
 

Performance of the GenEst Mortality Estimator Compared to  

The Huso and Shoenfeld Estimators 

 

Final Report 

 

Prepared for: 

American Wind Wildlife Institute 

1990 K Street, NW, Suite 620 

Washington, DC 20006 

 

Prepared by:  

Paul A Rabie1, Daniel Riser-Espinoza1, Jared Studyvin1, 

Daniel Daltorp2, and Manuela Huso2 

1Western EcoSystems Technology, Inc. 

1610 Reynolds Street 

Laramie, Wyoming 82072  

 
2US Geological Survey Forest & Rangeland Ecosystem Science Center 

777 NW 9th Street Suite 400 

Corvallis, Oregon 97331 

 

September 23, 2020 

 

 

 

 

 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. i September 2020 

STUDY PARTICIPANTS 

Paul A Rabie Project Manager and Biometrician 
Daniel Riser-Espinoza Biometrician 
Jared Studyvin Biometrician 
Daniel Dalthorp Statistician 
Manuela Huso Research Statistician 
Julia Preston-Fulton Technical Editor 

 

 

REPORT REFERENCE 

Rabie, P. A., D. Riser-Espinoza, J. Studyvin, D. Dalthorp, and M. Huso. 2020. Performance of the GenEst 

Mortality Estimator Compared to The Huso and Shoenfeld Estimators. Draft Report. Prepared for 

The American Wind Wildlife Institute, Washington, DC. Prepared by Western EcoSystems 

Technologies, Inc. (WEST), Laramie, Wyoming and US Geological Survey Forest & Rangeland 

Ecosystem Science Center, Corvallis, Oregon. September 23, 2020. 

 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. ii September 2020 

TABLE OF CONTENTS 

1 INTRODUCTION ............................................................................................................ 1 

2 METHODS ..................................................................................................................... 2 

2.1 Mortality Estimation Components ............................................................................... 2 

2.2 Estimator Variants ...................................................................................................... 4 

2.3 Simulation Conditions ................................................................................................. 4 

2.4 Estimator Implementation ........................................................................................... 6 

2.5 Estimator Assessment ................................................................................................ 6 

3 RESULTS ....................................................................................................................... 7 

3.1 Bias ............................................................................................................................ 7 

3.2 Confidence Interval Coverage ...................................................................................10 

3.3 Precision and Confidence Interval Coverage .............................................................14 

4 Implications for the Analysis and Design of Post-construction Monitoring Studies .........22 

5 LITERATURE CITED ....................................................................................................24 

 

 

LIST OF TABLES 

Table 1. Factors and their values used in the simulations, and their descriptions. ...................... 5 

Table 2. Parameter values and modeled detection probabilities for the five estimators. p 

refers to initial searcher efficiency and k to the detection reduction factor. Persistence 

distributions are parameterized as in the base R software. mean CP:SI is the mean 

carcass persistence time (itself a function of the persistence distribution) divided by 

the search interval (seven days in all cases). mean CP:SI less than 1.0 implies the 

search interval is longer than the mean persistence time and mean CP:SI greater than 

1.0 implies the search interval is shorter than the mean persistence time. ...................... 8 

 

 

LIST OF FIGURES 

Figure 1. Relative bias of the five estimators under the 36 core scenarios that result in 

different detection probabilities. Within each panel, the x-axis repeats the k values 

twice. The y-axis has been log-transformed so an underestimate by a factor of 2 is 

visually similar to an overestimate by a factor of 2. The reference line at 1.0 indicates 

an unbiased estimator, points above the line suggest estimators biased high, and 

points below the line suggest estimators biased low. Dotted reference lines indicate 

estimates 0.8 and 1.2 times the unbiased value. ...........................................................11 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. iii September 2020 

Figure 2. Confidence interval (CI) coverage of the five estimators under different bias trial 

sample sizes (in columns). Within each panel, the realized coverage is plotted from 

low to high across all simulations we conducted. Nominal coverage is indicated with 

a brown line at 0.9 and the shaded region includes coverage from 0.8 to 0.95. The 

top row of panels includes all simulations, the second row excludes simulations for 

which the expected carcass count was less than 2.3 per stratum (road and pad or 

cleared plots), and the third row additionally excludes simulations with sampling 

inadequate to capture the variability in mortality rates across the facility (see text). .......12 

Figure 3. Precision and confidence Interval (CI) coverage of mortality estimates in response 

to total mortality and sample size for bias trials. Boxplots show the median (horizontal 

bar), 25th and 75th quantiles (lower and upper bounds of the boxes) and 5th and 95th 

quantiles (whiskers) of the widths of 90% CI for mortality estimates. CI coverage is 

indicated in blue on the right axis and with asterisks, with a reference line indicating 

90% coverage. The figure includes simulations for which there was a gradient of 

mortality across the 100-turbine wind facility. Sampling fraction was 100% with 30% 

of turbines searched as cleared plots and 70% as road and pads, p = 0.8, k = 0.7, 

and carcass persistence was Weibull distributed with mean persistence time equal to 

the search interval. ........................................................................................................16 

Figure 4. Precision and coverage of mortality estimates due to the carcass persistence time 

distribution, k and p. Boxplot interpretation as in Figure 3. The figure includes 

simulations for which total fatality was 1,000 individuals with a gradient of mortality 

across the 100-turbine wind facility. Sampling fraction was 100% with 30% of turbines 

searched as cleared plots and 70% as road and pads. Mean carcass persistence time 

was equal to the search interval. There were 50 bias trial carcasses available to 

estimate model parameters. ..........................................................................................17 

Figure 5. Precision and coverage of mortality estimates due to the length of the mean carcass 

persistence time relative to the search interval, k and p. Boxplot interpretation as in 

Figure 3. The figure includes simulations for which total fatality was 1,000 individuals 

with a gradient of mortality across the 100-turbine wind facility. Sampling fraction was 

100% with 30% of turbines searched as cleared plots and 70% as road and pads; 

carcass persistence was Weibull distributed. There were 50 bias trial carcasses 

available to estimate model parameters. .......................................................................18 

Figure 6. Precision and coverage of mortality estimates due to spatial distribution of fatalities, 

sampling fraction, and total number of turbines at the facility. Boxplot interpretation as 

in Figure 3. The figure includes simulations for which total fatality was 1,000 

individuals. Thirty percent of searched turbines were searched as cleared plots and 

70% as road and pads, p = 0.8, k = 0.7, and carcass persistence was Weibull 

distributed with mean persistence time equal to the search interval. There were 50 

bias trial carcasses available to estimate model parameters. ........................................20 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. iv September 2020 

Figure 7. Precision and coverage of mortality estimates due to the plot configuration, 

sampling fraction, and total number of turbines at the facility. Boxplot interpretation as 

in Figure 3. The figure includes simulations for which total fatality was 1,000 

individuals with a gradient of mortality across the wind facility, p = 0.8, k = 0.7, and 

carcass persistence was Weibull distributed with mean persistence time equal to the 

search interval. There were 50 bias trial carcasses available to estimate model 

parameters. ...................................................................................................................21 

