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ABSTRACT 
While utility-scale solar energy is important for reducing dependence on fossil fuels, solar arrays 
use significant amounts of land (about 5 acres per MW of capacity), and may create local land 
use disamenities. This paper seeks to quantify the externalities from nearby solar arrays using the 
hedonic method. We study the states of Massachusetts and Rhode Island, which have high 
population densities and ambitious renewable energy goals. We observe over 400,000 
transactions within three miles of a solar site. Using a difference-in-differences, repeat sales 
identification strategy, results suggest that houses within one mile depreciate 1.7% following 
construction of a solar array, which translates into an annual willingness to pay of $279. 
Additional results indicate that the negative externalities are primarily driven by solar 
developments on farm and forest lands in non-rural areas. For these states, our findings indicate 
that the global benefits of solar energy in terms of abated carbon emissions are outweighed by 
the local disamenities.  
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1  INTRODUCTION 

Solar energy in the United States has grown at an average rate of 49% per year since 

2009, making the US the second largest producer of solar energy in the world (EIA International 

Energy Outlook 2019). In 2019, solar energy accounted for 40% of all new capacity additions in 

the country, the largest ever in its history, and exceeding all other energy sources (Perea et al., 

2020). By June 2020, the cumulative installed capacity of solar in the United States reached 81.4 

gigawatts (GW), which is enough to power 15.7 million homes (Perea et al., 2020). Solar is 

predicted to overtake wind to become the largest source of renewable energy in the US by 2050, 

accounting for 46% of all energy produced from renewable sources (EIA Annual Energy 

Outlook 2018).  

 While there is a broad support for renewable energy in the United States (Bates & 

Firestone, 2015; Farhar, 1994; Firestone et al., 2018; Hoen et al., 2019; Krohn & Damborg, 

1999), and for solar energy in particular (Carlisle et al., 2014, 2015; Farhar, 1994; Greenberg, 

2009; Jacobe, 2013; Pew Research Center, 2019), the development of large-scale solar 

installations has not been obstacle free. One major hurdle to overcome before construction 

begins is the siting process. Solar installations require over ten times more land area than non-

renewable sources to generate the same amount of energy, and the requirement of large tracts of 

land for their construction has become the largest cause of land use change in the United States 

(Trainor et al. 2016; Ong et al. 2013). Recently, the siting of large solar projects has become 

contentious in some parts of the country due to concerns about visual disamenities, impacts on 

ecosystems, siting of transmission lines, loss of a town’s rural character, water pollution, fire 

risk, water use, and reduction in property values (Farhar et al., 2010; Gross, 2020; Lovich & 

Ennen, 2011). The debate is especially heated when solar development is proposed on existing 

farm and forest lands, which is common because these are the cheapest locations for 

development (Kuffner, 2018; Naylor, 2019). 

 The purpose of this paper is to quantify the externalities associated with proximity to 

utility-scale solar installations using hedonic valuation. Theory indicates that property values will 

reflect people’s willingness to pay to avoid the cumulative disamenities of solar development 

(Bishop et al., 2019; Rosen, 1974). Our study focuses on the states of Massachusetts (MA) and 

Rhode Island (RI), which are ideal for two reasons. First, both states have recently experienced a 

sudden boom in the development of large-scale solar installations. This trend has been driven by 
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the Renewable Portfolio Standards (RPS), regulations that require increased energy production 

from renewable energy sources, which have been adopted by both states. MA’s RPS calls for 

25% of electricity generated by renewable sources by 2030 and RI’s RPS calls for 38.5% by 

2035. Second, both states have high population density, ranked 2nd and 3rd among U.S. states. 

This level of development means that most solar sites are proximate to residential areas, which 

yields many observed transactions for precise estimates.  

 We analyze the impact of utility-scale solar installations sized 1 MW and above on 

nearby property prices in MA and RI.1 We use a difference-in-differences (DID) identification 

strategy, which compares changes in housing prices after construction for nearby properties with 

those further away. We empirically estimate the spatial extent of treatment to be one mile from 

the solar installation and choose a cutoff for control properties of three miles. Our primary 

sample consists of 208 solar installations, 71,337 housing transactions occurring within one mile 

(treated group), and 347,921 transactions between one to three miles (control croup).  

 Across a variety of specifications, our results suggest that solar installations negatively 

affect nearby property values. Our preferred specification, which includes property fixed effects 

(i.e., repeat sales), month-year fixed effects, and county-year fixed effects, indicates that property 

values in the treatment group decline 1.7% (or $5,751) relative to the control group, and this 

estimate is statistically different from zero at the 1% level. These findings suggest that solar 

arrays create local, negative externalities, and the average household annual willingness to pay to 

avoid these externalities is $279. This helps explain local concerns and opposition and gives 

pause to current practices of not including proximate residents in siting decisions or 

compensating them after siting has occurred. While we cannot estimate producer and consumer 

surplus, we can compare external benefits and costs. Our estimates imply that the global positive 

external benefits of carbon mitigation are outweighed by local externalities costs at a ratio of 

0.46. However, renewable energy in New England usually displaces natural gas use by power 

plants. Solar in more rural places (thus affecting fewer households) and solar that displaces coal 

would have a more favorable benefit-cost ratio.  

 We also examine heterogeneity in treatment effects in several ways. First, with respect to 

proximity, we find substantially larger negative impacts on homes located within 0.1 mile of 

                                                 
1 Following the U.S. Energy Information Administration (EIA), we define large-scale solar installations as those 
with an installed capacity of 1 MW or larger. 
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solar installations (-7.0%). Second, we estimate a series of models exploring heterogeneity based 

on prior land use (farm or forest vs. landfills or industrial areas) and rural character of a 

municipality (defined based on population density). The results suggest that the overall negative 

effects of solar arrays on nearby property values are driven by farm and forest sites in non-rural 

areas (non-rural is most akin to suburban, as there are very few solar sites in urban areas). Solar 

developments on landfills and industrial areas or in rural areas have smaller and statistically 

insignificant effects on prices. We posit that solar arrays on farm and forest lands cause greater 

externalities, given the dual loss of open space amenities and gain of industrial disamenities, and 

that this effect hinges on the scarcity of open space typical in non-rural areas. 

 

2  CONCEPTUAL FRAMEWORK 

Environmental goods and services are often ‘non-market goods’, meaning they are not 

traded in any market. However, that does not mean that they have no value. Using economic 

theory, we can estimate environmental values by examining people’s decisions and how they 

make choices and tradeoffs regarding such goods.  

One way of valuing environmental goods and services is through the revealed preference 

method where the preferences of individuals are inferred through their actual buying and selling 

decisions in a related market. For example, air quality is not transacted in any market, but people 

‘reveal’ their value for it when they buy homes away from urban and industrial areas with high 

traffic volumes and poor air quality. In this example, air quality is the non-market good, the 

‘actual buying and selling decision’ is the choice of purchasing a house with specific 

characteristics, and the ‘related market’ is the housing market.  

A common application of the revealed preference method is the hedonic housing price 

technique. First theorized by Rosen (1974), the hedonic price model (HPM) measures the 

implicit price of each attribute of a bundled good. Applied to the housing market, the idea is that 

the price of a property can be broken down into the price of its various attributes. These 

attributes can be structural (e.g. lot size, living area, number of bedrooms and bathrooms, 

presence of air conditioning or pool, etc.), neighborhood (e.g. school quality, proximity to 

shopping, etc.), and environmental (e.g. air and groundwater quality, tree cover, proximity to 

brownfield, etc.). More formally, let us consider a house 𝑖𝑖, and let 𝑃𝑃𝑖𝑖 denote its price, 𝑆𝑆𝑖𝑖 the set of 

structural characteristics, 𝑁𝑁𝑖𝑖 the neighborhood characteristics, and 𝐸𝐸𝑖𝑖 the environmental 
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characteristics of that house. Then the hedonic price function of the house can be represented 

mathematically as a function of its characteristics: 

𝑃𝑃𝑖𝑖 = 𝑓𝑓(𝑆𝑆𝑖𝑖,𝑁𝑁𝑖𝑖 ,𝐸𝐸𝑖𝑖)                                                                                                                           (1) 

When purchasing a house, the consumers make tradeoffs between their desired quantities of each 

of these attributes and price. Further, in equilibrium, prices adjust to reflect willingness to pay for 

the bundled attributes. By examining transacted properties with sales price and attributes, the 

implicit value of each attribute can be estimated. In the context of solar development, the value 

that people place on solar arrays can be estimated by examining transactions in close proximity 

to solar arrays compared to those further away.  

The HPM is a well-established and frequently used tool for measuring nonmarket values. 

It has been used extensively in the literature for estimating the willingness to pay for 

environmental amenities like air quality (Bajari et al., 2012; Bayer et al., 2009; Bento et al., 

2014; Chay and Greenstone, 2005; Grainger, 2012; Lang, 2015; Ridker and Henning, 1967) and 

open space (Anderson and West, 2006; Black, 2018; Geoghegan et al., 1997; Irwin, 2002; Lang, 

2018), and also environmental disamenities like brownfields (Haninger et al., 2017; Lang and 

Cavanagh, 2018; L. Ma, 2019) and electrical transmission lines (Hamilton and Schwann, 1995). 

Several hedonic studies also estimate the public’s valuation of non-renewable energy sources and 

infrastructure, particularly coal plants (Davis, 2011), nuclear energy (Gawande and Jenkins-

Smith, 2001; Tanaka and Zabel, 2018), petroleum storage (Zabel and Guignet, 2012), and 

hydraulic fracturing (Boslett et al., 2016, 2019; Gopalakrishnan and Klaiber, 2014; 

Muehlenbachs et al., 2015).  

