12/7	25/22	2/12				
Proposed																	
•	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL				
EM1 ELEC	IITY																
кwн	1140968	1044035	1071363	1002454	1101385	1147504	1321401	1289533	1105329	1039570	1003923	1091188	13358653	4258820	36004	4337475	0.981866
MAX KW	2083.8	2073.7	1861.1	1999.6	2201.6	2375.1	2651.4	2571.5	2361.7	2309.7	1874.9	1950.2	2651.4	4859823	44096		
DAY/HR	3/9	7/9	22/9	21/16	24/16	26/14	14/16	9/14	1/14	3/16	16/15	22/9	7/14	4240010	39793		
FM1 NATU	GAS														119893		
-		4780.	3214.	1141.	544.	349.	225.	238.	488.	1391.	1978.	4186.	23867.				
MAX THER		11.1	10.3	7.6	4.3	2.5	1.1		3.6	7.6	7.3	9.1	11.1				
DAY/HR	21/8	12/9	4/11		2/7		2/1		17/6	29/9	12/7	25/22	2/12				

											Calibration	Criteria			
	Electric Consump	tion (kWh)	Electric Deman	d (kW)	Gas consum	ption (MM	Btu)	Total ene	rgy consumption	n (MMBtu)	ERR-month (%)	(Average utility	· - Simulation)//	Average Utility	y
												,		0	
	Simulation data A	verage utility data	Simulation data	Average utility data	Simulation	Average ut	lity data	Simulatio	Average utility of	data	Electricity cons	Electricity dem	Gas consumpti	ion	
an	1149638	1270393	2093	2,133	533	1131		4456	5465		-10%	-2%	-53%		
eb	1051791	1132639	2085	2,181	477	869		4065	4733		-7%	-4%	-45%		
Лar	1080982	1175303	1875	2,174	319	531		4007	4541		-8%	-14%	-40%		
pr	1012413	1101520	2011	2,068	113	275		3567	4033		-8%	-3%	-59%		
Лау	1111829	1154646	2211	2,255	54	94		3848	4034		-4%	-2%	-43%		
un	1158237	1199822	2375	2,490	35	47		3987	4141		-3%	-5%	-27%		
ul	1332801	1280225	2655	2,487	23	44		4570	4412		4%	7%	-49%		
Aug	1301052	1286140	2579	2,460	24	42		4463	4430		1%	5%	-43%		
ер	1115837	1164838	2371	2,592	49	48		3856	4022		-4%	-9%	2%		
Dct	1049945	1363945	2319	2,701	138	175		3720	4829		-23%	-14%	-21%		
Vov	1013652	1100972	1885	2,310	196	536		3654	4293		-8%	-18%	-64%		
Dec	1100369	1205925	1963	2,237	417	1056		4171	5171	_	-9%	-12%	-61%		
early total	13478546	14436368			2375	4848		48364	54104	9% ERR-yea	rly (-6.6%		-51.0%	su	um
Average	1123212	1203031	2202	2341	198	404		4030	4509			-5.9%			
Max			2655.1	2701								Coefficient of v	variation of the	root mean sq	uare error
		0.1898										Normalized me	ean bias error		
								Checking c	alibration criteri	a (monthly c	lata)*				
								• Mean ER	Rmonth +/- 15%	6 100 [*]	' (M-S) / M				
1,600),000 1							• Mean ER	Ryear +/- 10%	6 ΣERI	Rmonth / 12				
(4) 1,400 1,200 1,200 1,200 1,200 0 1,000 0 0 0 0 0 0 0 0 0 0 0 0	,000							* From FEI	MP M&V Guideli	nes v. 2.2 an	d ASHRAE Guidelin	ie 14 2002			
는 <u>동</u> 1,200				\frown				• CV(RMSE	year) +/- 15%	6 ((Σ[(N	I-S) ² / 11]) ^{0.5})/avg N	Л			
j								• NMBE +/	- 5% Σ (M-S) / (11 *avg M)					
								 Savings ι 	Incertainty < 50%	% at 68% cor	fidence interval				
1008 BI	,000 -														
000 × 600	,000														
400 400 200	,000						eQuest E	BEPS data -	used in columns	s B, E, and H					
	,000 -						EM1	ELECTR	ICITY						
							KWH		1149638 10517	791 10809	1012413	1111829	1158237	1332801	13010
	0 J an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec				ec		MAX	КW	2093 20	085 18	2011	2211	2375	2655	2
-	-		Average utility da				FM1 NA	IGAS							
							THERM		5333 47	765 31	.87 1129	541	348	225	
											1123				