 

 

 

 

 

 

 

 

 

 

 

 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. 1 September 2020 

1 INTRODUCTION 

The impacts of wind power development on bat and bird populations are commonly assessed by 

estimating the number of fatalities at wind power facilities through post-construction monitoring 

(PCM) studies. Standard methodology involves periodic carcass searches on plots beneath 

turbines (Strickland et al. 2011, US Fish and Wildlife Service 2012). The resulting counts are 

adjusted to compensate for bias due to imperfect carcass detection by searchers, removal of 

carcasses by scavengers or other processes (Korner-Nievergelt et al. 2011), and carcasses that 

may have fallen outside of searched areas. To account for the bias in counts due to imperfect 

detection and carcass removal, investigators typically conduct bias trial experiments to inform 

models of carcass detection probability. Many different estimators have been proposed that 

combine information about the bias trial experiments to estimate a detection probability for 

carcasses (g) and ultimately obtain an estimate of total mortality (M). The two estimators that 

have seen the most widespread use in North America recently are the Huso (Huso 2011, Huso 

et al. 2012) and Shoenfeld (Shoenfeld 2004; also called the Erickson estimator) estimators. 

GenEst (Dalthorp et al. 2018a, 2018b, 2018c) is the newest statistical estimator to become 

available and was designed to improve upon the Huso and Shoenfeld estimators by generalizing 

the key assumptions in both, and to improve comparability among new PCM studies. In addition 

to relaxing some of the assumptions inherent to the Huso and Shoenfeld estimators, GenEst uses 

a novel approach to variance estimation through a parametric bootstrap (Madsen et al. 2019). 

 

The current study was undertaken to document the performance of GenEst relative to the Huso 

and Shoenfeld estimators. We took a simulation approach to the study because simulation data 

provides the basis to compare mortality estimators under conditions where the “truth” is known. 

The estimators were compared on three metrics: 1) bias—the tendency of an estimator to over- 

or under-estimate mortality, 2) precision—the ability of an estimator to constrain an estimate to a 

narrow range (measured here as the width of a 90% confidence interval [CI] around the point 

estimate divided by the true, known mortality rate), and 3) CI coverage—the probability a CI with 

a specified level of confidence actually includes the true level of mortality.  

 

Although our simulations were conceived and designed—and are discussed—with respect to 

wind farms, it is important to note that the estimators and results discussed here are relevant to 

any post-construction mortality monitoring study that may occur (such as at solar facilities) where 

detection is imperfect. Although our study treats the problem of mortality estimation when 

detection is imperfect, it is also important to note that all of the estimators considered here are 

Horvitz-Thompson (Horvitz and Thompson 1952) style estimators, that is, none are designed to 

estimate the mortality of rare species as might be necessary under an Incidental Take Permit. 

The Evidence of Absence estimator (Dalthorp et al. 2017) is still the most appropriate statistical 

tool for rare event estimation.  

 

The simulations cover a broad range of conditions that may occur in field studies and complete 

results are presented without commentary in the appendix. The main body of this report does not 

provide a comprehensive treatment of our results; rather, we try to identify some of the more 
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important differences among the estimators and some conditions under which reliable mortality 

estimates are especially challenging. 

2 METHODS 

2.1 Mortality Estimation Components 

All of the estimators treated here address four or five of the same components of carcass 

detection probability to arrive at an estimate of total mortality, and differ primarily in the 

assumptions associated with the components of detection probability. We begin with a brief 

review of these components.  

 

The carcass persistence probability addresses the potential bias in carcass counts due to the fact 

that a carcass may be removed by a scavenger (or another process) before a searcher completes 

a monitoring survey. The GenEst and Huso estimators both use survival-modeling techniques to 

estimate a distribution of carcass persistence times, from which the average persistence 

probability can be calculated. These estimators provide the user with tools to help choose among 

different distributions for carcass persistence times, which makes them flexible with respect to the 

carcass persistence dynamics. The Shoenfeld estimator implicitly assumes carcass persistence 

times follow an exponential distribution. When persistence times do not meet this assumption, the 

Shoenfeld estimator can be biased. 

 

Searcher efficiency addresses the bias that arises from imperfect detection of carcasses by 

searchers. All of the estimators tested here take an initial searcher efficiency parameter (p), which 

may differ from season to season or between substrate strata at a wind farm. Searcher efficiency 

also depends on carcass age, as carcasses tend to become more difficult to discover as they 

age, and k describes how searcher efficiency changes as carcasses age. Carcasses newly 

arrived at a facility may be detected with probability p (above) or may be missed. Those carcasses 

that are missed may begin to disintegrate and become harder to detect, or may have been well 

concealed in the first place, so it is reasonable to expect that a carcass that has been missed 

once will have a lower detection probability than a fresh carcass. The k parameter describes how 

searcher efficiency changes through multiple searches. 

 

Shoenfeld assumes searcher efficiency does not depend on carcass age (𝑘 = 1). Huso assumes 

carcasses that are not discovered in the first search after arrival cannot be discovered in later 

searches, i.e., searcher efficiency goes to zero for carcasses missed in the first search (𝑘 = 0). 

Among the estimators tested here, only GenEst treats k explicitly. GenEst uses a maximum 

likelihood procedure to estimate p simultaneously with k, if there are multiple search data available 

(as in our GenEst-est k estimations below). If there are only single-search data available, the 

GenEst estimation routine to estimate p reduces to a logistic regression, and the user must specify 

a value (between zero and one) for k (as in our GenEst-fixed k simulations below, which used a 

fixed value of 0.7 for k). Choosing fixed k = 1 is equivalent to the Shoenfeld approach to modeling 

searcher efficiency, and choosing fixed k = 0 is equivalent to the Huso approach. The Huso 

estimator uses logistic regression to estimate p, and although there is no canonical approach to 
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estimating p for the Shoenfeld estimator, logistic regression is a reasonable choice and was used 

here.  

 

The estimators behave differently when presented with a data set for which either all or none of 

the searcher efficiency trial carcasses are detected. When no searcher efficiency trial carcasses 

are detected by searchers, the Shoenfeld and Huso estimators are unable to produce a mortality 

estimate because with p = 0, estimated mortality would be infinite, which is nonsensical. In 

contrast, the GenEst estimator (version 1.3.1 and later) uses an estimate of 1 / (2 * n) when no 

searcher efficiency trial carcasses are detected (e.g., if all of 10 carcasses are missed, GenEst 

will use an assumed value of 1/20 for p). Although this assumption introduces an unknown bias 

to the estimator, it allows GenEst to produce mortality estimates where other estimators fail. When 

all searcher efficiency trial carcasses are detected by searchers, the Shoenfeld and Huso 

estimators proceed with a searcher efficiency estimate of 1.0, which is also implausible and 

introduces an unknown bias, but perhaps not an unreasonable approximation of reality if the 

number of trial carcasses is large. Analogous to the zero-found case, the GenEst estimator (as of 

version 1.3.1) assumes searcher efficiency is 1 - 1 / (2 * n) when all carcasses are found (e.g., if 

all of 10 trial carcasses are detected, GenEst will use an assumed value of 19/20 for p). This 

assumption introduces an unknown bias to the estimator, but in most cases will be less biased 

than simply assuming p = 1 and gives a more realistic assessment of the uncertainty in the 

estimate of p (and total mortality) when all searcher efficiency carcasses are detected. 