The HPM produces intuitive and policy relevant results. For example, Haninger et al. 

(2017) analyze federal brownfield remediation and find that properties in close proximity to 

EPA-funded remediated brownfields appreciate 5-11% following cleanup, and that in aggregate 

this valuation exceeds the costs of remediation and hence the federal program passes a benefit-

cost test. Lang (2018) examines municipal land conservation spending in the United States, and 

estimates that properties on average appreciate 0.68–1.12% for every $1000 per household of 

open space spending authorized. The positive appreciation implies that the valuation of open 

space amenities exceeds the costs of additional taxes, and further that land conservation is 

underprovided. Muehlenbachs et al. 2015 analyze hydraulic fracturing (“fracking”) in 

Pennsylvania and find that properties within 1km of a well pad decline in value 16.5%, but only 
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when the properties use well water, public water supply houses are unaffected. These results 

suggest that perception of risk is focused on contaminated drinking water.  

The HPM has become increasingly popular for the valuation of renewable energy in 

recent years, with the most frequent applications focusing on wind energy. Within the United 

States, studies that use data with large numbers of observations close to turbines find no 

significant impact on property prices. Hedonic studies that find no negative externalities from 

onshore wind energy development include Hoen et al. (2011) for 24 wind facilities across the 

United States; Lang et al. (2014) for 10 wind turbine sites in Rhode Island; Hoen et al. (2015) for 

67 wind facilities (with over 45,000 turbines) installed all over the United States through 2011, 

and Hoen and Atkinson-Palombo (2016) for 41 turbines in densely populated areas of 

Massachusetts. In contrast, studies in European countries find that wind turbines have a 

significantly negative impact on nearby properties, though the magnitude of the effect differs by 

region (Dröes & Koster, 2016; Gibbons, 2015; Sunak & Madlener, 2016). Vyn (2018) finds the 

Canadian experience to be heterogeneous and dependent on community acceptance. More 

recently, hedonic methods have focused on estimating externalities from offshore wind turbines. 

While this literature is still in its infancy, early studies indicate no negative impacts to property 

values in the vicinity of offshore wind turbines (Jensen et al., 2018) and positive impacts to 

tourism (Carr-Harris & Lang, 2019). 

Hedonic valuation has also been applied to residential rooftop solar. General consensus is 

that houses installed with rooftop photovoltaic (PV) panels sell for a premium, though there is 

regional variation in the size of the effect: 3.5% in California (Dastrup et al., 2012; Hoen et al., 

2012), 5.4% in Hawaii (Wee, 2016), 17% in Arizona (Qiu et al. 2017), and 3.2% in Western 

Australia (Ma et al. 2016). However, this literature is only tangentially related as it is about 

quantifying internalities (valuation of personal financial benefits), not externalities, and has 

nothing to do with land use.  

In sum, there exists little information on the externalities associated with large-scale solar 

installations within the United States. It is therefore necessary to understand the value people 

place on solar structures in order to help state and municipal policy makers implement policies 

and decisions that reflect public preferences.  
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3  DATA  

To implement the hedonic analysis, we build a composite dataset that integrates: 1) the 

data on the location and attributes of all solar developments in MA and RI, and 2) the data on 

attributes and locations of residential properties in MA and RI. 

 

3.1  Solar data  

The dataset on solar installations is obtained from the Energy Information 

Administration’s (EIA’s) report EIA-860M, or the Monthly Update to the Annual Electric 

Generator Report. The EIA-860M contains data on the total capacity of electric generation 

facilities in the United States that have a capacity of 1 MW and above, their point location 

(latitude and longitude), and the month and year that generation begins. Figure 1 represents a 

map of 284 solar installations constructed prior to August 2019, which is when we set the cutoff 

for being in our sample. The installations are well dispersed across all regions in both states, 

which increases confidence that estimates will not be affected by unobserved regional 

differences. We exclude 76 solar installations (27% of all installations) that are built within 1 

mile of each other, since property value impacts may be hard to measure for observations in the 

proximity of multiple installations.2 This is similar to a sample cut made by Haninger et al. 

(2017). 

Figure 2 graphs new and cumulative solar capacity by year. The first installation came 

online in December 2010. New capacity displays a continuous upward trend through 2014. There 

is a sharp fall in 2015, after which the trend rises again and peaks in 2017, before falling again in 

2018. As of August 2019, the cumulative solar capacity in RI and MA is 817 MW. Capacity 

factors for this region are about 16.5% (EIA 2019), which means these solar installations are 

collectively producing 1180 GWh of electricity per year, which is enough to power 157,681 

homes. 

One limitation of our data is that we do not have shapefiles representing the exact 

footprint of the solar installations, thus we must approximate that using Geographic Information 

Systems (GIS) software. Solar installations require approximately 5 acres of land per MW of 

capacity (Denholm & Margolis, 2008; Ong et al., 2013). We assume that the point location is the 

                                                 
2 Figure A1 in the online appendix represents a map of the resultant 208 solar installations. 
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centroid of the installation and then create a circle around it with an area equal to 5 times the 

capacity (in MW) of each array.3  

We hypothesize that prior land use may affect property value impacts. Specifically, 

houses in proximity to farms and forests that are developed into solar may depreciate more than 

houses in proximity to a brownfield or capped landfill that is developed into solar.4 Since farms, 

forests, and other open space are amenities and boost home values (Irwin, 2002; Lang, 2018), 

conversion of these types of lands may lead to larger price decreases because it is the 

combination of a loss of amenities and the gain of disamenities. To infer prior land use, we 

overlay the estimated circular footprints on 2005 land use data obtained from Massachusetts 

Bureau of Geographic Information and 2011 land use data obtained from Rhode Island 

Geographic Information System for the respective states. We then assign each installation a prior 

land use: ‘greenfield’ if it was formerly either a farm or forest land, and ‘non-greenfield’ if it was 

either a commercial site or a landfill.5 63% of installations and 70% of capacity is classified as 

greenfield (see Figure A2 in the online appendix). 

 

3.2  Property data 

We use ZTRAX housing transaction data from Zillow (http://www.zillow.com/data), 

which include information on property location (latitude and longitude), sales price, date of 

transaction, and many property characteristics (lot size, square feet of living area, number of 

bedrooms, number of bathrooms, year built, number of fireplaces, central air-conditioning, and 

                                                 
3 We manually crosscheck the EIA data with Google Maps, and correct the latitude and longitude when they do not 
correspond to the centroid of the array. We recognize that this approach could lead some properties to be 
misclassified as treatment or control, inducing a small amount of measurement error in treatment status. As a result, 
our DID estimates may be slightly attenuated.  
4 Solar developers prefer farm and forest lands because they have substantially lower construction costs compared to 
alternative sites like brownfields, landfills, superfunds and industrial lands. 
5 Several solar installations cover an area with multiple land uses. We obtain exactly one land use type per solar site 
in five additional steps. First, we classify the land use as ‘landfill’ if the installations have the term ‘landfill’ in their 
name, or if they are listed in the EPA’s dataset of contaminated land. Second, we use a stratifying logic to group all 
land-use types under seven major categories: commercial, farm, forest, landfill, recreational, residential, and 
wetland. Third, we place ‘transportation’, ‘urban public/institutional’, ‘industrial’, ‘powerline/utility’, and 
‘junkyard’ under commercial; ‘orchard’, ‘cropland’, ‘pasture’, ‘nursery’, and ‘cranberry bog’ under farm; 
‘spectator recreation’, and ‘participation recreation’ under recreation, ‘multi-family residential’, ‘low density 
residential’, ‘medium density residential’, ‘very low density residential’, and ‘high density residential’ under 
residential; and ‘forested wetland’, ‘water’, and ‘non-forested wetland’ under wetland. Fourth, we rank all land use 
categories under each installation by area, such that the land use with the greatest area gets the highest rank. We 
drop all land use categories but the ones with the highest rank to obtain exactly one land use per installation in the 
following four major categories: commercial, farm, forest, and landfill.  
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swimming pool). The data include 2,095,835 property transactions from January 2005 to June 

2019 in the states of RI and MA. Houses with missing observations for sales price, bedrooms, 

full bathrooms, and half bathrooms are dropped. We also drop groups of single-family residential 

properties with the same latitudes and longitudes, but different addresses. Sales prices are 

adjusted to 2019 levels using the Northeast regional housing Consumer Price Index from Bureau 

of Labor Statistics. After dropping transactions with prices of $100 or less, since these are clearly 

not arms-length transactions, we drop transactions in the bottom and top 5% of the sales price 

distribution to get rid of outliers. Further, we drop observations that have more than four stories, 

six bedrooms, five full bathrooms, or three half bathrooms. Houses that underwent major 

reconstruction are dropped since they may have different attributes in previous transactions. We 

exclude homes that sell before they were built, as there is evidence these are lot sales without 

improved property. We also drop single-family residential properties with lot sizes larger than 10 

acres, since large plots could be potential sites for solar development and price impacts of nearby 

solar could be completely different. Condominiums are assigned a lot size value of zero acres 

and are identified with an indicator variable. The subjective condition of properties is defined by 

a dummy variable equal to 1 indicating above average condition. 