CVRMSE - Electr	ical consumption		CVRMSE - Elect	rical demand	CVRMSE -	Gas consumption	CVRMSE -	CVRMSE - total energy consumption			
util-sim)	(util-sim)^2		util-sim	(util-sim)^2	util-sim	(util-sim)^2	util-sim (util-sim)^2			
120755	14581713199		40	1607	597		1009	1018536			
80848	6536359418		96	9258	392	153730	668	446140			
94321	8896392497		298	89043	212	45032	534	285187			
89107	7940125048		57	3297	162	26277	466	217283			
42817	1833324926		44	1950	40	1606	186	34657			
41585	1729300269		116	13426	13	159	154	23867			
-52576	2764256806		-168	28117	21	449	-158	25025			
-14912	222367744		-119	14228	18	328	-33	1074			
49001	2401098001		221	48678	-1	1	166	27684			
314000	98596116151		383	146322	37	1393	1109	1229206			
87320	7624813605		425	180472	341	116034	639	407777			
105556	11142060104		274	74977	640	409158	1000	999623			
957822	14933447979		1667	55579	2472	100984	5740	428733			
	122202			236		318		655			
vrmse	10.16		cvrmse	10.07	cvrmse	78.67	cvrmse	14.52			
nmbe	7.24		nmbe	6.47	nmbe	55.64	nmbe	11.57			
			40%	% total savings	50 get cvrmse	e for the total energ	gy use				
			Savings uncerta	10							
1115837	1049945	1013652	1100369	13478544							
2371	2319	1013032	1100369	2655							
2371	2319	1003	1905	2035							
486	1377	1956	4167	23750							