 

A final important difference between the estimators is the treatment of uncertainty. Shoenfeld 

(2003) did not address uncertainty in the estimator. The Huso estimator uses a non-parametric 

bootstrap (i.e., a data-resampling procedure) to capture uncertainty in the detection probability 

and carcass counts, and we use the same approach for the Shoenfeld estimator. The GenEst 

estimator uses a parametric bootstrap procedure to capture uncertainty in the detection probability 

and carcass counts. For detection probability, this means parameter estimates are resampled 

based on the estimated uncertainty in the model; for carcass counts, the parametric bootstrap 

represents a completely novel approach developed specifically for the GenEst model (though it 

potentially has much wider application; Madsen et al. 2019). A consequence of the parametric 

bootstrap used by GenEst is that rather than the turbine being a statistical sample unit (as in the 

Huso and Shoenfeld estimators), the carcass is the sample unit, which frees GenEst from the 

assumption that mortality rates are constant among turbines and makes it applicable across a 

broader range of conditions. 

 

Differences in the way carcass persistence, searcher efficiency, k, and uncertainty are treated 

mark the most fundamental differences between the estimators tested here, but two other 

components of mortality estimation are also important and were included in our simulation. 

Sampling fraction refers to the fraction of wind turbines at a farm actually subject to search and is 

an important indicator of the actual sampling effort. The sampling effort also depends on plot 

configurations. Large, cleared plots may be expected to capture most carcasses that arrive at a 

wind farm, whereas road and pad searches that are restricted to the graveled surfaces around 

wind turbines may capture a small fraction of the total carcasses that arrive. The fraction of 
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carcasses expected to occur within searched areas is called the density-weighted proportion of 

area searched, or DWP.  

 

The estimated detection probabilities for all of the estimators treated here are adjusted after the 

fact to account for sampling fraction and DWP. Post hoc adjustment for sampling fraction and 

DWP means their effects on the point estimates of mortality scale linearly with sampling fraction 

and DWP, but because the different estimators handle uncertainty associated with carcass counts 

differently, these factors can impact precision and CI coverage differently for the different 

estimators. 

2.2 Estimator Variants 

The study tested estimator performance of five estimator variants (italicized below) under a variety 

of simulated conditions (Table 1). Three estimators were tested: the GenEst estimator (as in 

version 1.4.2 of the software), the Huso estimator, and the Shoenfeld estimator. GenEst has the 

capacity to estimate the proportional change in searcher efficiency with each successive 

search (k) or to treat it as fixed and known. For the GenEst-est k case, we estimated k from 

simulated bias trial data. For the GenEst-fixed k case, we assumed k was equal to 0.7, regardless 

of its actual value. The Huso estimator includes the implicit assumption that k is zero, which is to 

say it assumes that if a carcass is missed once it will never be detected. Carcass search data can 

be prepared to approximate this assumption by restricting the carcass counts to only those 

carcasses that are ‘fresh,’ i.e., occurred since the last search.  The notion that carcasses can be 

censored to satisfy the assumptions of the Huso estimator is simple in principle but it bears 

emphasizing that in the field, the task of censoring carcasses is influenced by a great deal of 

subjective judgment, and accuracy in the censoring process remains untested. Huso-censored 

estimates were calculated using carcass counts identified as fresh (with perfect accuracy), and 

Huso-not censored estimates used all carcasses in the estimates.  Neither of our Huso variants 

is likely to be the case in the field but they represent a range of potential outcomes. The Shoenfeld 

estimator makes the implicit assumption that k is 1.0, which means the detection probability for a 

carcass never changes, regardless of how many times it has been missed. Unlike the Huso 

estimator, there is no way to prepare the data so it matches the implicit assumptions of the 

Shoenfeld estimator. Thus, the three basic estimators resulted in five types of mortality estimates: 

GenEst-est k, GenEst-fixed k, Huso-censored, Huso-not censored, and Shoenfeld. 

2.3 Simulation Conditions 

Several factors affect the performance of these estimators. The factors that we consider are total 

mortality at a site, whether the mortality is evenly distributed among turbines or varies among 

turbines, the number of turbines at a site, the sampling fraction, the DWP (which depends on plot 

configuration), the carcass persistence distribution, the length of the search interval relative to the 

average carcass persistence time, the searcher efficiency, the value of k, and, finally, the number 

of trial carcasses used to estimate p, k, and carcass persistence.  

 

Each estimator was tested in the context of simulated mortality monitoring studies at a wind 

facility. The simulated studies covered 26 weeks with the search interval fixed at seven days. All 

simulated fatalities were assumed to be from the same class of animals in terms of detection and 
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persistence probability (i.e., all bats or all similarly sized birds). The total number of fatalities 

arriving at the wind facility, carcass persistence distribution, mean persistence time, searcher 

efficiency, number of bias trial carcasses, distribution of fatalities across the wind facility, and k 

were varied systematically across the simulations—see Table 1 for a description of all conditions 

tested during simulations. All combinations of conditions in Table 1 were simulated for each 

estimator, except for the combination of a uniform distribution of total mortality 𝑀= 10 at a site 

with 100 turbines because it is impossible to uniformly distribute 10 whole carcasses across 

100 turbines. There were 4,752 simulation scenarios to which each of the five estimators was 

applied. A carcass count and bias trial data were generated 1000 times for each of the 4,752 

scenarios. For each carcass count, each estimator gave a point estimate of mortality (�̂�) and a 

90% CI around �̂�.  

 

Table 1. Factors and their values used in the simulations, and their descriptions.  

Factor Levels  Description 

Total mortality (M) 
at a site 

M = 1000 
M = 100 
M = 10 

Total number of carcasses distributed at simulated wind 
facilities. 

Spatial distribution 
of mortality 

Uniform M 
 
 
Variable M 

Uniform M distribution indicates the case where the 
mortality rates are identical for all turbines at a facility. 
 
Variable M distribution indicates the case where the 
mortality rates at turbines within a wind facility included a 
five-fold variation from the least lethal turbine to the most 
lethal turbine. 

Number of 
turbines 

100 turbines 

10 turbines 
Number of turbines over which to distribute total fatalities. 

Sampling fraction 
(f) 

f = 1.0 

f = 0.3 
Proportion of total turbines at a facility that were searched. 

Plot configurations Plot type = Cleared 
Plot type = Cleared + RP 

Plot configuration for searches involved either cleared plots 
at all searched turbines (assumed large enough to capture 
all carcasses) or a mixture of 30% cleared plots and 70% 
of turbines searched on road and pads (large enough to 
capture 15% of carcasses). 