Similar to prior land use, we hypothesize that existing development in areas surrounding 

solar arrays may impact property prices. Many rural areas pride themselves on their rural 

character and residents seek out that type of bucolic setting. Hence, construction of solar 

installations could be seen as an industrialization of the landscape and may cause larger negative 

impacts on property values. We proxy for rural character with municipality-level population 

density, which comes from the 2010 Census. We define an indicator variable 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which 

equals one if the town has a population density of 850 people per square mile or fewer. We chose 

this cutoff because 850 is the average population density of MA, which forms the bulk of the 

observations in our dataset, and, at this cutoff, almost a third of the properties and 60% of the 

solar installations are classified as rural, which we believe are reasonable proportions. However, 

we examine different cutoffs in the appendix. It is important to note non-rural properties should 

not be thought of as urban, but more suburban. Very few utility-scale solar developments are 

built in urban areas as there is just not space.  

To build our main dataset, we spatially merge the solar data with the property dataset. We 

match every property to the nearest eventual site of solar development to infer proximity. We 
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only include transactions occurring within three miles of any eventual solar installation to 

increase similarities in observable and unobservable characteristics for sample properties. For 

properties lying within three miles of two installations, we keep only those that transacted before 

both installations were built and those that transacted after both were constructed. This ensures 

cleaner identification of the pre-construction and post-construction periods in our model.  

The final, composite dataset includes 419,258 property transactions representing 284,364 

unique properties around 208 solar installations. Figure 3 shows the number of transactions by 

distance to nearest solar installation. We have roughly 18,000 transactions within half a mile, and 

71,337 transactions within one mile of a solar installation. This is far more compared to many 

prior studies measuring externalities of wind energy, and it enables precise estimation of any 

effect that may be present. Further, 27.43% of transactions occur post-construction and 17.27% 

of the post-construction observations are within one mile.6  

 

4  METHODS  

We use the difference-in-differences (DID) method in the hedonic framework to analyze 

the causal impact of solar installations on housing prices. We compare treated properties located 

near large-scale solar installations to similar control properties that are further away from such 

installations. The treated properties are defined as those that lie within some distance d of a solar 

site, and control properties are greater than distance d (and less than three miles). Our basic 

empirical specification is: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                                 (2) 

Where 𝑃𝑃𝑖𝑖𝑖𝑖 is the log sales price of house 𝑖𝑖 at time 𝑡𝑡. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 is a dummy variable equal to 1 if a 

house is in the treatment group and 0 otherwise, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 is an indicator for post-treatment, which 

equals 1 if a house sells after the construction of the nearest solar installation, 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of 

housing variables (bedrooms, bathrooms, etc.), as well as census block fixed effects and month-

year fixed effects. Month-year fixed effects capture macroeconomic trends that affect the entire 

region that could be correlated with solar development trends. Block fixed effects account for 

location-specific unobservable heterogeneity that could be correlated with solar development. 

Lastly, 𝜖𝜖𝑖𝑖𝑖𝑖 is the error term. 𝛽𝛽1 is the pre-treatment price difference between treated and control 

                                                 
6 Figure A3 in the online appendix presents the number of post-construction transactions by distance bin. 



12 

houses, and 𝛽𝛽2 is the price difference between control properties, before and after treatment. The 

coefficient of interest is 𝛽𝛽3, which is the differential price change from before to after solar 

development for treated properties relative to control properties.  

In addition, we also estimate repeat sales models that include property fixed effects:   

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖                                                (3) 

This model uses only within-property variation to identify 𝛽𝛽3, and thus controls for time-

invariant unobservables at the property level. In this specification, 𝑋𝑋𝑖𝑖𝑖𝑖 only includes temporal 

fixed effects, as other housing variables are time-invariant. In addition to this specification, we 

also estimate a model that adds county-year fixed effects, which allows for different county-

specific trends in the housing market. Across all specifications, our preferred model includes 

property, month-year, and county-year fixed effects, as it best controls for unobservable 

determinants of price and most flexibly controls for regional price trends, both of which could be 

correlated with solar development. In all models, we cluster standard errors at the census tract 

level to allow for correlated errors within a larger area. 

Since the extent of treatment is unknown, we first seek to empirically identify d, the 

distance up to which the effects of constructing a solar installation persist, and this will define 

the boundary for our treatment group. Following similar strategies as Davis (2011), 

Muehlenbachs et al. (2015), and Boslett et al. (2019), we estimate a series of DID models similar 

to our preferred specification, except with treatment defined by successive tenth-mile increments 

and control always being 2-3 miles. Figure 4 plots the estimates for each tenth-mile increment 

ranging from zero to two miles; each point and confidence interval represents a separate 

regression. Results indicate large, negative impacts for houses within 0.1 mile, but with large 

standard errors. Point estimates bounce around some, but more or less show effects diminishing 

with distance as expected. Beyond one mile, all estimates are statistically insignificant. Given 

this evidence, in all future specifications, we define the treatment group to be within one mile 

and the control group to be 1-3 miles.  

We extend the analysis to investigate heterogeneity in treatment effect in multiple ways. 

First, we estimate a model that allows for heterogeneity in the impact based on distance. We 

identified treatment extending to one mile with Figure 4, but Figure 4 also suggests that 

treatment effects could be substantially larger within 0.1 mile. To explore this possibility more 

formally, we develop a model that defines multiple distance bands. The first (outermost) band 
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represents control properties located two to three miles away from the nearest solar installation 

(per usual). The second (outer-middle) band includes treated properties located 1 – 2 miles from 

the nearest solar installation. The third (middle) band includes treated properties located 0.5 – 1 

mile from the nearest solar installation. The fourth (inner-middle) band includes treated 

properties located 0.1 – 0.5 miles from the nearest solar installation. Finally, the fifth (innermost) 

band consists of treated properties within a distance of 0.1 mile from the closest installation. Our 

specification is: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽3𝑘𝑘5
𝑘𝑘=2 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖� + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖                                             (4) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑘𝑘 is a dummy variable equal to 1 if a property 𝑖𝑖 lies within the 𝑘𝑘𝑡𝑡ℎ distance band. 𝑃𝑃𝑖𝑖𝑖𝑖, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖, 𝑋𝑋𝑖𝑖𝑖𝑖, and 𝛼𝛼𝑖𝑖 are as defined in Equation 3. Our coefficients of interest are 𝛽𝛽3𝑘𝑘, which are the 

differential changes in property prices from before to after the construction of solar installations, 

for homes in distance band 𝑘𝑘, compared to changes in property values of control houses (lying in 

distance band 1). 

Second, we investigate heterogeneity in treatment effect by two more characteristics: prior 

land use and rural character. This is done by a triple difference analysis in which we interact the 

treatment effect term in Equation 3 with a variable for our characteristic of interest. The 

specifications are as follow: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖) + 𝛽𝛽4(𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑖𝑖)  

         +𝛽𝛽5(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                                          (5) 

  

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖) + 𝛽𝛽4(𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)  

         +𝛽𝛽5(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖                                                    (6) 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑖𝑖 is an indicator variable equal to 1 if a property is located within the vicinity 

of a solar installation that was built on land that was formerly a farm or forest, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is an 

indicator variable equal to 1 if property 𝑖𝑖 lies in a town with a population density of 850 people 

per square mile or fewer. 

Our coefficients of interest in Equations 5 and 6 are 𝛽𝛽3 and 𝛽𝛽5. 𝛽𝛽5 is interpreted as the 

difference in price impacts for greenfields relative to non-greenfield sites (Eq. 5) and the 

difference in price impacts for homes in rural areas relative to non-rural ones (Eq. 6). In Equation 

5, we expect 𝛽𝛽5 to be negative. We hypothesize that developments on farm and forest lands will 

lead to larger negative impacts on housing prices due to the more dramatic change in landscape 
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compared to a commercial site or landfill and the loss of open space amenities. We also expect a 

negative sign on 𝛽𝛽5 in Equation 6, reflecting a loss in the rural character of a town due to the 

construction of solar installations.  

Intuition would suggest a positive correlation between 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which 

indeed plays out in the data. To try to separate the effects and test for multiplicative effects, we 

estimate a quadruple difference model that includes both 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 fully interacted 

with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.  

 

4.1  Summary statistics and assumptions 

Having defined treatment and control, we now evaluate the comparability of those 

groups. The summary statistics for key variables are given in Table 1. The first column 

represents the mean values of our full sample. The mean sales price is $338,320. The average 

property in our data has a lot size of half an acre, has living area of just under 3000 square feet, 

approximately 3 bedrooms, and is about 49 years old. About 21% of the properties are 

condominiums, 45% are located within 3 miles of a greenfield development, and 34% are rural.  

The second and third columns in Table 1 compare pre-treatment housing attribute means 

between the 0 – 1 miles (treated) and 1 – 3 miles (control) observations to examine similarity 

between the treatment and control groups. In the last column, we report the normalized 

differences in means, which is the difference in means between the treatment and control groups 

divided by the square root of the sum of their variances. None of the covariates have a 

normalized difference exceeding 0.25, which is the limit beyond which the difference in means 

becomes substantial.  

The critical assumption for the DID design to yield causal estimates is the parallel trends 

assumption, which requires that the treatment and control properties have the same trend in 

outcomes if treatment did not occur. A common way of assessing the plausibility of this 

assumption is to examine pre-treatment trends in sales prices for the treatment and control 

groups. In Figure 5 we plot pre-treatment average sales prices of treatment and control groups up 

to 2010, which is the year in which the first solar installations were constructed. The price trends 

are similar for both groups, thus boosting our confidence that the assumption holds, and the 

control group serves as a good counterfactual.   
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5  RESULTS 

5.1  Main results 

We present our main results in Table 2. Column 1 results are obtained from estimating 

Equation 2, which includes housing covariates (described in detail in the notes of the table), 

census block fixed effects, and month-year fixed effects. Columns 2 and 3 are results obtained 

from estimating repeat sales models described by Equation 3. Both columns include month-year 

fixed effects, and Column 3 additionally includes county-year fixed effects. The coefficient on 

Treated is insignificant in Column 1 suggesting that, controlling for housing characteristics and 

spatial and temporal fixed effects, treated properties are not statistically significantly different 

from control properties pre-construction. The DID coefficient of interest ranges between -0.016 

to -0.026 and is statistically significantly different from zero across all models. Our preferred 

specification is Column 3 which includes property, month-year, and county-year fixed effects. 