atic set fan urve pefficient use	· · · · ·					1					1	1		1		1	· · · ·			1	1	1	1	T T		
add: prime add: bit add: bit add: bit bit bit< bit bit< bit<	Fa	an curves																								
add: prime add: bit add: bit add: bit bit bit< bit bit< bit<																										
Ampline Link Just	Equest no																									
Impute biol Display	static																			70					_	
Impute biol Display	reset fan																									
Handless Basel	curve											No. of								60					_	
Num Control Co		0 0704290	0 29522	0.46086 1.0003	,				anW/all	Existing	Equest		ofmExistin	ofm EW						50						
Aligner Aligner Bisser Aligner Aligner <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										•		-								50						
$ \hline b v v v v v v v v v$												-														
$ \hline b v v v v v v v v v$	Existing far	0	0.8126354	-1.64091 1.871334	•										-				3	40					_	
in Prior Normal State S								0.3				-	16500	17400												4
0.50 34800 12038 15 16.4 20 35.2 26.8 27.8 28.00 58.00			fan wall	equest existing fa	n			0.4	3.9	10.2	12	4629	22000	23200	17897	47208	55790		ű	30					- Existin	3
9.99 120288 23 9404 12028 23 9404 12028 23 9404 12028 120	PLR CI	FM		kW		6.93	51470	0.5	7.5	12.9	15	2101	27500	29000	15706	27038	32212									.
0.8 0.2340 24.035 23 23.00 47.7 0.2 20.5 22.0 20.0	0.50	34800	12.03298	15 16.412	2	3.2		0.6	12.9	16.8	3 20	588	33000	34800	7580	9905	11636			20					Equest	
0.71 0.8880 0.7546 0.2 0.88 0.72 0.88 0.72 0.88 0.73 0.88 0.7546 0.2 0.88 0.7546 0.2 0.88 0.7546 0.2 0.88 0.7546 0.2 0.88 0.7546 0.2 0.88 0.7546 0.2 0.8 0.756 0.72 0.8 0.756 0.756 0.72 0.8 0.756																										
0.m 1110 47.5 0.0 <th0.0< th=""> 0.0</th0.0<>								-												10						
D.B. Sold Sold <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-											_			-	-	-			10						
Image: Normal with the second of th						-									-	-	-									
Image: Problem in the state of the	0.83	58000	55.70382	36 /6.092	-	8.8		1	59.7	58.4	56		55000	58000	-	-	-			0					_	
Normal Weiler Verture Sector Sector <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>4390</td><td></td><td></td><td></td><td></td><td>0.1</td><td>0.2 0.3</td><td></td><td></td><td>0.8 0.9 1</td><td></td><td></td></th<>															4390					0.1	0.2 0.3			0.8 0.9 1		
0.2 0.6 0.3 0.2												-					6921					PLR C	CFM			
0.30 0.77 0.30 0.97 0.975 0.9					SUMMARY	OUTPUT									SUMMARY	OUTPUT										
0.46 0.87 0.98 0.98 0.98 0.	0.22	0.6	0.36	0.22				T																		
0.46 0.87 0.98 0.98 0.98 0.	0.39	0.73	0.53	0.39	Regressio	on Statistics									Regressio	n Statistics										
0.88 0.89 0.88 N No 0.89 0.88 No 0.89 0.88 0.89 0.												1														
100 100 Adjustef B 000999973 Same P Adjustef B 00099973 Same P Adjustef B 00099973 Same P Adjustef B 00099973 Same P Adjustef B 0009973 Same P Adjustef B 0009973 Same P Adjustef B 0009973 Same P Same P Same												1	1								1			1 1		
Image: bit in the stand of integral integra integra integral integral integral integral integral integral																										
Image: Normal base Image:	1.00	1	1.00	1.00							+	+	-	-						+	+		+	+ +		
outron definition OND	┝───┼─												-								-			+		_
0.0 0.01					Ubservatio	5									Upservatio	y 10					-			+ $+$		_
0.16 0.02 0.08 0.02 m df SS MS F m/l/conc <f< th=""> C M S MS F m/l/conc<f< th=""> C M S</f<></f<>					+		ļ																	↓		
0.13 0.05 0.66 Regrad 1 1.2785-0 1.2382.0 1.2976-0 1.2986-0 1.2986-0 1.2986-0 1.0000 1.0000 1.0000					ANOVA										ANOVA											
0.21 0.24 0.14 0.24 0.14 0.24 0.14 0.24 0.14 2.798-04 2.878-04 0.14 0.14 0.01522 0.023 0 0.14	0.14	0.29	0.08	0.02		df	SS	MS	F	ignificance	F					df	SS	MS	F	ignificance	F					
0.21 0.24 0.14 0.24 0.14 0.24 0.14 0.24 0.14 2.798-04 2.878-04 0.14 0.14 0.01522 0.023 0 0.14	0.18	0.39	0.15	0.06	Regression	3	0.4175459	0.139182	4974669	0.00033					Regression	1 <u>3</u>	5.531547	1.843849	781.2091	3.64E-08						
0.38 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.36 0.34 0.36 0.34 0.364 0.316 0.364 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.36 0.3727 0.36 0.3727 0.36 0.3727 0.36 0.3727 0.36 0.3727 0.36 0.3727 0.36 0.3727 0.3	0.27	0.49	0.24	0.11	Residual	1	2.798E-08	2.8E-08							Residual	7	0.016522	0.00236								
0.38 0.48 0.46 0.31 0 13 13 13 13 13 143 143 030302 133 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 1333 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td>1</td><td>İ</td><td></td><td></td><td></td><td></td></t<>											1	1	1					-		1	1	İ				
0.60 0.82 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.072366 0.027324 0.38324 0.80875 0.28161 0.29609 0.28161 0.29609 0.2774 0.89 8/N /N																								1 1		-
0.95 0.97 0.94 0.91 Intercer 0.0073666 0.027326 0.31340 0.83895 0.28161 0.29679 V.1 Intercer 0 INA						Coofficients	tandard Erro	t Stat	P value	Lower OF	Unner 05%	ower OF O	Inner 05 0	/		Coofficients	andard Erre	t Stat	P value	Lower 05%	Linner 05%	ower 05 00	Innar OF O	9/		
1.13 1.13 1.23 Variable 0.0277124 0.0881397 0.0881397 0.0340028 0.114763 1.09208 Variable 0.81263 0.22767 3.56286 0.00160 0.277271 1.351 0.274271 1.351 0.3087 0.3081 0.3151 0.3511 0.3511 0.3511 0.3511					Interest	33								0	Interest									//		
115 1.13 1.27 1.43 X Variable 0.0364028 0.11927 0.39949 0.39949 0.39949 0.39949 0.39949 0.39949 0.39949 0.39949 0.39949 0.19236 0.39949 0.19236 0.39949 0.19236 0.30949 0.19236 0.39949 0.19236 0.30949 0.19236 0.30949 0.19236 0.30949 0.19236 0.19236 0.30949 0.19236 0.30949 0.19236 0.19236 0.19236 0.19236 0.19236 0.19236 0.19236 0.19236 0.19236 0.19267 0.19267 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td></td><td>,</td><td></td><td></td><td>,</td><td><u> </u></td><td></td><td></td></th<>																	,	,		,			,	<u> </u>		
Image: state Image: state <th< td=""><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-	-	-																							
Image: state stat	1.56	1.13	1.27	1.43																						
1 1					X Variable	0.98578119	0.0466236	21.14338	0.030087	0.393372	1.578191	0.393372	1.578191		X Variable	1.871334	0.385114	4.859167	0.001837	0.960684	2.781984	0.960684	2.781984	1		
1 1																										
1000 1000 1 <td></td> <td>6.93</td> <td>51470</td> <td></td>		6.93	51470																							
1000 1000 1 <td></td> <td>0.07</td> <td>5000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BHP</td> <td>НР</td> <td>eff</td> <td>cfm</td> <td>kW/cfm</td> <td></td>		0.07	5000									BHP	НР	eff	cfm	kW/cfm										
1 0.59 1500 <td>2.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VlaguZ</td> <td>existing</td> <td></td>	2.0									VlaguZ	existing															
9 1.05 2000 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>74 67</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1 1</td> <td></td> <td></td>											-	74 67								1		1		1 1		
3 1.63 2.500 0.000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000000000 0.000000000000000 0.00000000000000000000000000000000000	-				+															1			1	+		
16 2.35 3000 0<	5				+					Poturn		/4.0/								+			+	+		
Image: state										return	0	74.67								1	1	1		+		
Image: style styl	16	2.35	30000								ranwall	74.67	27	0.936	58000	0.000371								+		_
Image: style styl							ļ														ļ			↓		_
Image: state in the state																										
Image: style styl								5500	3.7																	
Image: state of the state								5800		0.3	5															
Image: state of the state									6.3		1	1	1		İ	1				1	1	1	1			
Image: state of the state o									2.0		,	1				1				1						+
					1				8 2		1	1	1			1				1	1	-	1	1 1		
					-				0.2		,		+	70										+		
					+				10.2											_				+		
				I	1	1	1	22000	10.2		1	1	1	60						•			1			