Carcass 
persistence time 
distribution1 

Exponential 
Weibull 

Carcass persistence times followed either an exponential 
distribution or a Weibull distribution with a shape parameter 
equal to 0.6.  

Ratio of average 
persistence time 
to search interval 

Mean CP:SI = 1/3  
Mean CP:SI = 1 

Mean CP:SI = 3 

Ratio of average carcass persistence time:length of search 
interval; these resulted in probability of persisting through 
the search interval (r) being 21%, 33% and 27% higher for 
the exponential than Weibull, respectively . 

Searcher 
efficiency for a 
fresh carcass 

p = 0.8 

p = 0.2 
Probability a fresh carcass will be detected on a search, 
assuming it has not been removed 

Detection 
reduction factor 
(k) 

k = 0 
k = 0.7 

k = 1.0 

Fraction by which searcher efficiency for an aging carcass 
decreases with each successive search. 

Number (N) of 
bias trial 
carcasses 

N bias trials = Infinite 
N bias trials = 50 

N bias trials = 10 

Mortality estimators are informed by bias trials to estimate 
searcher efficiency, carcass persistence (and for GenEst, 
k). We simulated 10 or 50 bias trials, and the ideal case 
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where components of bias were known with certainty  
(N bias trials = infinite). 

Estimator GenEst-est k 
GenEst-fixed k 
Huso-censored 
Huso-not censored 
Shoenfeld 

See text above. 

 

 

2.4 Estimator Implementation 

Estimates and CIs (parametric) for GenEst-est k and GenEst-fixed k were generated using 

version 1.4.2 of the GenEst R package. For the Huso-censored, and Huso-not censored, 

estimates and CIs were generated using R code adapted from US Geological Survey Data 

Series 729 (Huso et al. 2012), and, thus, replicate the expected behavior of the Huso estimator 

as implemented in Data Series 729. There is no R package or publicly available software for 

implementing the Shoenfeld estimator, and critical details of the implementation of the estimator 

can vary considerably from project to project. The estimates for Shoenfeld were generated using 

R code developed by WEST based on Shoenfeld (2004). CIs for the Huso and Shoenfeld 

estimators were generated using a non-parametric bootstrap approach similar to that used in Data 

Series 729. For the Huso and Shoenfeld estimator variants, no estimate was produced for a 

simulation iteration when zero searcher efficiency carcasses were found on the first search of the 

associated simulated bias trials, although in DS 729 a minimum SE of 1/20 is assumed in such 

cases. GenEst version 1.3.1 and later assumes p = 1 / (2 * n) in these cases. 

2.5 Estimator Assessment 

Estimator performance was assessed based on three metrics: CI coverage, relative bias, and 

precision. CI coverage is calculated as the proportion of the 1000 simulated 90% CIs around �̂� 

that contain the true mortality, 𝑀. That the 90% CI actually achieve nominal coverage, i.e., that it 

includes 𝑀 90% of the time, is important for correct interpretation of results. A 90% CI that 

contains the true 𝑀 100% of the time would be easy to construct, e.g., 𝑀 is between what was 

found and some very large number, 1,000,000 say, but would be of little practical value. 

Conversely, a very narrow CI might look appealing from a precision perspective, but, again, would 

be of little value if it never included the true value of M. The relative bias is calculated as the 

estimated mortality (�̂�) divided by the true mortality 𝑀. The ratio equals 1.0 when the estimate is 

identical to the true mortality, is greater than 1.0 for estimates above the true 𝑀, and less than 1.0 

for estimates below the true 𝑀. Relative bias of ½ is equivalent to bias of 2 in terms of how far the 

estimator misses the mark. Precision is calculated as the width of the 90% CI around the estimate 

of 𝑀 divided by the true mortality 𝑀. We chose to standardize this metric, analogously to a 

coefficient of variation, to facilitate comparison of precision across different levels of true mortality. 

 

None of the three metrics can be interpreted well by itself. For example, an estimator may be 

unbiased, i.e., its average value over the 1000 iterations is exactly the true mortality, but it may 

also be very imprecise with 90% CIs so large that they cover the true mortality 100% of the time. 

An estimator with this characteristic is unlikely to be of practical use. An estimator may, on the 
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other hand, be extremely precise, but the 90% CIs so narrow that they rarely include the true 

mortality. The best estimator will be one that is consistently accurate (relative bias = 1), precise, 

and achieves nominal coverage. To present the results in a manageable way, we begin with a 

discussion of the inherent biases of the estimators, followed by a high-level overview of CI 

coverage, and then a series of results for which we discuss precision and coverage 

simultaneously.  

3 RESULTS 

3.1 Bias 

The Huso, GenEst, and Shoenfeld estimators differ most profoundly in the parameters used in 

estimating overall detection probability and the assumptions on which those detection probability 

models are based. We begin by analyzing the 36 core scenarios that include all combinations of 

the searcher efficiency, k, and carcass persistence parameters that we investigated. For this 

analysis, we ignore the factors that primarily affect the assessments of uncertainty (total mortality, 

the spatial dispersion of carcasses among turbines, the number of turbines, and the number of 

field trial carcasses) and the extrapolation factors (DWP and sampling fraction), which the three 

estimators handle in similar ways.  

 

Table 2 gives the modeled probability of detection (𝑔) for each of the five estimators, assuming 

the sampling fraction and density-weighted proportion of carcasses are both 1.0 under the 36 core 

scenarios. The 36 unique simulation scenarios derive from two levels of searcher efficiency 

(0.2 and 0.8), three levels of k (0, 0.7 and 1.0), two carcass persistence distributions (Exponential 

and Weibull), and three mean carcass persistence times relative to search interval (1/3, 1, 3). The 

modeled detection probabilities for GenEst with known k and for Huso with perfect carcass 

censoring are exactly correct, but they differ from one another when k is not zero because they 

assume different data collection procedures in the field. The Huso estimator is unbiased when 

k = 0 or when carcasses are accurately censored, but biased by a factor of 
𝑔𝐺𝑒𝑛𝐸𝑠𝑡

𝑔𝐻𝑢𝑠𝑜
 when k is 

greater than zero and carcasses are not censored. 
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Table 2. Parameter values and modeled detection probabilities for the five estimators. p refers to initial searcher 
efficiency and k to the detection reduction factor. Persistence distributions are parameterized as in the base 
R software. Mean CP:SI is the mean carcass persistence time (itself a function of the persistence distribution) 
divided by the search interval (seven days in all cases). Mean CP:SI less than 1.0 implies the search interval 
is longer than the mean persistence time and mean CP:SI greater than 1.0 implies the search interval is shorter 
than the mean persistence time. 