This model indicates that on average, houses lying within one mile of solar installations sell for 

1.7% less post construction relative to properties further away, all else equal. This finding 

confirms our hypothesis that nearby solar installations are a disamenity.  

We convert the percentage reduction to dollars by multiplying the coefficient and the 

average property price for treated properties prior to construction ($327,700), which equals 

$5,571. Assuming capitalization can be converted to a welfare measure in this context (see 

Kuminoff & Pope, 2014), we can then translate this price discount into an annual willingness to 

pay for avoiding proximity to solar. Assuming a 5% interest rate, average annual willingness to 

pay is $279 per household.  

 There are no other property value studies of solar arrays for us to compare our estimates 

to. To date, Botelho et al. (2017) is the only study to examine the negative externalities from 

large-scale solar facilities. Using a contingent valuation framework, they find that local residents 

in Portugal are willing to accept $12.93 – $56.64 per month on average as compensation for 

being in the vicinity of solar installations. While their methods are different and vicinity is 

defined differently, their results are consistent with ours ($25.17/month). In addition, Botelho et 

al. conduct a discrete choice experiment to delve into aspects of siting that drive the disamenity 

and estimate that respondents are willing to pay $8.65, $7.57, and $5.15 per month to avoid 

negative impacts on flora and fauna, landscape, and glare effects, respectively. Second, we 

extend the hedonic valuation literature on renewable energy to include large-scale solar. 
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 First, we provide the first estimates of the non-market valuation of large-scale solar 

installation externalities in the United States.  

 

5.2  Robustness checks 

In Table 3 we present results from a series of robustness checks to ensure that the results 

from our preferred model are consistent to alternative data samples. In Column 1 we drop all 

observations with sales prices in the top and bottom 1% of the distribution (as opposed to 5% in 

the main sample) to assess whether the results are robust to including more high and low value 

properties. In Column 2 we restrict the sample to include only properties with a lot size of 5 

acres or lesser, decreasing the maximum from 10 acres in our main sample. While it is unlikely 

that a solar array would be sited on a parcel of 5 – 10 acres, it is possible and so these properties 

may appreciate based on expectations of possible lease payments. Column 3 excludes all 

condominiums from the sample. Column 4 includes all 284 solar installations from our full 

sample, which means properties could be exposed to multiple treatments. Columns 5 and 6 

explore different amounts of land required per MW of installed capacity, 4 acres in Column 5, 

and 6 acres in Column 6. By contracting and expanding the assumed size of installations, the set 

of properties that are designated as treatment control is altered. Across all columns, our 

coefficient of interest is statistically significant and the magnitude ranges between -0.014 

to -0.017. In sum, we find that our results are robust across all specifications. 

 

5.3  Heterogeneity in treatment effect 

In Table 4, we examine the heterogeneity in treatment effect by three characteristics: 

proximity to solar installations, prior land use, and rural character of towns.  Each panel 

represents a different regression and all panels include property fixed effects, month-year fixed 

effects, and county-year fixed effects.  

In Panel A, we estimate the model described by Equation 4 that allows for heterogeneity 

in the impact on prices based on distance. The coefficient on the 1 – 2 miles band is statistically 

insignificant, which is congruent with our assumption that treatment effects do not persist 

beyond 1 mile. The coefficients on the 0.1 – 0.5 miles and 0.5 – 1 mile bands are significant and 

similar magnitude to the main results. The coefficient on the 0 – 0.1 mile band is -0.070, which is 

4 times larger in magnitude than the 0.1 – 0.5 miles and 0.5 – 1 mile bands, though only 
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significant at the 10% level. This suggests that property prices for homes lying within 0.1 mile 

from a solar installation fall by 7.0% ($23,682) post-construction, compared to houses further 

away. These results suggest extremely large disamenities for properties in very close proximity.  

In Panel B, we provide estimates from the model described by Equation 5 where we 

explore heterogeneity by prior land use. The triple-interaction coefficient of interest is negative 

as expected, and implies that farm and forest lands that are developed into solar arrays decrease 

property values 0.8% more than brownfields and industrial areas. However, this coefficient is 

statistically insignificant, meaning the differential impact is imprecise and could even be zero.  

In Panel C, we examine heterogeneity by rural character of towns and report the 

coefficients from the specification defined in Equation 6. The coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is 

larger in magnitude (-0.024) than the main results. The coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

is essentially the same magnitude as the coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, but the opposite sign. 

Taken together, these results suggest that the treatment effect in rural areas is effectively zero (a 

statistically insignificant 0.1%), and that the negative externalities of solar arrays are only 

occurring in non-rural areas. These findings go against our intuition. One possibility is that land 

is abundant in rural areas, so the development of some land into solar does little to impact 

scarcity, whereas in non-rural areas it makes a noticeable impact. A second possibility is that 

there are unobserved visibility differences across sites. If visibility is a key driver of negative 

impacts and installations in rural locations are less visible on average (due to land abundance for 

vegetative buffers), then this could produce the results observed.  

In Panel D we further explore heterogeneity by land use and rural character. This is done 

by estimating a quadruple difference model that interacts the treatment effect term in Equation 2 

with both the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicator variables.7 The coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 

which represents the effect of non-greenfield solar arrays in non-rural areas is -0.014, which is 

slightly smaller than the overall average effect observed in Table 2, but is also imprecisely 

estimated. The coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, which applies to greenfield sites 

in non-rural areas, is -0.036 and is statistically significant. This suggests a large additional effect 

of greenfield sites in non-rural areas relative to non-greenfield sites, and a total effect of -5.0%.  

                                                 
7 Tables A2-A4 in the online appendix examine the robustness of the results presented in Table 4, including different 
regression specifications and different population density cutoff values that define 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. The results are broadly 
consistent with the findings presented.   
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The coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which applies to non-greenfield sites in rural 

areas, is 0.002 and is statistically insignificant. This suggests no statistical difference between the 

property value effect of non-greenfield sites in rural versus non-rural areas. Lastly, the 

coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which applies to greenfield sites in 

rural areas, is 0.056 and is statistically significant. This indicates a counter-effect to the negatives 

seen for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, and the total effect for greenfield 

sites in rural areas is a positive 0.008. The total effect is statistically indistinguishable from zero. 

Taken together, the results of Panel D suggest that the overall negative effects of solar arrays on 

nearby property values are driven by greenfield sites in non-rural areas. Similar developments on 

farm and forest lands in rural areas have no impact on nearby properties. These findings are 

consistent with the ideas that greenfield developments cause greater externalities, given the dual 

loss of open space amenities and gain of industrial disamenities, but that effect hinges on the 

scarcity of open space.  

In the online appendix, we also present results that test for heterogeneity by size of 

installation and time since construction (see Tables A5 and A6). In both cases we find no 

evidence of differential property value impacts by size and by time.  

 

6  CONCLUSION 

 This paper estimates the valuation of externalities associated with nearby utility-scale 

solar installations using revealed preferences from the property market. Using the DID empirical 

technique, we estimate regression models with treatment and control groups defined by distance 

to the nearest solar installation. We observe 71,337 housing transactions occurring within one 

mile (treated group), and 347,921 transactions between one to three miles (control croup) of 208 

solar installations in MA and RI. 

 Our preferred model suggests that property values in the treatment group decline by 1.7% 

($5,751) on average compared to those in the control group after the construction of a nearby 

solar installation, all else equal. This translates to an annual willingness to pay of $279 per 

household to avoid disamenities associated with proximity to the installations. However, this 

average effect obscures heterogeneity. We find substantially larger negative effects for properties 

within 0.1 miles and properties surrounding solar sites built on farm and forest lands in non-rural 

areas.  
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 While a full cost-benefit analysis of solar arrays is beyond the scope of this paper, 

because we do not know anything about consumer and producer surplus, we can still compare 

the negative local externalities to the global benefits of carbon mitigation to gain a more holistic 

understanding of local opposition.8 We therefore conduct the following back-of-the-envelope 

calculations. On the cost side, we first consider the point estimate from our preferred 

specification which translates to a loss of $5,751 per household for treated homes close to solar 

installations. Our complete sample (prior to any data cuts) consists of 289,254 unique properties 

located within 1 mile of all solar installations in the dataset. Put together, we estimate a net loss 

of $1.66 billion in aggregate housing value due to proximate solar installations in MA and RI.  

To quantify the benefits from solar installations, we first calculate net generation from 

solar installations. Assuming a capacity factor of 16.5%, the 817 MW of installed solar capacity 

in MA and RI generates is 1,180,892 MWh (megawatt hours) of electricity per year.9 Current 

non-renewable generation in MA and RI comes almost entirely from natural gas. According to 

the EIA, 0.42 mt (metric tons) of CO2 are emitted from each MWh of electricity that is generated 

from natural gas, implying that a total of 495,975 mt of CO2 are abated annually from solar 

energy generation. Assuming that an average solar installation lasts 30 years, we estimate 14.88 

million mt of CO2 are abated in their entire life-span. The EPA (Environmental Protection 

Agency) estimates a social cost of $51.80 per metric ton of CO2, which translates to $771 million 

in lifetime benefits from the production of energy from solar installations (US EPA). We find 

that, considering only externalities, the benefit-cost ratio is 0.46, with a net loss of $893 million.  