	23200		3.9		50				
	 27500	12.9			_	•		I	
	29000 33000	16.8	7.5		40				
	34800		2.9		30	•	Exist	+	
	38500	22.8	-		20	•	-FW		
	40600		0.5			• •			
	44000	31.2			10	•••		Ļ]	
	46400 49500	42.9	0.6		0		1		
	52200		3.5		-	5800 111000 11500 11500 117700 222000 333000 333000 333500 44600 44600 44600 44600 552000 552000 55000		┼───┤	+
	55000	58.4				<u> </u>		+ +	1
	58000	i.	i9.7						

	Fan curves															
	Tan curves															
Fan Wall	0 4758702	-1.869066	2 202106				FanWall									1
	0.4758705	-1.803000	2.393190			0.1					Fa	anWall				
						0.1										
		<u> </u>				0.2			20							
	0514	fan wall			50000	0.3			18							
	CFM	kW		1.5	58000	0.4			16							
0.50				0.54		0.5			14							
0.66				0.96		0.6			12							
0.83	58000	18.85888		1.5		0.7			10						FanWall	
						0.8							·			
FanWallkW						0.9				6						
0.22						1	18.7		4							
0.51			0.51							2						
1.00	1	1.00	1.00								1 1 1	1 1				
					SUMMARY OL	JTPUT				0.1 0.2	2 0.3 0.4 0.5	0.6 0.7	0.8 0.9	1		
																Í
					Regression	Statistics										
					Multiple R	1										
	262800				R Square	1										
	70080				Adjusted R Sq	65535										
	192720	19117.824			Standard Erro	0										
					Observations	3										
					ANOVA							1		1		
						df	SS	MS	F	ignificance I						
					Regression		0.313452		-	#NUM!						
					Residual	0										
					Total		0.313452									
						۷.	0.01040402					+		+		
						Coefficients	andard Err	t Stat	Pyalua	Lower QE%	Upper 95% Lower 95.0%	/ Inner 05 00	<u> </u>			
						0.4758703			#NUM!	0.47587						
					Intercept											
					X Variable 1	-1.8690665			#NUM!	-1.86907						
					X Variable 2	2.3931962	0	65535	#NUM!	2.393196	2.393196 2.393196	2.393196				