Estimator parameters Modeled detection probabilities 

p k 
Persistence distribution 
(parameters) Mean CP:SI 

GenEst-k 
known 

GenEst-k 
assumed to be 0.7 

Huso (both 
variants) Shoenfeld 

0.8 1.0 exponential (rate = 0.0476) 3.00 0.789 0.766 0.680 0.794 
0.8 1.0 exponential (rate = 0.1429) 1.00 0.544 0.534 0.506 0.546 
0.8 1.0 exponential (rate = 0.4286) 0.33 0.256 0.255 0.253 0.256 
0.8 1.0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.615 0.599 0.537 0.794 
0.8 1.0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.415 0.406 0.380 0.546 
0.8 1.0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.217 0.215 0.210 0.256 
0.8 0.7 exponential (rate = 0.0476) 3.00 0.766 0.766 0.68 0.794 
0.8 0.7 exponential (rate = 0.1429) 1.00 0.534 0.534 0.506 0.546 
0.8 0.7 exponential (rate = 0.4286) 0.33 0.255 0.255 0.253 0.256 
0.8 0.7 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.599 0.599 0.537 0.794 
0.8 0.7 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.406 0.406 0.380 0.546 
0.8 0.7 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.215 0.215 0.210 0.256 
0.8 0 exponential (rate = 0.0476) 3.00 0.680 0.766 0.680 0.794 
0.8 0 exponential (rate = 0.1429) 1.00 0.506 0.534 0.506 0.546 
0.8 0 exponential (rate = 0.4286) 0.33 0.253 0.255 0.253 0.256 
0.8 0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.537 0.599 0.537 0.794 
0.8 0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.380 0.406 0.380 0.546 
0.8 0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.210 0.215 0.210 0.256 
0.2 1.0 exponential (rate = 0.0476) 3.00 0.378 0.284 0.170 0.399 
0.2 1.0 exponential (rate = 0.1429) 1.00 0.176 0.158 0.126 0.179 
0.2 1.0 exponential (rate = 0.4286) 0.33 0.066 0.065 0.063 0.066 
0.2 1.0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.298 0.220 0.134 0.399 
0.2 1.0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.151 0.128 0.095 0.179 
0.2 1.0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.062 0.059 0.052 0.066 
0.2 0.7 exponential (rate = 0.0476) 3.00 0.284 0.284 0.170 0.399 
0.2 0.7 exponential (rate = 0.1429) 1.00 0.158 0.158 0.126 0.179 
0.2 0.7 exponential (rate = 0.4286) 0.33 0.065 0.065 0.063 0.066 
0.2 0.7 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.220 0.220 0.134 0.399 
0.2 0.7 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.128 0.128 0.095 0.179 
0.2 0.7 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.059 0.059 0.052 0.066 
0.2 0 exponential (rate = 0.0476) 3.00 0.170 0.284 0.170 0.399 
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Table 2. Parameter values and modeled detection probabilities for the five estimators. p refers to initial searcher 
efficiency and k to the detection reduction factor. Persistence distributions are parameterized as in the base 
R software. Mean CP:SI is the mean carcass persistence time (itself a function of the persistence distribution) 
divided by the search interval (seven days in all cases). Mean CP:SI less than 1.0 implies the search interval 
is longer than the mean persistence time and mean CP:SI greater than 1.0 implies the search interval is shorter 
than the mean persistence time. 

Estimator parameters Modeled detection probabilities 

p k 
Persistence distribution 
(parameters) Mean CP:SI 

GenEst-k 
known 

GenEst-k 
assumed to be 0.7 

Huso (both 
variants) Shoenfeld 

0.2 0 exponential (rate = 0.1429) 1.00 0.126 0.158 0.126 0.179 
0.2 0 exponential (rate = 0.4286) 0.33 0.063 0.065 0.063 0.066 
0.2 0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.134 0.220 0.134 0.399 
0.2 0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.095 0.128 0.095 0.179 
0.2 0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.052 0.059 0.052 0.066 
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Figure 1 shows that the GenEst-est k and the Huso-censored estimators are unbiased under all 

36 combinations. GenEst-fixed k becomes biased when k is mis-specified: when k is assumed 

higher than the real value, GenEst-fixed k becomes biased low, and when it is assumed lower 

than the real value, GenEst-fixed k becomes biased high. Low values of p and long carcass 

persistence times relative to the search interval cause the greatest degree of bias in GenEst-fixed 

k with mis-specified values of k. The Huso-not censored estimator is unbiased only in the unlikely 

event that the true value of k is zero (i.e., there really is only one chance to detect a carcass in 

the field). When k is greater than zero, the Huso-not censored estimator is biased high. Higher 

values of k, lower values of p, and long persistence times relative to the search interval cause the 

greatest degree of bias in the Huso-not censored estimator. In most cases, (and all cases tested 

here), the Shoenfeld estimator is biased low because it implicitly assumes 1) k is 1.0, 2) carcass 

persistence times are exponentially distributed, and 3) each carcass is subject to an infinite 

number of searches. Thus, even in the unlikely situation where k is 1.0 (i.e., carcasses are equally 

detectable after any number of searches), the Shoenfeld estimator slightly underestimates 

fatalities. Underestimates are more pronounced with smaller values of k, with lower values of p, 

and with shorter persistence times relative to the searcher interval. For the carcass persistence 

distributions tested here, the underestimates by the Shoenfeld estimator are more pronounced 

with Weibull-distributed carcass persistence times than with exponentially distributed carcass 

persistence times. This outcome is because the Weibull shape parameter we used (0.6) implies 

more rapid removal of fresh carcasses compared to exponentially distributed persistence times, 

but this result is not necessarily true for all possible Weibull-distributed carcass persistence 

dynamics. 

3.2 Confidence Interval Coverage 

CI coverage refers to the probability a CI will include the true value of a parameter that is being 

estimated. Ideally, an estimator should produce CIs with nominal coverage—i.e., ideally a 90% CI 

should include the truth with 90% probability. CI coverage greater than nominal suggests CIs are 

too wide. CI coverage less than nominal can be due to estimators that are “missing” variance (CIs 

too narrow), or to bias (systematic over- or under- estimation) in the estimators.  

 

There are some easily identified conditions under which no Horvitz-Thompson estimators 

consistently achieve nominal coverage. Figure 2 illustrates these. The figure is organized into 

three columns according to the precision with which detection probability is estimated. In the left 

column (infinite bias trials), the detection probability is known exactly and without error, the center 

column presents results from simulations in which 50 bias trial carcasses were used to estimate 

carcass persistence and searcher efficiency models, and the right column presents results from 

simulations using 10 bias trial carcasses. In all panels, the actual CI coverage associated with 

simulation conditions was sorted from low to high for each estimator and plotted as a line. An 

ideal estimator would be represented by a horizontal line on top of the reference line at 90% CI 

coverage. The longer an estimator’s line is within the shaded area (representing 80% - 95% 

coverage), the better its coverage property. The three rows in Figure 2 represent successive 

elimination of conditions under which no Horvitz-Thompson estimator can achieve good 

coverage.
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Figure 1. Relative bias of the five estimators under the 36 core scenarios that result in different 

detection probabilities. Within each panel, the x-axis repeats the k values twice. The 
y-axis has been log-transformed so that an underestimate by a factor of 2 is visually 
similar to an overestimate by a factor of 2. The reference line at 1.0 indicates an 
unbiased estimator, points above the line suggest estimators that are biased high, and 
points below the line suggest estimators that are biased low. Dotted reference lines 
indicate estimates that are 0.8 and 1.2 times the unbiased value.  
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Figure 2. Confidence interval (CI) coverage of the five estimators under different bias trial 

sample sizes (in columns). Within each panel, the realized coverage is plotted 
from low to high across all simulations we conducted. Nominal coverage is 
indicated with a brown line at 0.9 and the shaded region includes coverage from 
0.8 to 0.95. The top row of panels includes all simulations, the second row 
excludes simulations for which the expected carcass count was less than 2.3 per 
stratum (road and pad or cleared plots), and the third row additionally excludes 
simulations with sampling inadequate to capture the variability in mortality rates 
across the facility (see text). 