However, we caution against generalizing the benefit-cost findings to other regions in the 

United States for two main reasons. First, over 90% of the energy generated in MA and RI 

comes from natural gas, which emits only half as much CO2 as coal. It is possible for benefits to 

outweigh the costs in states where coal dominates the fuel mix for electricity generation. Second, 

MA and RI are the 3rd and the 2nd most densely populates states in the country, respectively, 

which makes the siting of solar installations away from residential areas a herculean task. 

Careful siting of installations in states that have large tracts of open land available and around 

sparsely populated regions may allow for more favorable cost-benefit ratios. 

                                                 
8 To be sure, significant amounts of money are part of the market transactions. A developer quoted us that they offer 
landowners $15-20,000 per MW per year of installed capacity. It is unknown how much is profit and whether some 
portion of that could be used to compensate proximate households.  
9 𝑁𝑁𝑁𝑁𝑁𝑁 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑀𝑀𝑀𝑀ℎ) =  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 365 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 24 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀𝑀𝑀) 
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The demographic and geographical differences across states have implications for their 

respective RPS goals. For densely populated New England states with ambitious RPS targets, 

wind energy may be the better choice. Onshore wind turbines require a fraction of the land area 

per MW of installed capacity compared to solar, while offshore turbines require none. 

Furthermore, unlike solar installations, wind turbines in the United States (both onshore and 

offshore), have been found to have no disamenities associated with their proximity (Carr-Harris 

& Lang, 2019; Hoen et al., 2011, 2015; Hoen & Atkinson-Palombo, 2016; Lang et al., 2014). 

Moving forward, states should customize plans to meet renewable energy targets that work best 

with their respective geographies.  

 

 

 

 
  



21 

REFERENCES 
Anderson, S. T., & West, S. E. (2006). Open space, residential property values, and spatial 

context. Regional Science and Urban Economics, 36(6), 773–789. 
https://doi.org/10.1016/j.regsciurbeco.2006.03.007 

Bajari, P., Fruehwirth, J. C., Kim, K. il, & Timmins, C. (2012). A Rational Expectations 
Approach to Hedonic Price Regressions with Time-Varying Unobserved Product 
Attributes: The Price of Pollution. American Economic Review, 102(5), 1898–1926. 
https://doi.org/10.1257/aer.102.5.1898 

Bates, A., & Firestone, J. (2015). A comparative assessment of proposed offshore wind power 
demonstration projects in the United States. Energy Research & Social Science, 10, 192–
205. https://doi.org/10.1016/j.erss.2015.07.007 

Bayer, P., Keohane, N., & Timmins, C. (2009). Migration and hedonic valuation: The case of air 
quality. Journal of Environmental Economics and Management, 58(1), 1–14. 
https://doi.org/10.1016/j.jeem.2008.08.004 

Bento, A., Freedman, M., & Lang, C. (2014). Who Benefits from Environmental Regulation? 
Evidence from the Clean Air Act Amendments. The Review of Economics and Statistics, 
97(3), 610–622. https://doi.org/10.1162/REST_a_00493 

Bishop, K. C., Kuminoff, N. V., Banzhaf, H. S., & Boyle, K. J. (2019). Best Practices in Using 
Hedonic Property Value Models for Welfare Measurement. Review of Environmental 
Economics and Policy, 43. 

Black, K. J. (2018). Wide open spaces: Estimating the willingness to pay for adjacent preserved 
open space. Regional Science and Urban Economics, 71, 110–121. 
https://doi.org/10.1016/j.regsciurbeco.2018.06.001 

Boslett, A., Guilfoos, T., & Lang, C. (2016). Valuation of expectations: A hedonic study of shale 
gas development and New York’s moratorium. Journal of Environmental Economics and 
Management, 77, 14–30. https://doi.org/10.1016/j.jeem.2015.12.003 

Boslett, A., Guilfoos, T., & Lang, C. (2019). Valuation of the External Costs of Unconventional 
Oil and Gas Development: The Critical Importance of Mineral Rights Ownership. 
Journal of the Association of Environmental and Resource Economists, 6(3), 531–561. 
https://doi.org/10.1086/702540 

Botelho, A., Lourenço-Gomes, L., Pinto, L., Sousa, S., & Valente, M. (2017). Accounting for 
local impacts of photovoltaic farms: The application of two stated preferences approaches 
to a case-study in Portugal. Energy Policy, 109, 191–198. 
https://doi.org/10.1016/j.enpol.2017.06.065 

Carlisle, J. E., Kane, S. L., Solan, D., Bowman, M., & Joe, J. C. (2015). Public attitudes 
regarding large-scale solar energy development in the U.S. Renewable and Sustainable 
Energy Reviews, 48, 835–847. https://doi.org/10.1016/j.rser.2015.04.047 

Carlisle, J. E., Kane, S. L., Solan, D., & Joe, J. C. (2014). Support for solar energy: Examining 
sense of place and utility-scale development in California. Energy Research & Social 
Science, 3, 124–130. https://doi.org/10.1016/j.erss.2014.07.006 

Carr-Harris, A., & Lang, C. (2019). Sustainability and tourism: The effect of the United States’ 
first offshore wind farm on the vacation rental market. Resource and Energy Economics, 
57, 51–67. https://doi.org/10.1016/j.reseneeco.2019.04.003 

Chay, K. Y., & Greenstone, M. (2005). Does Air Quality Matter? Evidence from the Housing 
Market. Journal of Political Economy, 113(2), 376–424. https://doi.org/10.1086/427462 



22 

Dastrup, S. R., Graff Zivin, J., Costa, D. L., & Kahn, M. E. (2012). Understanding the Solar 
Home price premium: Electricity generation and “Green” social status. European 
Economic Review, 56(5), 961–973. https://doi.org/10.1016/j.euroecorev.2012.02.006 

Davis, L. W. (2011). THE EFFECT OF POWER PLANTS ON LOCAL HOUSING VALUES 
AND RENTS. The Review of Economics and Statistics, 93(4), 1391–1402. 

Denholm, P., & Margolis, R. M. (2008). Land-use requirements and the per-capita solar footprint 
for photovoltaic generation in the United States. Energy Policy, 36(9), 3531–3543. 
https://doi.org/10.1016/j.enpol.2008.05.035 

Dröes, M. I., & Koster, H. R. A. (2016). Renewable energy and negative externalities: The effect 
of wind turbines on house prices. Journal of Urban Economics, 96, 121–141. 
https://doi.org/10.1016/j.jue.2016.09.001 

EIA - Annual Energy Outlook 2018. (2018, July 17). https://www.eia.gov/outlooks/aeo/ 
EIA International Energy Outlook. (2019). https://www.eia.gov/outlooks/ieo/ 
Farhar, B. C. (1994). Trends in US Public Perceptions and Preferences on Energy and 

Environmental Policy. Annual Review of Energy and the Environment, 19(1), 211–239. 
https://doi.org/10.1146/annurev.eg.19.110194.001235 

Farhar, B. C., Hunter, L. M., Kirkland, T. M., & Tierney, K. J. (2010). Community Response to 
Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010 
(NREL/SR-550-48041). National Renewable Energy Lab. (NREL), Golden, CO (United 
States). https://doi.org/10.2172/983406 

Firestone, J., Bidwell, D., Gardner, M., & Knapp, L. (2018). Wind in the sails or choppy seas?: 
People-place relations, aesthetics and public support for the United States’ first offshore 
wind project. Energy Research & Social Science, 40, 232–243. 
https://doi.org/10.1016/j.erss.2018.02.017 

Gawande, K., & Jenkins-Smith, H. (2001). Nuclear Waste Transport and Residential Property 
Values: Estimating the Effects of Perceived Risks. Journal of Environmental Economics 
and Management, 42(2), 207–233. https://doi.org/10.1006/jeem.2000.1155 

Geoghegan, J., Wainger, L. A., & Bockstael, N. E. (1997). Spatial landscape indices in a hedonic 
framework: An ecological economics analysis using GIS. Ecological Economics, 23(3), 
251–264. https://doi.org/10.1016/S0921-8009(97)00583-1 

Gibbons, S. (2015). Gone with the wind: Valuing the visual impacts of wind turbines through 
house prices. Journal of Environmental Economics and Management, 72, 177–196. 
https://doi.org/10.1016/j.jeem.2015.04.006 

Gopalakrishnan, S., & Klaiber, H. A. (2014). Is the Shale Energy Boom a Bust for Nearby 
Residents? Evidence from Housing Values in Pennsylvania. American Journal of 
Agricultural Economics, 96(1), 43–66. https://doi.org/10.1093/ajae/aat065 

Grainger, C. A. (2012). The distributional effects of pollution regulations: Do renters fully pay 
for cleaner air? Journal of Public Economics, 96(9), 840–852. 
https://doi.org/10.1016/j.jpubeco.2012.06.006 

Greenberg, M. (2009). Energy sources, public policy, and public preferences: Analysis of US 
national and site-specific data. Energy Policy, 37(8), 3242–3249. 
https://doi.org/10.1016/j.enpol.2009.04.020 

Gross, S. (2020). Renewables, land use, and local opposition in the United States (p. 24). The 
Brookings Institution. https://docs.wind-
watch.org/FP_20200113_renewables_land_use_local_opposition_gross.pdf 