Actual:

ALL Selected Account	<u>Total</u> Enerqy (kWh)	Weekday Enerqy (kWh)	Weekend Enerqy (kWh)	<u>Load</u> Factor	Power Factor	Reactive Demand	<u>Total Energy (kWh)</u>	<u>Max.*</u> Demand (kW)
6290220401 / 5050 KINGSLEY #B	1,224,923	880,066	344,856	0.6708	99.58%	227.2	1,224,923	628.8
6690373001 / 5050 KINGSLEY DR	717,659	530,132	187,526	0.5868	97.03%	112.0	717,659	421.1
7290220401 / 5050 KINGSLEY SERV C	1,487,506	1,080,184	407,323	0.7463	94.40%	374.4	1,487,506	686.4
9290220401 / 5050 KINGSLEY SERV D	1,024,576	751,926	272,650	0.4608	88.71%	405.6	1,024,576	765.6
Sum	4,454,663	3,242,308	1,212,355	N.A.	N.A.	N.A.	4,454,663	N.A.

* = Maximum

Normalize:

None

No normalization is selected.

-

Weather Adjustment:

None -

Selected Date Range Sunday, January 01, 2012 Through Monday, April 30, 2012

Actual:

ALL Selected Account	<u>Total</u> Enerqy (kWh)	<u>Weekday</u> Enerqy (kWh)	Weekend Energy (kWh)	<u>Load</u> <u>Factor</u>	Power Factor	Reactive Demand	<u>Total Energy (kWh)</u>	<u>Max.*</u> Demand (kW)
6290220401 / 5050 KINGSLEY #B	1,283,552	929,385	354,167	0.7824	99.34%	227.2	1,283,552	569.6
6690373001 / 5050 KINGSLEY DR	573,237	420,104	153,133	0.5749	96.23%	101.1	573,237	346.2
7290220401 / 5050 KINGSLEY SERV C	1,524,719	1,116,764	407,955	0.7822	88.16%	362.4	1,524,719	676.8
9290220401 / 5050 KINGSLEY SERV D	955,967	715,064	240,904	0.4520	94.01%	304.8	955,967	734.4
Sum	4,337,475	3,181,316	1,156,159	N.A.	N.A.	N.A.	4,337,475	N.A.

* = Maximum

Normalize:

None 👻

No normalization is selected.

Weather Adjustment:

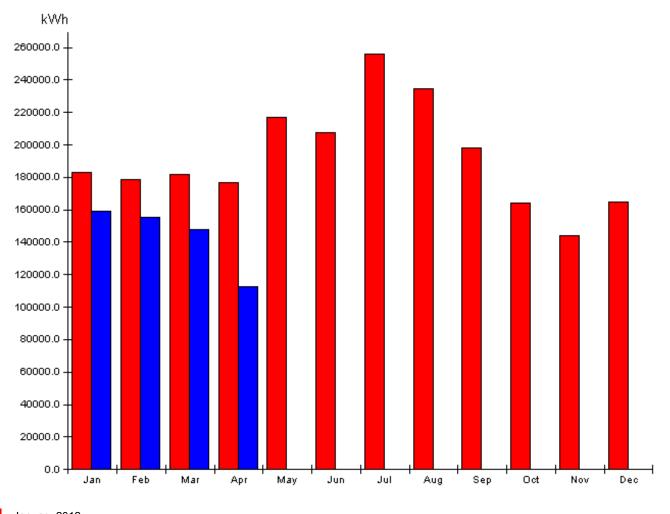
None -



Selected Date Range Tuesday, January 01, 2013 Through Tuesday, April 30, 2013

Monthly Totals

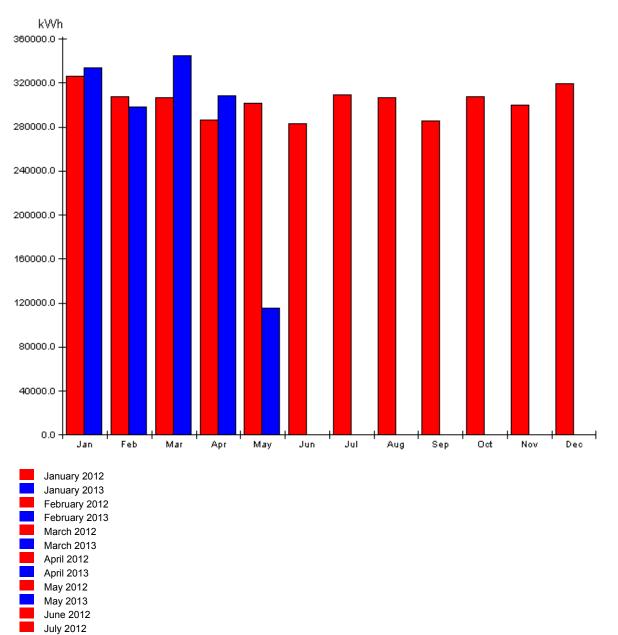
Account: 9290220401 5050 KINGSLEY SERV D


January 2013 February 2012 February 2013 March 2012 March 2013 April 2012 April 2013 May 2012 May 2013 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012

Available dates Saturday, January 01, 2005 Through Sunday, May 12, 2013

Powered By: © Schneider Electric

Account: 6690373001 5050 KINGSLEY DR

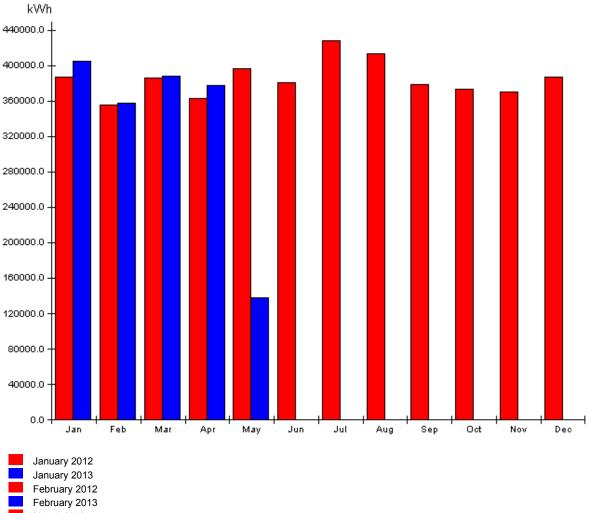

January 2012 January 2013 February 2012 February 2013 March 2012 March 2013 April 2012 April 2013 May 2012 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012 December 2012

Available dates Saturday, October 09, 2010 Through Sunday, April 21, 2013

Monthly Totals

Account: 6290220401 5050 KINGSLEY #B

Available dates Saturday, January 01, 2005 Through Sunday, May 12, 2013


Powered By: © Schneider Electric

August 2012 September 2012 October 2012 November 2012 December 2012

Monthly Totals

Account: 7290220401 5050 KINGSLEY SERV C

February 2012 February 2013 March 2012 March 2013 April 2013 May 2013 June 2012 July 2012 August 2012 September 2012 October 2012 November 2012

Available dates Saturday, January 01, 2005 Through Saturday, May 11, 2013

Powered By: © Schneider Electric

	<u>AHU 1</u>	<u>AHU 2</u>	<u>Total</u>					
Existing Capacity	87.00%	72.00%						
New Capacity	54.70%	48.30%						
Baseline Amperage	41	27	68					
New Amperage	19	15.3	34.3					
Amperage Reduction								
(per readings 1.14.13								
and JM Previous AHU								
readings) [amps]	22	11.7	33.7					
Voltage	460	460						
Phase	3	3						
PF (Fanwall Fans)	0.8	0.8						
Kw existing	26.1	17.2	43.3					
Kw new	12.1	9.8	21.9					
Runtime [hrs]	8760	8760						
kWh existing	228,927	150,757	379,683					
kWh new	106,088	85,429	191,517					
kwH Savings [kwH]	122,839	65,328	188,167					
kwH Savings [\$]	12,222	6,500	18,723					
Amperage draws were tak measurements were taken be witnessed during the so reduction will be greater of savings demonstrated her to kWh using the electrica	n during the fall ummer or winte on a percentage e are considered	(low heating/c r months at tin basis at times d to be conserv	ooling load). nes of high he of higher airf vative. These	The AHU's eating or co ow when c amperage	were at low poling load. compared to measureme	er airflow the As the ener low, the ere ents were c	nan would gy nergy onverted	

<u>Note:</u> Return fans were also converted to 9x3HP fan wall components (27HP) and equipped with new VFDs; however, due to lack of measurements being taken for existing RFs as compared to new, these are not being submitted for savings.