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. 13 September 2020 

The five estimator variants in Figure 2 are easier to distinguish from one another under the 

theoretical-ideal case when detection probability is known (i.e. in the left-hand panels), compared 

to when detection parameters are estimated because there is less “noise.” A second pattern is 

that as the bias trials use fewer carcasses, the coverages for Shoenfeld, Huso, and GenEst with 

fixed k tend to increase because the uncertainties involved in estimating the SE and CP 

parameters when few trial carcasses are used partially mask the problem of inherent estimator 

biases.  

 

The top row of Figure 2 includes all simulation conditions and shows that for 30–40% of the 

simulated conditions, none of the estimators achieved even 80% actual CI coverage with a 

nominal 90% CI. The GenEst-est k estimator and Huso-censored estimators always outperformed 

the others, followed by the GenEst-fixed k, Huso-not censored, and Shoenfeld estimators. It is 

important to note that the simulation conditions are not necessarily a representative sample of 

field conditions, and some were included precisely because they were expected to cause the 

estimators to fail. The second and third row of panels in Figure 2 sequentially remove some of 

the most troublesome simulation conditions to illustrate their impact on CI coverage. 

 

All Horvitz-Thompson estimators fail under conditions of very few fatalities or very low detection 

probability (Korner-Nievergelt et al. 2011) because they all produce estimates of zero mortality 

with no variance when no carcasses are found. If true mortality is not zero, then these estimates 

will fail to cover the true mortality, and there is an upper bound on the achievable confidence level. 

Considering a 90% CI: if there is more than a 100% - 90% = 10% chance that zero carcasses will 

be detected, it will be impossible to achieve 90% CI coverage with a 90% CI because at least 

10% of the time the estimate is zero. It happens that any conditions where the expected average 

carcass count is less than 2.31 are statistically bound to under-cover a nominally 90% CI, and 

greater confidence levels require greater average carcass counts (a 95% CI requires an expected 

count of at least 2.99). Further, for data with multiple types of search plots (i.e., groups of plots 

with different detection probabilities, as occurs in data with some plots searched as road and pads 

and others with cleared plots), it is necessary that the expected carcass count be at least 2.3 in 

each type of search plots. Adequate expected carcass counts in all types of search plots are 

necessary to ensure that the data are balanced in a way that accurately reflects the overall 

detection probability for the whole study. 

 

The second row of panels in Figure 2 is plotted after excluding all simulation cases for which the 

expected carcass count is less than 2.3 in any type of search plots. For the ideal case where bias 

parameters are known (left hand panel), the coverage for GenEst-est k, Huso-censored, and 

GenEst-fixed k estimators all improve markedly, Huso-not censored improves moderately, and 

coverage of Shoenfeld estimates is nearly unchanged. As bias trial sample size decreases 

(moving right across the panels), the coverage of the worst-performing estimators increases due 

to widening CI’s and the five estimators behave more similarly to one another, though the rank-

order performance (GenEst-est k>Huso-censored>GenEst-fixed k>Huso-not 

censored>Shoenfeld) is maintained. 

                                                
1 The probability that a carcass count, x, is zero, assuming x is Poisson-distributed with mean 2.3 is 0.10. 
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Another PCM design condition that can cause problems for estimators is a sampling strategy that 

is inadequate to capture the variability in mortality from turbine to turbine across the facility. In the 

simulations presented here, these conditions are present in cases where 1) there were just 

10 turbines at the wind facility, 2) a gradient of mortality among the turbines (see Spatial 

Distribution of Mortality in Table 1), and 3) a sampling fraction of 30% of the turbines (i.e., just 3 

turbines). In those cases, the probability of a sample that is not representative of average 

conditions at the site is high. 

 

The third row of panels in Figure 2 is plotted after excluding cases where the expected carcass 

count in any stratum was less than 2.3 and excluding cases where there were just 10 turbines at 

a wind facility with a gradient of mortality among turbines and a 30% sample of searched turbines. 

In this case, the GenEst-est k estimator almost never achieves less than 80% coverage for a 

nominal 90% CI. To the extent that the Huso-censored estimator underperforms GenEst-est k, it 

is due to differences in the way uncertainty in counts is estimated (nonparametric bootstrap versus 

parametric bootstrap). To the extent that the GenEst-fixed k estimator underperforms GenEst-

est k, it is due to violations of the assumption about the value of k. For Huso-not censored and 

Shoenfeld estimators, both treatment of uncertainty and violated assumptions contribute to under-

coverage. 

 

After eliminating conditions under which no Horvitz-Thompson estimator can achieve good 

coverage and when only 10 trial carcasses are used to estimate detection parameters, all the 

estimators achieve coverage close to 90% in > 80% of the remaining cases, but as discussed 

below, this is at a cost of precision, i.e., wide confidence intervals. 

3.3 Precision and Confidence Interval Coverage 

Precision refers to the dispersion of an estimate around its point value and in this document is 

assessed as the width of the 90% CI divided by the true mortality—a standardization that 

facilitates comparisons across scenarios with greatly varying 𝑀. In general, precision is useless 

if coverage is poor because an estimate that is tightly constrained around the wrong answer can 

only mislead. Consequently, precision and coverage are both shown on each figure in this section, 

and for results with poor coverage, we do not dwell on precision. 