23 

Hamilton, S. W., & Schwann, G. M. (1995). Do High Voltage Electric Transmission Lines 
Affect Property Value? Land Economics, 71(4), 436–444. JSTOR. 
https://doi.org/10.2307/3146709 

Haninger, K., Ma, L., & Timmins, C. (2017). The Value of Brownfield Remediation. Journal of 
the Association of Environmental and Resource Economists, 4(1), 197–241. 
https://doi.org/10.1086/689743 

Hoen, B., & Atkinson-Palombo, C. (2016). Wind Turbines, Amenities and Disamenitites: Astudy 
of Home Value Impacts in Densely Populated Massachusetts. Journal of Real Estate 
Research, 38(4), 473–504. https://doi.org/10.5555/0896-5803-38.4.473 

Hoen, B., Brown, J. P., Jackson, T., Thayer, M. A., Wiser, R., & Cappers, P. (2015). Spatial 
Hedonic Analysis of the Effects of US Wind Energy Facilities on Surrounding Property 
Values. The Journal of Real Estate Finance and Economics, 51(1), 22–51. 
https://doi.org/10.1007/s11146-014-9477-9 

Hoen, B., Firestone, J., Rand, J., Elliott, D., Hübner, G., Pohl, J., Wiser, R., Lantz, E., Haac, R., 
& Kaliski, K. (2019). Attitudes of U.S. Wind Turbine Neighbors: Analysis of a 
Nationwide Survey. Energy Policy, 134. https://doi.org/10.1016/j.enpol.2019.110981 

Hoen, B., Wiser, R., Cappers, P., Thayer, M., & Sethi, G. (2011). Wind Energy Facilities and 
Residential Properties: The Effect of Proximity and View on Sales Prices. Journal of 
Real Estate Research, 33(3), 279–316. 
https://doi.org/10.5555/rees.33.3.16133472w8338613 

Hoen, B., Wiser, R., Thayer, M., & Cappers, P. (2012). Residential Photovoltaic Energy Systems 
in California: The Effect on Home Sales Prices. Contemporary Economic Policy, 31(4), 
708–718. https://doi.org/10.1111/j.1465-7287.2012.00340.x 

Irwin, E. G. (2002). The Effects of Open Space on Residential Property Values. Land 
Economics, 78(4), 465–480. https://doi.org/10.2307/3146847 

Jacobe, D. (2013, March 27). Americans Want More Emphasis on Solar, Wind, Natural Gas. 
Gallup.Com. https://news.gallup.com/poll/161519/americans-emphasis-solar-wind-
natural-gas.aspx 

Jensen, C. U., Panduro, T. E., Lundhede, T. H., Nielsen, A. S. E., Dalsgaard, M., & Thorsen, B. 
J. (2018). The impact of on-shore and off-shore wind turbine farms on property prices. 
Energy Policy, 116, 50–59. https://doi.org/10.1016/j.enpol.2018.01.046 

Krohn, S., & Damborg, S. (1999). On public attitudes towards wind power. Renewable Energy, 
16(1), 954–960. https://doi.org/10.1016/S0960-1481(98)00339-5 

Kuffner, A. (2018, March 16). Worry over solar sprawl spreads across Rhode Island. 
Providencejournal.Com. https://www.providencejournal.com/news/20180316/worry-
over-solar-sprawl-spreads-across-rhode-island 

Kuminoff, N. V., & Pope, J. C. (2014). Do “Capitalization Effects” for Public Goods Reveal the 
Public’s Willingness to Pay? International Economic Review, 55(4), 1227–1250. 
https://doi.org/10.1111/iere.12088 

Lang, C. (2015). The dynamics of house price responsiveness and locational sorting: Evidence 
from air quality changes. Regional Science and Urban Economics, 52, 71–82. 
https://doi.org/10.1016/j.regsciurbeco.2015.02.005 

Lang, C. (2018). Assessing the efficiency of local open space provision. Journal of Public 
Economics, 158, 12–24. https://doi.org/10.1016/j.jpubeco.2017.12.007 



24 

Lang, C., & Cavanagh, P. (2018). Incomplete Information and Adverse Impacts of 
Environmental Cleanup. Land Economics, 94(3), 386–404. 
https://doi.org/10.3368/le.94.3.386 

Lang, C., Opaluch, J. J., & Sfinarolakis, G. (2014). The windy city: Property value impacts of 
wind turbines in an urban setting. Energy Economics, 44, 413–421. 
https://doi.org/10.1016/j.eneco.2014.05.010 

Lovich, J. E., & Ennen, J. R. (2011). Wildlife Conservation and Solar Energy Development in 
the Desert Southwest, United States. BioScience, 61(12), 982–992. 
https://doi.org/10.1525/bio.2011.61.12.8 

Ma, C., Polyakov, M., & Pandit, R. (2016). Capitalisation of residential solar photovoltaic 
systems in Western Australia. Australian Journal of Agricultural and Resource 
Economics, 60(3), 366–385. https://doi.org/10.1111/1467-8489.12126 

Ma, L. (2019). Learning in a Hedonic Framework: Valuing Brownfield Remediation. 
International Economic Review, 60(3), 1355–1387. https://doi.org/10.1111/iere.12389 

Muehlenbachs, L., Spiller, E., & Timmins, C. (2015). The Housing Market Impacts of Shale Gas 
Development. American Economic Review, 105(12), 3633–3659. 
https://doi.org/10.1257/aer.20140079 

Naylor, D. (2019, October 16). West Greenwich residents air concerns over proposed solar 
project. Providencejournal.Com. 
https://www.providencejournal.com/news/20191016/west-greenwich-residents-air-
concerns-over-proposed-solar-project 

Ong, S., Campbell, C., Denholm, P., Margolis, R., & Heath, G. (2013). Land-Use Requirements 
for Solar Power Plants in the United States (NREL/TP-6A20-56290, 1086349). 
https://doi.org/10.2172/1086349 

Perea, A., Smith, C., Davis, M., Sun, X., White, B., Cox, M., Curtin, G., Rumery, S., Holm, A., 
Goldstein, R., & Baca, J. (2020). U.S. Solar Market Insight Executive summary. Wood 
Mackenzie and Solar Energy Industries Association. 

Pew Research Center. (2019, November 25). U.S. Public Views on Climate and Energy. 
https://www.pewresearch.org/science/2019/11/25/u-s-public-views-on-climate-and-
energy/ 

Qiu, Y., Wang, Y. D., & Wang, J. (2017). Soak up the sun: Impact of solar energy systems on 
residential home values in Arizona. Energy Economics, 66, 328–336. 
https://doi.org/10.1016/j.eneco.2017.07.001 

Ridker, R. G., & Henning, J. A. (1967). The Determinants of Residential Property Values with 
Special Reference to Air Pollution. The Review of Economics and Statistics, 49(2), 246–
257. JSTOR. https://doi.org/10.2307/1928231 

Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure 
Competition. Journal of Political Economy, 82(1), 34–55. https://doi.org/10.1086/260169 

Sunak, Y., & Madlener, R. (2016). The impact of wind farm visibility on property values: A 
spatial difference-in-differences analysis. Energy Economics, 55, 79–91. 
https://doi.org/10.1016/j.eneco.2015.12.025 

Tanaka, S., & Zabel, J. (2018). Valuing nuclear energy risk: Evidence from the impact of the 
Fukushima crisis on U.S. house prices. Journal of Environmental Economics and 
Management, 88, 411–426. https://doi.org/10.1016/j.jeem.2017.12.005 



25 

Trainor, A. M., McDonald, R. I., & Fargione, J. (2016). Energy Sprawl Is the Largest Driver of 
Land Use Change in United States. PLOS ONE, 11(9), e0162269. 
https://doi.org/10.1371/journal.pone.0162269 

U.S. Energy Information Administration (EIA). (n.d.). Retrieved June 24, 2020, from 
https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-
and-sales.php 

US EPA. (n.d.). The Social Cost of Carbon [Reports and Assessments]. Retrieved July 9, 2020, 
from /climatechange/social-cost-carbon 

Vyn, R. J. (2018). Property Value Impacts of Wind Turbines and the Influence of Attitudes 
toward Wind Energy. Land Economics, 94(4), 496–516. 
https://doi.org/10.3368/le.94.4.496 

Wee, S. (2016). The effect of residential solar photovoltaic systems on home value: A case study 
of Hawai‘i. Renewable Energy, 91, 282–292. 
https://doi.org/10.1016/j.renene.2016.01.059 

Zabel, J. E., & Guignet, D. (2012). A hedonic analysis of the impact of LUST sites on house 
prices. Resource and Energy Economics, 34(4), 549–564. 
https://doi.org/10.1016/j.reseneeco.2012.05.006 

 
 



26 

Figures and Tables 
 
 
 
 
 
 
 
 
 
Figure 1: Map of solar installations across Massachusetts and Rhode Island
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Figure 2: New and cumulative utility-scale solar capacity by year 
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Figure 3: Number of transactions by distance to nearest solar installation

 
Notes: These transactions occur near eventual solar installations, since the data span across the years 2005 – 2019, 
and the construction of the installations is staggered throughout that time period. 
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Figure 4: Distance bin coefficient estimates

 
Notes: The treatment variable is defined as a bin variable, with treated properties lying within 1/10 mile distance 
bands up to 2 miles. Control properties are those lying 2 – 3 miles away from the nearest solar installation. The 
coefficients are obtained by estimating a series of DID models similar to Equation 2 that regresses log sales price on 
1/10 mile distance bands up to 2 miles, along with month-year, county-year, and property fixed effects. Resulting 
coefficients and 95% confidence intervals are graphed.  
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Figure 5: Pre-treatment trends between treatment and control groups