 

Figures 3 through 7 are all formatted similarly. Each figure has five rows of panels with the 

response of one of the estimators on each row. Each figure has two or three columns of panels 

that include simulations with one level of a factor, and the x-axis of each panel includes the levels 

of one or two factors from the simulation. Each panel has two y-axes; the axis on the left indicates 

relative width of the 90% CI (i.e., 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑−𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑀
), and the figures use boxplots to 

demonstrate the distribution of relative CI widths obtained in the simulations. The right y-axis 

indicates CI coverage for the simulations with a reference line at the nominal, 90% coverage and 

asterisks to indicate the coverage obtained in our simulations. The right axis and plotting are in 

blue to help distinguish them from the relative CI width information. 
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Precision and coverage were both strongly affected by the level of total mortality at a facility 

(Figure 3). All five estimators had coverage far below the nominal 90% when total mortality was 

10. As discussed in the CI section above, these estimators are not designed to handle rare-event 

estimation and are known to break down when there are few detections. Consequently, M = 10 

cases are not discussed further in this document. Of the five estimators, only the Shoenfeld 

estimator failed to achieve nominal coverage with M = 100 or 1,000 carcasses, because the 

simulated carcass removal conditions (Weibull distributed removal times) do not match the 

assumption inherent in the Shoenfeld estimator (exponentially distributed removal times). For all 

five estimators, relative precision increased with the total mortality and as the number of bias trial 

carcasses increased. Higher total mortality reduces the sampling error in the search process, and 

larger sample sizes for bias trials increases the precision in the bias correction factors, both of 

which lead to greater precision in the mortality estimates. The increase in precision associated 

with larger bias trial sample sizes was greater as the effort increased from 10 to 50 carcasses 

than as the effort increased from 50 carcasses to infinite (which implies bias correction factors 

are known without error), suggesting diminishing returns as the number of bias trials increases 

beyond 50.  

 

Among the five estimators, only the Shoenfeld estimates had coverage that was strongly affected 

by the carcass persistence time distribution (Figure 4). Most Shoenfeld estimates had coverage 

that was less than nominal when carcass persistence times followed a Weibull distribution 

because the Weibull-distributed persistence times violate one of the core assumptions for that 

estimator. Coverage of Huso-not censored, Shoenfeld and, to a lesser extent, GenEst-fixed k 

estimates was less than nominal when the true value of k violated the estimators’ assumptions 

(i.e., k = 0, k = 1.0, or k = 0.7, respectively). Except for the Shoenfeld estimates when carcass 

persistence time was Weibull distributed, the effect was reduced when p = 0.8 because the 

influence of k on detection probability is reduced as p increases. Coverage of GenEst-est k 

estimates and Huso-censored estimates was close to nominal for all combinations of persistence 

time distribution, p and k, because the data that informs those estimates (as gathered for GenEst, 

or censored for Huso) does not violate any of their core assumptions. All of the estimates 

summarized in Figure 4 had less precision with lower p because there is more uncertainty in the 

final estimate when the detection probability is lower. Most of the estimates summarized in Figure 

4 also had less precision with Weibull-distributed carcass persistence time, probably because the 

particular Weibull distribution we used has more rapid removal of fresh carcasses compared to 

an exponential distribution with the same mean persistence time, so that the overall detection 

probability is lower with the Weibull distribution. For estimators with bias that is sensitive to the 

true value of k, precision also increased as the true value of k increased because the precision in 

an estimate tends to scale with the estimated value of M rather than the true value of M (data not 

shown).  
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Figure 3. Precision and confidence Interval (CI) coverage of mortality estimates in response to 

total mortality and sample size for bias trials. Boxplots show the median (horizontal bar), 
25th and 75th quantiles (lower and upper bounds of the boxes) and 5th and 95th quantiles 
(whiskers) of the widths of 90% CI for mortality estimates. CI coverage is indicated in blue 
on the right axis and with asterisks, with a reference line indicating 90% coverage. The 
figure includes simulations for which there was a gradient of mortality across the 
100-turbine wind facility. Sampling fraction was 100% with 30% of turbines searched as 
cleared plots and 70% as road and pads, p = 0.8, k = 0.7, and carcass persistence was 
Weibull distributed with mean persistence time equal to the search interval. 
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Figure 4. Precision and coverage of mortality estimates due to the carcass persistence time 

distribution, k and p. Boxplot interpretation as in Figure 3. The figure includes simulations 
for which total fatality was 1,000 individuals with a gradient of mortality across the 100-
turbine wind facility. Sampling fraction was 100% with 30% of turbines searched as 
cleared plots and 70% as road and pads. Mean carcass persistence time was equal to the 
search interval. There were 50 bias trial carcasses available to estimate model 
parameters. 
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Figure 5. Precision and coverage of mortality estimates due to the length of the mean carcass 

persistence time relative to the search interval, k and p. Boxplot interpretation as in 
Figure 3. The figure includes simulations for which total fatality was 1,000 individuals with 
a gradient of mortality across the 100-turbine wind facility. Sampling fraction was 100% 
with 30% of turbines searched as cleared plots and 70% as road and pads; carcass 
persistence was Weibull distributed. There were 50 bias trial carcasses available to 
estimate model parameters.  



Performance of the GenEst Statisitcal Mortality Estimator 

 

WEST, Inc. 19 September 2020 

CI coverage was insensitive to the mean carcass persistence time: search interval ratio for all 

cases where the value of k and the removal-time distribution matched the assumptions of the 

estimator. These cases include GenEst-est k (all conditions), GenEst-fixed k (when k = 0.7), 

Huso-not censored (when k = 0), Huso-censored (all conditions because censored data match 

the assumption), but not Shoenfeld (due to the mismatch between the Weibull removal time 

distribution and the Shoenfeld assumption of an exponential removal time distribution; Figure 5). 

Coverage was also relatively insensitive to k for all estimators when the mean carcass persistence 

time was short relative to the search interval (i.e., 1/3) because the influence of k on detection 

probability is low under conditions when carcasses are likely to be removed before a second 

search can occur. For the same reason, the influence of k on coverage for GenEst-fixed k, 

Huso-not censored, and Shoenfeld was greatest when carcass persistence time was long (i.e., 3) 

relative to the search interval.  

 

Variable mortality rates between turbines resulted in coverages that deviated from nominal 

coverage compared to cases where the mortality rate was uniform among turbines (Figure 6). In 

most cases (Shoenfeld excepted; see above), variable mortality rates resulted in modest 

differences between actual and nominal coverage, except where the monitoring included a 30% 

sample of 10 turbines (i.e., a sample of just three turbines). In these cases, the coverage was 

slightly higher for estimators using a non-parametric bootstrap (the two Huso estimators and the 

Shoenfeld estimator) compared to the GenEst estimators, because the nonparametric bootstrap 

rolls up some of the turbine-to-turbine count variation in the variability around the M estimate, 

whereas the GenEst parametric bootstrap does not. Small differences notwithstanding, the 

coverage with a 3-turbine sample was poor because it is easy with such a small sample to obtain 

a monitoring data set that is not representative of the overall facility. The risks associated with 

small sample sizes have long been recognized, which is why the Comprehensive Guide to 