 
Notes: The graph represents all transactions occurring pre-construction. Treated are properties within one mile of an 
eventual solar installation, and Control is between one and three miles. The sample size is 181,190.  
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Table 1: Housing attribute means by treatment status 

Variables Full 
sample 

Pre-treatment means Normalized 
difference in means 0 - 1 mile 1 - 3 miles 

Sales price (000's) 338.32 327.70 340.74 -3.11e-07 
Lot size (acres) 0.49 0.50 0.48 0.017 
House area (sq. feet) 2874.92 2849.70 2865.73 -5.83e-06 
Bedrooms 2.91 2.88 2.91 -0.027 
Full bathrooms 1.56 1.56 1.56 -0.012 
Half bathrooms 0.52 0.52 0.52 -0.009 
Age of home (years) 49.23 43.06 48.11 -0.003 
Condo (1=yes) 0.21 0.22 0.21 0.058 
Pool (1 = yes) 0.04 0.04 0.04 -0.027 
Air conditioning (1 = yes) 0.43 0.47 0.43 0.121 
Fireplace number 0.41 0.38 0.42 -0.076 
Condition (1 = above average) 0.26 0.22 0.26 -0.150 
Greenfield (1 = yes)  0.45 0.46 0.46 0.021 
Rural (1 = yes)  0.34 0.40 0.34 0.199 
Observations 419,258 51,471 252,773   
Notes: Sales prices are adjusted to 2019 levels using the CPI. Normalized difference in means calculated 
according to Imbens and Wooldridge (2009). Normalized differences exceeding 0.25 in absolute value are 
considered statistically different. 
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Table 2: Difference-in-differences estimates of the impact of solar installations on property prices 

Independent variables Dependent variable: Sale price (ln) 
(1) (2) (3) 

Treated  0.002   

 (0.005)   

Post  0.015*** 0.011** -0.006 
 (0.004) (0.005) (0.004) 

Treated × Post -0.016*** -0.026*** -0.017*** 
 (0.005) (0.007) (0.006) 

Fixed Effects    
   Month-year Y Y Y 
   Block Y   

   Property  Y Y 
   County-year   Y 
Observations 419,258 231,503 231,503 
R2 0.804 0.889 0.893 
Notes: Treat = 1 if a house is within 1 mile of a solar construction and Post = 1 if a house sells post-construction. 
Column 1 includes the following control variables: lot size, house area, number of bedrooms, full bathrooms, half 
bathrooms, and fireplaces, indicator variables for condos, the condition of the house, and for the presence of a pool 
and air conditioning, capacity of installation (in MW) and greenfield. Standard errors are clustered at the tract level 
and shown in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively. 
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Table 3: Robustness checks 

Independent 
variables 

Dependent variable: Sale price (ln) 
Price cuts 
at top and 
bottom 1% 

Lot size no 
more than 

5 acres 

Drop 
Condos 

Keep all 
installations 

1 MW = 4 
acres 

1 MW = 6 
acres 

(1) (2) (3) (4) (5) (6) 
Treated × Post -0.015** -0.016*** -0.014*** -0.017*** -0.016*** -0.017*** 

 (0.007) (0.006) (0.005) (0.006) (0.006) (0.005) 
Observations 258,562 230,100 179,387 273,878 233,943 231,977 
R2 0.865 0.894 0.880 0.897 0.894 0.893 
Notes: Treated = 1 if a house is within 1 mile of a solar construction, and Post = 1 if a house sells post-construction. 
All specifications include property, month-year, and county-year fixed effects. Standard errors are clustered at the 
tract level and shown in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively. 
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Table 4: Heterogeneity of treatment effects  
Independent variables Dependent variable: Sale price (ln) 
Panel A: Heterogeneity by proximity  
(1 – 2 miles) × Post -0.005 

 (0.005) 
(0.5 – 1 mile) × Post  -0.019*** 

 (0.007) 
(0.1 – 0.5 miles) × Post  -0.017* 

 (0.009) 
(0 – 0.1 miles) × Post -0.070* 

 (0.038) 
Panel B: Heterogeneity by prior land use  
Treated × Post -0.013* 

 (0.008) 
Treated × Post × Greenfield -0.008 

 (0.011) 
Panel C: Heterogeneity by population density  
Treated × Post -0.024*** 

 (0.008) 
Treated × Post × Rural 0.025** 

 (0.011) 
Panel D: Heterogeneity by population density and land use   
Treated × Post  -0.014 

 (0.009) 
Treated × Post × Greenfield  -0.036** 

 (0.014) 
Treated × Post × Rural    0.002 

 (0.017) 
Treated × Post × Greenfield × Rural 0.056** 

 (0.022) 
Observations 231,503 
Notes: Treated = 1 if a house is within 1 mile of a solar construction and Post =1 if a house sells post-construction. In 
Panel A, (1 – 2 miles), (0.5 – 1 mile), (0.1 – 0.5 miles) and (0 – 0.1 mile) are dummy variables = 1 if properties lie 
within the respective distances from the nearest solar installation, and distance bin for 2 – 3 miles is omitted. 
Greenfield = 1 if the prior land use is farm or forest land, and Rural = 1 if the population density per square mile is ≤ 
850. Panel B includes an interaction term Post*Greenfield and Panel C includes Post*Rural. Additional interactions 
included in Panel D are: Treated*Rural, Treated*Greenfield, Post*Rural, Post*Greenfield, Rural*Greenfield, 
Post*Greenfield*Rural, and Treated*Rural*Greenfield. All models include month-year, county-year, and property 
fixed effects. Standard errors are clustered at the tract level and shown in parentheses. *, **, and *** indicate 
significance at 10%, 5%, and 1%, respectively.  
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APPENDIX 
 

 
This appendix provides supplemental figures and tables to our main results. 
 
Figure A1 maps the location and capacities (in MW) of the 208 solar installations that are 
included in our main results. 
 
Figure A2 depicts the increase in new and cumulative solar capacity over time by prior land use. 
 
Figure A3 represents the number of sample post-treatment transactions by distance to nearest 
solar installation, in quarter mile intervals. 
 
Figure A4 shows the distribution of solar installations by capacity.  
 
Table A1 provides post-treatment means and the normalized differences in means between the 
treated and control groups for key property attributes.  
 
Table A2 assesses robustness of results presented in Table 4 of the main text. We present two 
additional specifications: month-year fixed effects and block fixed effects in Column 1, and 
month-year and property fixed effects in Column 2. Column 3 is the same as the results 
presented in Table 4. In Panel A, we find that the large, negative coefficient found for (0 −
0.1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is only found when property fixed effects are included. In Panels B, C, and D, 
results are largely similar across columns.  
 
Table A3 explores how different population density cutoff values that define the variable 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
affect the results presented in Panel C of Table 4 in the main paper. 850 people/square mile is the 
cutoff used in the main text. The results in the first three columns (500 people/square mile, 850 
people/square mile, and 1000 people/square mile) are quite consistent. The results in columns 4 
and 5 (1200 people/square mile, 1500 people/square mile) are qualitatively similar to the 
previous results, but the coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is smaller in magnitude and not 
statistically significantly different from zero. In the final column (2000 people/square mile), the 
coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is negative and statistically insignificant, and the 
coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is statistically insignificant as well. The trend in results is 
expected as more areas are classified as rural. Given that we find that negative property value 
impacts of solar are strongest in non-rural (suburban) areas, as these places are increasingly 
classified as rural, the coefficient on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is a mixture of the zero impacts in 
rural areas and the negative impacts in non-rural areas.   
 
Table A4 explores how different population density cutoff values that define the variable 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
affect the results presented in Panel D of Table 4 in the main paper, similar to Table A3. We 
specify different cutoff values of population density per square mile and report results using our 
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main specification. The coefficients are consistent with the results of Panel D in Table 4, for all 
cutoff values except the highest one (2000 people/square mile).  
 
Table A5 explores heterogeneity in treatment effect by the size of the solar installations. We 
define 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as an indicator variable = 1 if the size of the installation (in MW) is 
greater than the median value in our sample (2 MW). We find no evidence of heterogeneity by 
installation size, the coefficient is small and statistically insignificant, implying no additional 
disamenities from solar developments larger than 2 MW. We additionally explore an alternative 
specification (results not provided) where capacity is treated as a linear variable and is interacted 
with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 . These estimates yield the same conclusion to those in Table A3. This 
result indicates that the presence of utility-scale solar is a disamenity regardless of size. Given 
that the smallest installations in our analysis are still quite large at five acres in size (about 3.8 
football fields), it could be that there is no additional impact of size because it is difficult or even 
impossible to see beyond five acres from ground level. However, one limitation of this analysis 
is that the range of observed sizes is narrow. Of the 208 installations in our dataset, almost 50% 
have a capacity of 2 MW or lesser, and only 13 (6%) are 5 MW or larger.  
 
Table A6 examines heterogeneity in treatment effect by time elapsed. We split our 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 variable 
into two sub-categories: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 3 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦), where 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 3 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) is a dummy variable = 1 if a property transacts less than three years 
post-construction, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) is a dummy variable = 1 if a property transacts 
3 or more years post-construction. We interact both variables with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, and find that both 
coefficients are significant and almost equal across the board, implying no change in the effect 
over time. 
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Figure A1: Map of solar installations at least 1 mile apart across Massachusetts and Rhode Island 
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Figure A2: New and cumulative capacity by year and land use 
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Figure A3: Number of post-construction transactions by distance to nearest solar installation 

 
Notes: These transactions occur near eventual solar installations, since the data span across the years 2005 – 2019, 
and the construction of the installations is staggered throughout that time period. 
 

  

0
5,

00
0

10
,0

00
15

,0
00

N
um

be
r o

f t
ra

ns
ac

tio
ns

0 -
 0.

25

0.2
5 -

 0.
5

0.5
 - 0

.75

0.7
5 -

 1

1 -
 1.

25

1.2
5 -

 1.
5

1.5
 - 1

.75

1.7
5 -

 2

2 -
 2.

25

2.2
5 -

 2.
5

2.5
 - 2

.75

2.7
5 -

 3

Distance to closest solar installation (in miles)



40 

 

 

 

 

 

 

Figure A4: Frequency of solar installations by capacity 
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Table A1: Housing attribute means by treatment status, post construction 

Variable Post-treatment means Normalized 
difference in means 0 - 1 mile 1 - 3 miles 

Price (000's) 321.02 341.25 -4.64e-07 
Lot size (acres) 0.48 0.50 -0.013 
House area (sq. feet) 2872.97 2913.40 -1.47e-05 
Bedrooms 2.90 2.93 -0.024 
Full bathrooms 1.56 1.57 -0.020 
Half bathrooms 0.53 0.53 0.001 
Age of home (years) 52.17 54.95 -0.001 
Condo (1=yes) 0.21 0.20 0.041 
Pool (1 = yes) 0.04 0.04 -0.033 
Air conditioning (1 = yes) 0.45 0.43 0.078 
Fireplace number 0.35 0.40 -0.117 
Condition (1 = above average) 0.25 0.28 -0.013 
Greenfield (1 = yes)  0.39 0.42 -0.095 
Rural (1 = yes)  0.40 0.32 0.239 
Observations 19,866 95,148   
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Table A2: Heterogeneity of treatment effects  

Independent variables Dependent variable: Sale price (ln) 
(1) (2) (3) 

Panel A: Heterogeneity by proximity    
(1 – 2 miles) × Post -0.009* -0.006 -0.005 

 (0.005) (0.006) (0.005) 
(0.5 – 1 mile) × Post  -0.019*** -0.027*** -0.019*** 

 (0.007) (0.009) (0.007) 
(0.1 – 0.5 miles) × Post  -0.025*** -0.030*** -0.017* 

 (0.008) (0.011) (0.009) 
(0 – 0.1 miles) × Post -0.037 -0.092** -0.070* 

 (0.028) (0.036) (0.038) 
Panel B: Heterogeneity by prior land use   

 
Treated × Post -0.013 -0.024** -0.013* 

 (0.008) (0.010) (0.008) 
Treated × Post × Greenfield -0.009 -0.005 -0.008 

 (0.010) (0.014) (0.011) 
Panel C: Heterogeneity by population density    
Treated × Post -0.022*** -0.034*** -0.024*** 

 (0.008) (0.010) (0.008) 
Treated × Post × Rural 0.024** 0.034** 0.025** 

 (0.010) (0.014) (0.011) 
Panel D: Heterogeneity by population density and land use    

 
Treated × Post -0.013 -0.024* -0.014 

 (0.010) (0.013) (0.009) 
Treated × Post × Greenfield -0.029** -0.030 -0.036** 

 (0.014) (0.019) (0.014) 
Treated × Post × Rural 0.008 0.011 0.002 

 (0.014) (0.019) (0.017) 
Treated × Post × Greenfield × Rural 0.041** 0.051** 0.056** 

 (0.019) (0.026) (0.022) 
Fixed Effects    
   Month-year Y Y Y 
   Block Y   

   Property   Y Y 
   County-year    Y 
Observations 419,258 231,503 231,503 
Notes: Treated = 1 if a house is within 1 mile of a solar construction and Post =1 if a house sells post-construction. 
In Panel A, (1 – 2 miles), (0.5 – 1 mile), (0.1 – 0.5 miles) and (0 – 0.1 mile) are dummy variables = 1 if properties 
lie within the respective distances from the nearest solar installation, and distance bin for 2 – 3 miles is omitted. 
Greenfield = 1 if the prior land use is farm or forest land, and Rural = 1 if the population density per square mile is 
≤ 850. Panel B includes an interaction term Post*Greenfield and Panel C includes Post*Rural. Additional 
interactions included in Panel D are: Treated*Rural, Treated*Greenfield, Post*Rural, Post*Greenfield, 
Rural*Greenfield, Post*Greenfield*Rural, and Treated*Rural*Greenfield. All models include month-year, county-
year, and property fixed effects. Standard errors are clustered at the tract level and shown in parentheses. *, **, and 
*** indicate significance at 10%, 5%, and 1%, respectively. 
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Table A3: Heterogeneity of treatment effects by population density 

Independent variables Population density per square mile cutoff 
500 850 1000 1200 1500 2000 

Treated × Post -0.020*** -0.024*** -0.024*** -0.023*** -0.018** -0.006  
(0.006) (0.008) (0.008) (0.008) (0.008) (0.009) 

Treated × Post × Rural 0.022* 0.025** 0.023** 0.016 0.008 -0.013 
 (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) 

Observations 
classified as rural       
   Solar installations 40% 61% 69% 76% 82% 87% 
   Properties 16% 32% 39% 46% 53% 62% 
Observations 231,503 231,503 231,503 231,503 231,503 231,503 
R2 0.894 0.894 0.894 0.894 0.894 0.894 
Notes: Dependent variable is Sale price (ln) in all specifications. Treated = 1 if a house is within 1 mile of a solar 
construction, Post =1 if a house sells post-construction, and Rural = 1 if the population density per square mile is ≤ 
column heading value. All models include month-year, county-year, and property fixed effects. Standard errors are 
clustered at the tract level and shown in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, 
respectively. 
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Table A4: Heterogeneity of treatment effects by population density and land use 

Independent variables Population density per square mile cutoff 
500 850 1000 1200 1500 2000 

Treated × Post -0.014* -0.014 -0.016 -0.014 -0.006 0.005 
 (0.008) (0.009) (0.010) (0.010) (0.010) (0.010) 

Treated × Post × Greenfield -0.018 -0.036** -0.028* -0.031** -0.041*** 0.005 
 (0.012) (0.014) (0.015) (0.015) (0.016) (0.010) 

Treated × Post × Rural 0.000 0.002 0.008 0.002 -0.013 -0.055*** 
 (0.018) (0.017) (0.016) (0.016) (0.015) (0.018) 

Treated × Post × Greenfield 
× Rural 

0.038* 0.056** 0.039* 0.040* 0.057*** -0.029** 
(0.023) (0.022) (0.021) (0.021) (0.021) (0.014) 

Observations classified as 
rural       
   Solar installations 40% 61% 69% 76% 82% 87% 
   Properties 16% 32% 39% 46% 53% 62% 
Observations 231,503 231,503 231,503 231,503 231,503 231,503 
R2 0.894 0.894 0.894 0.894 0.894 0.894 
Notes: Dependent variable is Sale price (ln) in all specifications. Treated = 1 if a house is within 1 mile of a solar 
construction, Post =1 if a house sells post-construction, and Rural = 1 if the population density per square mile is ≤ 
column heading value. All models include month-year, county-year, and property fixed effects. Standard errors are 
clustered at the tract level and shown in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, 
respectively. 
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Table A5: Heterogeneity of treatment effects by solar installation size 

Independent variables Dependent variable: Sale price (ln)  
(1) (2) (3) 

Treated × Post -0.012* -0.024*** -0.019*** 
 (0.007) (0.009) (0.007) 

Treated × Post × LargeCapacity -0.011 -0.005 0.004 
 (0.011) (0.015) (0.012) 

Fixed Effects    
   Month-year Y Y Y 
   Block Y   
   Property   Y Y 
   County-year    Y 
Observations 419,258 231,503 231,503 
R2 0.801 0.889 0.893 
Notes: Treated = 1 if a house is within 1 mile of a solar construction and Post =1 if a house sells post-
construction and LargeCapacity = 1 if the capacity of the installation is greater than 2 MW. Column 1 includes 
the following housing controls: lot size, house area, number of bedrooms, full bathrooms, half bathrooms, and 
fireplaces, a set of dummy variables for the age of the house at purchase, indicator variables for condos, the 
condition of the house, and for the presence of a pool and air conditioning. Standard errors are clustered at the 
tract level and shown in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively. 
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Table A6: Heterogeneity of treatment effects by years since construction of installation 

Independent variables 
Dependent variable: Sale price (ln) 

(1) (2) (3) 
Treated × Post (Less than 3 years) -0.016** -0.026*** -0.016** 

 (0.006) (0.009) (0.007) 
Treated × Post (3 or more years) -0.016** -0.024*** -0.016** 

 (0.006) (0.008) (0.007) 
Fixed Effects    
   Month-year Y Y Y 
   Block Y   

   Property   Y Y 
   County-year    Y 
Observations 419,258 419,258 231,503 
R2 0.491 0.801 0.889 
Notes: Post (Less than 3 years) = 1 if a house sells within 3 years post-construction, and Post (3 or more 
years) = 1 if a house sells 3 or more years post-construction. Columns 1 includes the following controls: 
lot size, house area, number of bedrooms, full bathrooms, half bathrooms, and fireplaces, a set of dummy 
variables for the age of the house at purchase, indicator variables for condos, the condition of the house, 
and for the presence of a pool and air conditioning, capacity of installation (in MW) and greenfield. 
Standard errors, clustered at the tract level, are in parentheses. *, **, and *** indicate significance at 
10%, 5%, and 1%, respectively. 
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