Studying Wind Energy/Wildlife Interactions (Strickland et al. 2011) recommends a sample of at 

least 10 turbines for PCM studies. The two Huso estimators had a slight tendency to over-cover 

when there was both 100% of turbines surveyed and variation in the mortality rate between 

turbines, again, because the non-parametric bootstrap tends to include turbine-to-turbine 

variability in the variation associated with estimated mortality and, so, over-estimates variability 

when the turbine sample represents a complete census. When all turbines are sampled, including 

turbine-to-turbine variability in the mortality estimate is inappropriate. Coverage for the GenEst 

and Huso estimators was usually close to nominal when mortality rates were uniform among 

turbines. The Huso and Shoenfeld estimators had less precision when mortality was not uniform 

among turbines, and all estimators had less precision with a 30% sample than when 100% of 

turbines were included in the surveys. Although searching every turbine is a failsafe option, it is 

not always feasible. When sampling is necessary, these results emphasize the importance of 

using a sample of turbines that is a good representation of the entire facility.  
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Figure 6. Precision and coverage of mortality estimates due to spatial distribution of fatalities, 

sampling fraction, and total number of turbines at the facility. Boxplot interpretation as 
in Figure 3. The figure includes simulations for which total fatality was 1,000 individuals. 
Thirty percent of searched turbines were searched as cleared plots and 70% as road 
and pads, p = 0.8, k = 0.7, and carcass persistence was Weibull distributed with mean 
persistence time equal to the search interval. There were 50 bias trial carcasses 
available to estimate model parameters.  
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Figure 7. Precision and coverage of mortality estimates due to the plot configuration, sampling 

fraction, and total number of turbines at the facility. Boxplot interpretation as in Figure 3. 
The figure includes simulations for which total fatality was 1,000 individuals with a 
gradient of mortality across the wind facility, p = 0.8, k = 0.7, and carcass persistence 
was Weibull distributed with mean persistence time equal to the search interval. There 
were 50 bias trial carcasses available to estimate model parameters.  
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Plot configurations had little effect on coverage or precision of estimates from any estimator, aside 

from those already noted to result from lower detection probabilities or low numbers of turbines 

included in the sample (Figure 7). However, our simulation results should not be taken as an 

indication that plot configurations are unimportant. We note that in our simulations the area 

correction associated with road and pads was assumed known without error or uncertainty, but, 

in practice, area corrections are difficult to estimate and can introduce considerable uncertainty 

into mortality estimates (though they would do so equally across all of the estimators considered 

here). The degradation of precision associated with road and pad sampling in Figure 7 is likely 

understated relative to the results that would be realized if the DWP had to be estimated from 

data. 

4 Implications for the Analysis and Design of Post-construction 

Monitoring Studies 

Key implications for the design and analysis of post-construction monitoring studies 

 GenEst is currently the best available statistical mortality estimator 

 Study-specific estimates of k are ideal 

 Maintaining high levels of initial searcher efficiency will mitigate cases when k cannot be 

estimated, because mortality estimates are less sensitive to k when initial searcher efficiency is 

high 

 It is essential for study designs to capture a representative sample of the wind facility-no 

estimator performs well with a poor sample 

 Higher sampling fractions may be warranted when the total number of turbines at a facility is 

low or when there may be a gradient in mortality across the facility 

 Mortality estimates and their confidence intervals are unreliable when carcass counts are low 

(less than three per stratum) 

 Low detection probabilities lead to poor precision 

 Precision increased notably as bias trial sample size increased from 10 per stratum to 50 per 

stratum, but there were diminishing benefits beyond 50 

GenEst-est k and Huso-censored are both unbiased estimators across all simulation conditions 

tested here (Figure 1). GenEst-est k outperforms all other estimators in terms of CI coverage 

across all simulation conditions tested here (Figure 2). Considering just comparisons between 

estimators that are achieving nominal coverage or close to it, GenEst-est k is as precise, or more 

so, than any of the other estimators (Figures 3–7). By these criteria, GenEst-est k should be the 

clear choice of estimator for the analysis of PCM studies.  

 

By contrast, although the Shoenfeld estimator was state-of-the-art when it was first introduced 

in 2004, it includes strong assumptions and our simulations show that it is biased under a variety 

of conditions (Figure 1), and does not achieve nominal CI coverage under a variety of conditions 

(Figure 2). For these reasons, the Shoenfeld estimator will not be considered further. Similarly, 

Huso-not censored is sometimes biased (Figure 1) and is much more prone to under-coverage 

than Huso-censored (Figure 2), so it will not be considered further. 
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Although the purely statistical criteria above point unambiguously to GenEst-est k, cost is also a 

factor in PCM study design, estimating k can be expensive, and under some conditions (see 

below) mortality estimates are relatively insensitive to k. Further, even when PCM data are 

planned to estimate k, k is a difficult parameter to estimate and the fitting routine sometimes fails. 

For example, the GenEst-est k estimator failed to estimate the k parameter 39% of the time with 

10 bias trials and 11% of the time with 50 bias trail carcasses. In these cases, or when data are 

not available to estimate the k parameter, a user has to choose an alternative estimator.  

 

For two reasons, the GenEst-fixed k estimator is a better choice than the Huso-censored 

estimator. First, GenEst-fixed k can take any value for an assumed k, and, so, can use the same 

k = 0 modelling approach as the Huso-censored estimator, if desired. Second, our results for the 

Huso-censored estimator are optimistic because we were able to guarantee that the censoring 

process was perfect. In other words, our virtual searchers were able to discern perfectly whether 

a carcass was fresh since the prior search or old and had been missed on a prior search. In the 

field, the potential for systematic errors in the censoring process is much higher. Practitioners 

should weigh the potential for censoring errors against the impact of mis-specifying an assumed 

value of k for GenEst-fixed k. The sensitivity of estimates to k is beyond the scope of these 

simulations, but interested parties can investigate the effect of the value of k on mortality estimates 

at https://west-inc.shinyapps.io/GenEstSens/. Under a wide range of conditions, and particularly 

when k is difficult to estimate (i.e., fast carcass removal or high initial searcher efficiency), mortality 

estimates are relatively insensitive to k. 

 

An important outcome from these simulations is the finding that the Huso-censored estimator and 

GenEst-est k are both unbiased (assuming perfect censoring for the former). The practical 

implication for wind power plant operators is that mortality estimates produced by GenEst should 

be comparable in magnitude to estimates produced by Huso-censored. Practitioners transitioning 

from Shoenfeld to GenEst (or from Shoenfeld to Huso) should expect to see mortality estimates 

increase moderately, due to the bias inherent in the Shoenfeld estimator. 

 

In practice, we do not know the true mortality in the field, nor any of the true parameter values for 

our search process. This simple fact emphasizes the value of an estimator—such as GenEst—

that performs well under a wide variety of conditions. In addition, practitioners should be aware of 

PCM designs that will cause all estimators to fail. Chief among these is the case where carcass 

detection is a rare event. In our simulations, a threshold of 2.3 expected carcasses per stratum 

vastly improved the CI coverage of all estimators. A detailed analysis of threshold counts for 

reliable estimates from GenEst is not yet available, but as an initial heuristic, practitioners should 

treat estimates based on data with fewer than three carcasses per stratum with caution. Finally, 

PCM designs need to be adequate to fully represent the variability at the facilities where they are 

implemented. For facilities with small numbers of turbines, this may mean including a larger 

fraction of the wind turbines in the sample. 

https://west-inc.shinyapps.io/GenEstSens/


Performance of the GenEst Statisitcal Mortality Estimator 
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